The configuration knobs for root keyring garbage collection are present in the
consumer and present in the user-facing config, but we missed the spot where we
copy from one to the other. Fix this so that users can set their own thresholds.
The root key is automatically rotated every ~30d, but the function that does
both rotation and key GC was wired up such that `nomad system gc` caused an
unexpected key rotation. Split this into two functions so that `nomad system gc`
cleans up old keys without forcing a rotation, which will be done periodially
or by the `nomad operator root keyring rotate` command.
The client ACL cache was not accounting for tokens which included
ACL role links. This change modifies the behaviour to resolve role
links to policies. It will also now store ACL roles within the
cache for quick lookup. The cache TTL is configurable in the same
manner as policies or tokens.
Another small fix is included that takes into account the ACL
token expiry time. This was not included, which meant tokens with
expiry could be used past the expiry time, until they were GC'd.
Before this change, Client had 2 copies of the config object: config and configCopy. There was no guidance around which to use where (other than configCopy's comment to pass it to alloc runners), both are shared among goroutines and mutated in data racy ways. At least at one point I think the idea was to have `config` be mutable and then grab a lock to overwrite `configCopy`'s pointer atomically. This would have allowed alloc runners to read their config copies in data race safe ways, but this isn't how the current implementation worked.
This change takes the following approach to safely handling configs in the client:
1. `Client.config` is the only copy of the config and all access must go through the `Client.configLock` mutex
2. Since the mutex *only protects the config pointer itself and not fields inside the Config struct:* all config mutation must be done on a *copy* of the config, and then Client's config pointer is overwritten while the mutex is acquired. Alloc runners and other goroutines with the old config pointer will not see config updates.
3. Deep copying is implemented on the Config struct to satisfy the previous approach. The TLS Keyloader is an exception because it has its own internal locking to support mutating in place. An unfortunate complication but one I couldn't find a way to untangle in a timely fashion.
4. To facilitate deep copying I made an *internally backward incompatible API change:* our `helper/funcs` used to turn containers (slices and maps) with 0 elements into nils. This probably saves a few memory allocations but makes it very easy to cause panics. Since my new config handling approach uses more copying, it became very difficult to ensure all code that used containers on configs could handle nils properly. Since this code has caused panics in the past, I fixed it: nil containers are copied as nil, but 0-element containers properly return a new 0-element container. No more "downgrading to nil!"
Plan rejections occur when the scheduler work and the leader plan
applier disagree on the feasibility of a plan. This may happen for valid
reasons: since Nomad does parallel scheduling, it is expected that
different workers will have a different state when computing placements.
As the final plan reaches the leader plan applier, it may no longer be
valid due to a concurrent scheduling taking up intended resources. In
these situations the plan applier will notify the worker that the plan
was rejected and that they should refresh their state before trying
again.
In some rare and unexpected circumstances it has been observed that
workers will repeatedly submit the same plan, even if they are always
rejected.
While the root cause is still unknown this mitigation has been put in
place. The plan applier will now track the history of plan rejections
per client and include in the plan result a list of node IDs that should
be set as ineligible if the number of rejections in a given time window
crosses a certain threshold. The window size and threshold value can be
adjusted in the server configuration.
To avoid marking several nodes as ineligible at one, the operation is rate
limited to 5 nodes every 30min, with an initial burst of 10 operations.
This commit adds configuration parameters to control ACL token
expirations. This includes both limits on the min and max TTL
expiration values, as well as a GC threshold for expired tokens.
Fix numerous go-getter security issues:
- Add timeouts to http, git, and hg operations to prevent DoS
- Add size limit to http to prevent resource exhaustion
- Disable following symlinks in both artifacts and `job run`
- Stop performing initial HEAD request to avoid file corruption on
retries and DoS opportunities.
**Approach**
Since Nomad has no ability to differentiate a DoS-via-large-artifact vs
a legitimate workload, all of the new limits are configurable at the
client agent level.
The max size of HTTP downloads is also exposed as a node attribute so
that if some workloads have large artifacts they can specify a high
limit in their jobspecs.
In the future all of this plumbing could be extended to enable/disable
specific getters or artifact downloading entirely on a per-node basis.
