Add a new hostname string parameter to the network block which
allows operators to specify the hostname of the network namespace.
Changing this causes a destructive update to the allocation and it
is omitted if empty from API responses. This parameter also supports
interpolation.
In order to have a hostname passed as a configuration param when
creating an allocation network, the CreateNetwork func of the
DriverNetworkManager interface needs to be updated. In order to
minimize the disruption of future changes, rather than add another
string func arg, the function now accepts a request struct along with
the allocID param. The struct has the hostname as a field.
The in-tree implementations of DriverNetworkManager.CreateNetwork
have been modified to account for the function signature change.
In updating for the change, the enhancement of adding hostnames to
network namespaces has also been added to the Docker driver, whilst
the default Linux manager does not current implement it.
When `network.mode = "bridge"`, we create a pause container in Docker with no
networking so that we have a process to hold the network namespace we create
in Nomad. The default `/etc/hosts` file of that pause container is then used
for all the Docker tasks that share that network namespace. Some applications
rely on this file being populated.
This changeset generates a `/etc/hosts` file and bind-mounts it to the
container when Nomad owns the network, so that the container's hostname has an
IP in the file as expected. The hosts file will include the entries added by
the Docker driver's `extra_hosts` field.
In this changeset, only the Docker task driver will take advantage of this
option, as the `exec`/`java` drivers currently copy the host's `/etc/hosts`
file and this can't be changed without breaking backwards compatibility. But
the fields are available in the task driver protobuf for community task
drivers to use if they'd like.
Add a new driver capability: RemoteTasks.
When a task is run by a driver with RemoteTasks set, its TaskHandle will
be propagated to the server in its allocation's TaskState. If the task
is replaced due to a down node or draining, its TaskHandle will be
propagated to its replacement allocation.
This allows tasks to be scheduled in remote systems whose lifecycles are
disconnected from the Nomad node's lifecycle.
See https://github.com/hashicorp/nomad-driver-ecs for an example ECS
remote task driver.
Use targetted ignore comments for the cases where we are bound by
backward compatibility.
I've left some file based linters, especially when the file is riddled
with linter voilations (e.g. enum names), or if it's a property of the
file (e.g. package and file names).
I encountered an odd behavior related to RPC_REQUEST_RESPONSE_UNIQUE and
RPC_REQUEST_STANDARD_NAME. Apparently, if they target a `stream` type,
we must separate them into separate lines so that the ignore comment
targets the type specifically.
Previously, it was required that you `go get github.com/hashicorp/nomad` to be
able to build protos, as the protoc invocation added an include directive that
pointed to `$GOPATH/src`, which is how dependent protos were discovered. As
Nomad now uses Go modules, it won't necessarily be cloned to `$GOPATH`.
(Additionally, if you _had_ go-gotten Nomad at some point, protoc compilation
would have possibly used the _wrong_ protos, as those wouldn't necessarily be
the most up-to-date ones.)
This change modifies the proto files and the `protoc` invocation to handle
discovering dependent protos via protoc plugin modifier statements that are
specific to the protoc plugin being used.
In this change, `make proto` was run to recompile the protos, which results in
changes only to the gzipped `FileDescriptorProto`.
* docker: support group allocated ports
* docker: add new ports driver config to specify which group ports are mapped
* docker: update port mapping docs
When an allocation runs for a task driver that can't support volume mounts,
the mounting will fail in a way that can be hard to understand. With host
volumes this usually means failing silently, whereas with CSI the operator
gets inscrutable internals exposed in the `nomad alloc status`.
This changeset adds a MountConfig field to the task driver Capabilities
response. We validate this when the `csi_hook` or `volume_hook` fires and
return a user-friendly error.
Note that we don't currently have a way to get driver capabilities up to the
server, except through attributes. Validating this when the user initially
submits the jobspec would be even better than what we're doing here (and could
be useful for all our other capabilities), but that's out of scope for this
changeset.
Also note that the MountConfig enum starts with "supports all" in order to
support community plugins in a backwards compatible way, rather than cutting
them off from volume mounting unexpectedly.
Adds a new Prerun and Postrun hooks to manage set up of network namespaces
on linux. Work still needs to be done to make the code platform agnostic and
support Docker style network initalization.
In this commit, we add two driver interfaces for supporting `nomad exec`
invocation:
* A high level `ExecTaskStreamingDriver`, that operates on io reader/writers.
Drivers should prefer using this interface
* A low level `ExecTaskStreamingRawDriver` that operates on the raw stream of
input structs; useful when a driver delegates handling to driver backend (e.g.
across RPC/grpc).
The interfaces are optional for a driver, as `nomad exec` support is opt-in.
Existing drivers continue to compile without exec support, until their
maintainer add such support.
Furthermore, we create protobuf structures to represent exec stream entities:
`ExecTaskStreamingRequest` and `ExecTaskStreamingResponse`. We aim to reuse the
protobuf generated code as much as possible, without translation to avoid
conversion overhead.
`ExecTaskStream` abstract fetching and sending stream entities. It's influenced
by the grpc bi-directional stream interface, to avoid needing any adapter. I
considered using channels, but the asynchronisity and concurrency makes buffer
reuse too complicated, which would put more pressure on GC and slows exec operation.
Noticed that the protobuf files are out of sync with ones generated by 1.2.0 protoc go plugin.
The cause for these files seem to be related to release processes, e.g. [0.9.0-beta1 preperation](ecec3d38de (diff-da4da188ee496377d456025c2eab4e87)), and [0.9.0-beta3 preperation](b849d84f2f).
This restores the changes to that of the pinned protoc version and fails build if protobuf files are out of sync. Sample failing Travis job is that of the first commit change: https://travis-ci.org/hashicorp/nomad/jobs/506285085
Track current memory usage, `memory.usage_in_bytes`, in addition to
`memory.max_memory_usage_in_bytes` and friends. This number is closer
what Docker reports.
Related to https://github.com/hashicorp/nomad/issues/5165 .
plugins/driver: update driver interface to support streaming stats
client/tr: use streaming stats api
TODO:
* how to handle errors and closed channel during stats streaming
* prevent tight loop if Stats(ctx) returns an error
drivers: update drivers TaskStats RPC to handle streaming results
executor: better error handling in stats rpc
docker: better control and error handling of stats rpc
driver: allow stats to return a recoverable error
IOPS have been modelled as a resource since Nomad 0.1 but has never
actually been detected and there is no plan in the short term to add
detection. This is because IOPS is a bit simplistic of a unit to define
the performance requirements from the underlying storage system. In its
current state it adds unnecessary confusion and can be removed without
impacting any users. This PR leaves IOPS defined at the jobspec parsing
level and in the api/ resources since these are the two public uses of
the field. These should be considered deprecated and only exist to allow
users to stop using them during the Nomad 0.9.x release. In the future,
there should be no expectation that the field will exist.
Introduce a device manager that manages the lifecycle of device plugins
on the client. It fingerprints, collects stats, and forwards Reserve
requests to the correct plugin. The manager, also handles device plugins
failing and validates their output.
Driver plugin framework to facilitate development of driver plugins.
Implementing plugins only need to implement the DriverPlugin interface.
The framework proxies this interface to the go-plugin GRPC interface generated
from the driver.proto spec.
A testing harness is provided to allow implementing drivers to test the full
lifecycle of the driver plugin. An example use:
func TestMyDriver(t *testing.T) {
harness := NewDriverHarness(t, &MyDiverPlugin{})
// The harness implements the DriverPlugin interface and can be used as such
taskHandle, err := harness.StartTask(...)
}