The plan applier has to get a snapshot with a minimum index for the
plan it's working on in order to ensure consistency. Under heavy raft
loads, we can exceed the timeout. When this happens, we hit a bug
where the plan applier blocks waiting on the `indexCh` forever, and
all schedulers will block in `Plan.Submit`.
Closing the `indexCh` when the `asyncPlanWait` is done with it will
prevent the deadlock without impacting correctness of the previous
snapshot index.
This changeset includes the a PoC failing test that works by injecting
a large timeout into the state store. We need to turn this into a test
we can run normally without breaking the state store before we can
merge this PR.
Increase `snapshotMinIndex` timeout to 10s.
This timeout creates backpressure where any concurrent `Plan.Submit`
RPCs will block waiting for results. This sheds load across all
servers and gives raft some CPU to catch up, because schedulers won't
dequeue more work while waiting. Increase it to 10s based on
observations of large production clusters.
As we have continued to see reports of #9506 we need to elevate this log
line as it is the only way to detect when plans are being *erroneously*
rejected.
Users who see this log line repeatedly should drain and restart the node
in the log line. This seems to workaorund the issue.
Please post any details on #9506!
The plans generated by the scheduler produce high-level output of counts on each
evaluation, but when debugging scheduler issues it'd be nice to have a more
detailed view of the resulting plan. Emitting this log at trace minimizes the
overhead, and producing it in the plan applyer makes it easier to find as it
will always be on the leader.
node drain: use msgtype on txn so that events are emitted
wip: encoding extension to add Node.Drain field back to API responses
new approach for hiding Node.SecretID in the API, using `json` tag
documented this approach in the contributing guide
refactored the JSON handlers with extensions
modified event stream encoding to use the go-msgpack encoders with the extensions
* Node Drain events and Node Events (#8980)
Deployment status updates
handle deployment status updates (paused, failed, resume)
deployment alloc health
generate events from apply plan result
txn err check, slim down deployment event
one ndjson line per index
* consolidate down to node event + type
* fix UpdateDeploymentAllocHealth test invocations
* fix test
* scheduler/reconcile: set FollowupEvalID on lost stop_after_client_disconnect
* scheduler/reconcile: thread follupEvalIDs through to results.stop
* scheduler/reconcile: comment typo
* nomad/_test: correct arguments for plan.AppendStoppedAlloc
* scheduler/reconcile: avoid nil, cleanup handleDelayed(Lost|Reschedules)
* client/heartbeatstop: reversed time condition for startup grace
* scheduler/generic_sched: use `delayInstead` to avoid a loop
Without protecting the loop that creates followUpEvals, a delayed eval
is allowed to create an immediate subsequent delayed eval. For both
`stop_after_client_disconnect` and the `reschedule` block, a delayed
eval should always produce some immediate result (running or blocked)
and then only after the outcome of that eval produce a second delayed
eval.
* scheduler/reconcile: lostLater are different than delayedReschedules
Just slightly. `lostLater` allocs should be used to create batched
evaluations, but `handleDelayedReschedules` assumes that the
allocations are in the untainted set. When it creates the in-place
updates to those allocations at the end, it causes the allocation to
be treated as running over in the planner, which causes the initial
`stop_after_client_disconnect` evaluation to be retried by the worker.
Rename SnapshotAfter to SnapshotMinIndex. The old name was not
technically accurate. SnapshotAtOrAfter is more accurate, but wordy and
still lacks context about what precisely it is at or after (the index).
SnapshotMinIndex was chosen as it describes the action (snapshot), a
constraint (minimum), and the object of the constraint (index).
The previous commit prevented evaluating plans against a state snapshot
which is older than the snapshot at which the plan was created. This is
correct and prevents failures trying to retrieve referenced objects that
may not exist until the plan's snapshot. However, this is insufficient
to guarantee consistency if the following events occur:
1. P1, P2, and P3 are enqueued with snapshot @ 100
2. Leader evaluates and applies Plan P1 with snapshot @ 100
3. Leader evaluates Plan P2 with snapshot+P1 @ 100
4. P1 commits @ 101
4. Leader evaluates applies Plan P3 with snapshot+P2 @ 100
Since only the previous plan is optimistically applied to the state
store, the snapshot used to evaluate a plan may not contain the N-2
plan!
To ensure plans are evaluated and applied serially we must consider all
previous plan's committed indexes when evaluating further plans.
Therefore combined with the last PR, the minimum index at which to
evaluate a plan is:
min(previousPlanResultIndex, plan.SnapshotIndex)
Plan application should use a state snapshot at or after the Raft index
at which the plan was created otherwise it risks being rejected based on
stale data.
This commit adds a Plan.SnapshotIndex which is set by workers when
submitting plan. SnapshotIndex is set to the Raft index of the snapshot
the worker used to generate the plan.
Plan.SnapshotIndex plays a similar role to PlanResult.RefreshIndex.
While RefreshIndex informs workers their StateStore is behind the
leader's, SnapshotIndex is a way to prevent the leader from using a
StateStore behind the worker's.
Plan.SnapshotIndex should be considered the *lower bound* index for
consistently handling plan application.
Plans must also be committed serially, so Plan N+1 should use a state
snapshot containing Plan N. This is guaranteed for plans *after* the
first plan after a leader election.
The Raft barrier on leader election ensures the leader's statestore has
caught up to the log index at which it was elected. This guarantees its
StateStore is at an index > lastPlanIndex.
Revert plan_apply.go changes from #5411
Since non-Command Raft messages do not update the StateStore index,
SnapshotAfter may unnecessarily block and needlessly fail in idle
clusters where the last Raft message is a non-Command message.
This is trivially reproducible with the dev agent and a job that has 2
tasks, 1 of which fails.
The correct logic would be to SnapshotAfter the previous plan's index to
ensure consistency. New clusters or newly elected leaders will not have
a previous plan, so the index the leader was elected should be used
instead.
This commit implements an allocation selection algorithm for finding
allocations to preempt. It currently special cases network resource asks
from others (cpu/memory/disk/iops).