This change modifies the template task runner to utilise the
new consul-template which includes Nomad service lookup template
funcs.
In order to provide security and auth to consul-template, we use
a custom HTTP dialer which is passed to consul-template when
setting up the runner. This method follows Vault implementation.
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
This PR adds support for the raw_exec driver on systems with only cgroups v2.
The raw exec driver is able to use cgroups to manage processes. This happens
only on Linux, when exec_driver is enabled, and the no_cgroups option is not
set. The driver uses the freezer controller to freeze processes of a task,
issue a sigkill, then unfreeze. Previously the implementation assumed cgroups
v1, and now it also supports cgroups v2.
There is a bit of refactoring in this PR, but the fundamental design remains
the same.
Closes#12351#12348
Nomad inherited protocol version numbering configuration from Consul and
Serf, but unlike those projects Nomad has never used it. Nomad's
`protocol_version` has always been `1`.
While the code is effectively unused and therefore poses no runtime
risks to leave, I felt like removing it was best because:
1. Nomad's RPC subsystem has been able to evolve extensively without
needing to increment the version number.
2. Nomad's HTTP API has evolved extensively without increment
`API{Major,Minor}Version`. If we want to version the HTTP API in the
future, I doubt this is the mechanism we would choose.
3. The presence of the `server.protocol_version` configuration
parameter is confusing since `server.raft_protocol` *is* an important
parameter for operators to consider. Even more confusing is that
there is a distinct Serf protocol version which is included in `nomad
server members` output under the heading `Protocol`. `raft_protocol`
is the *only* protocol version relevant to Nomad developers and
operators. The other protocol versions are either deadcode or have
never changed (Serf).
4. If we were to need to version the RPC, HTTP API, or Serf protocols, I
don't think these configuration parameters and variables are the best
choice. If we come to that point we should choose a versioning scheme
based on the use case and modern best practices -- not this 6+ year
old dead code.
This PR exposes the following existing`consul-template` configuration options to Nomad jobspec authors in the `{job.group.task.template}` stanza.
- `wait`
It also exposes the following`consul-template` configuration to Nomad operators in the `{client.template}` stanza.
- `max_stale`
- `block_query_wait`
- `consul_retry`
- `vault_retry`
- `wait`
Finally, it adds the following new Nomad-specific configuration to the `{client.template}` stanza that allows Operators to set bounds on what `jobspec` authors configure.
- `wait_bounds`
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
- Making RPC Upgrade mode reloadable.
- Add suggestions from code review
- remove spurious comment
- switch to require(t,...) form for test.
- Add to changelog
FailoverHeartbeatTTL is the amount of time to wait after a server leader failure
before considering reallocating client tasks. This TTL should be fairly long as
the new server leader needs to rebuild the entire heartbeat map for the
cluster. In deployments with a small number of machines, the default TTL (5m)
may be unnecessary long. Let's allow operators to configure this value in their
config files.
This PR changes Nomad's wrapper around the Consul NamespaceAPI so that
it will detect if the Consul Namespaces feature is enabled before making
a request to the Namespaces API. Namespaces are not enabled in Consul OSS,
and require a suitable license to be used with Consul ENT.
Previously Nomad would check for a 404 status code when makeing a request
to the Namespaces API to "detect" if Consul OSS was being used. This does
not work for Consul ENT with Namespaces disabled, which returns a 500.
Now we avoid requesting the namespace API altogether if Consul is detected
to be the OSS sku, or if the Namespaces feature is not licensed. Since
Consul can be upgraded from OSS to ENT, or a new license applied, we cache
the value for 1 minute, refreshing on demand if expired.
Fixes https://github.com/hashicorp/nomad-enterprise/issues/575
Note that the ticket originally describes using attributes from https://github.com/hashicorp/nomad/issues/10688.
This turns out not to be possible due to a chicken-egg situation between
bootstrapping the agent and setting up the consul client. Also fun: the
Consul fingerprinter creates its own Consul client, because there is no
[currently] no way to pass the agent's client through the fingerprint factory.
This PR introduces the /v1/search/fuzzy API endpoint, used for fuzzy
searching objects in Nomad. The fuzzy search endpoint routes requests
to the Nomad Server leader, which implements the Search.FuzzySearch RPC
method.
Requests to the fuzzy search API are based on the api.FuzzySearchRequest
object, e.g.
{
"Text": "ed",
"Context": "all"
}
Responses from the fuzzy search API are based on the api.FuzzySearchResponse
object, e.g.
{
"Index": 27,
"KnownLeader": true,
"LastContact": 0,
"Matches": {
"tasks": [
{
"ID": "redis",
"Scope": [
"default",
"example",
"cache"
]
}
],
"evals": [],
"deployment": [],
"volumes": [],
"scaling_policy": [],
"images": [
{
"ID": "redis:3.2",
"Scope": [
"default",
"example",
"cache",
"redis"
]
}
]
},
"Truncations": {
"volumes": false,
"scaling_policy": false,
"evals": false,
"deployment": false
}
}
The API is tunable using the new server.search stanza, e.g.
server {
search {
fuzzy_enabled = true
limit_query = 200
limit_results = 1000
min_term_length = 5
}
}
These values can be increased or decreased, so as to provide more
search results or to reduce load on the Nomad Server. The fuzzy search
API can be disabled entirely by setting `fuzzy_enabled` to `false`.
on Linux systems this is derived from the configure cpuset cgroup parent (defaults to /nomad)
for non Linux systems and Linux systems where cgroups are not enabled, the client defaults to using all cores
This PR adds the common OSS changes for adding support for Consul Namespaces,
which is going to be a Nomad Enterprise feature. There is no new functionality
provided by this changeset and hopefully no new bugs.
This commit includes a new test client that allows overriding the RPC
protocols. Only the RPCs that are passed in are registered, which lets you
implement a mock RPC in the server tests. This commit includes an example of
this for the ClientCSI RPC server.
* remove event durability
temporarily removing go-memdb event durability until a new strategy is developed on how to best handled increased durability needs
* drop events table schema and state store methods
* fix neweventbuffer invocations
properly wire up durable event count
move newline responsibility
moves newline creation from NDJson to the http handler, json stream only encodes and sends now
ignore snapshot restore if broker is disabled
enable dev mode to access event steam without acl
use mapping instead of switch
use pointers for config sizes, remove unused ttl, simplify closed conn logic
As newer versions of Consul are released, the minimum version of Envoy
it supports as a sidecar proxy also gets bumped. Starting with the upcoming
Consul v1.9.X series, Envoy v1.11.X will no longer be supported. Current
versions of Nomad hardcode a version of Envoy v1.11.2 to be used as the
default implementation of Connect sidecar proxy.
This PR introduces a change such that each Nomad Client will query its
local Consul for a list of Envoy proxies that it supports (https://github.com/hashicorp/consul/pull/8545)
and then launch the Connect sidecar proxy task using the latest supported version
of Envoy. If the `SupportedProxies` API component is not available from
Consul, Nomad will fallback to the old version of Envoy supported by old
versions of Consul.
Setting the meta configuration option `meta.connect.sidecar_image` or
setting the `connect.sidecar_task` stanza will take precedence as is
the current behavior for sidecar proxies.
Setting the meta configuration option `meta.connect.gateway_image`
will take precedence as is the current behavior for connect gateways.
`meta.connect.sidecar_image` and `meta.connect.gateway_image` may make
use of the special `${NOMAD_envoy_version}` variable interpolation, which
resolves to the newest version of Envoy supported by the Consul agent.
Addresses #8585#7665
This PR adds initial support for running Consul Connect Ingress Gateways (CIGs) in Nomad. These gateways are declared as part of a task group level service definition within the connect stanza.
```hcl
service {
connect {
gateway {
proxy {
// envoy proxy configuration
}
ingress {
// ingress-gateway configuration entry
}
}
}
}
```
A gateway can be run in `bridge` or `host` networking mode, with the caveat that host networking necessitates manually specifying the Envoy admin listener (which cannot be disabled) via the service port value.
Currently Envoy is the only supported gateway implementation in Consul, and Nomad only supports running Envoy as a gateway using the docker driver.
Aims to address #8294 and tangentially #8647
* ar: support opting into binding host ports to default network IP
* fix config plumbing
* plumb node address into network resource
* struct: only handle network resource upgrade path once