Nomad on the packer image will be overwritten by the sha specified in
the TF var, but including a base version on the packer image makes the
image valid for independent use.
This fixes a confusing UX where a previously successful deployment's
healthy/unhealthy count would get updated if any allocations failed after
the deployment was already marked as successful.
Fixes https://github.com/hashicorp/nomad/issues/5587
When a nomad 0.9 client is handling an alloc generated by a nomad 0.8
server, we should check the alloc.TaskResources for networking details
rather than task.Resources.
We check alloc.TaskResources for networking for other tasks in the task
group [1], so it's a bit odd that we used the task.Resources struct
here. TaskRunner also uses `alloc.TaskResources`[2].
The task.Resources struct in 0.8 was sparsly populated, resulting to
storing of 0 in port mapping env vars:
```
vagrant@nomad-server-01:~$ nomad version
Nomad v0.8.7 (21a2d93eecf018ad2209a5eab6aae6c359267933+CHANGES)
vagrant@nomad-server-01:~$ nomad server members
Name Address Port Status Leader Protocol Build Datacenter Region
nomad-server-01.global 10.199.0.11 4648 alive true 2 0.8.7 dc1 global
vagrant@nomad-server-01:~$ nomad alloc status -json 5b34649b | jq '.Job.TaskGroups[0].Tasks[0].Resources.Networks'
[
{
"CIDR": "",
"Device": "",
"DynamicPorts": [
{
"Label": "db",
"Value": 0
}
],
"IP": "",
"MBits": 10,
"ReservedPorts": null
}
]
vagrant@nomad-server-01:~$ nomad alloc status -json 5b34649b | jq '.TaskResources'
{
"redis": {
"CPU": 500,
"DiskMB": 0,
"IOPS": 0,
"MemoryMB": 256,
"Networks": [
{
"CIDR": "",
"Device": "eth1",
"DynamicPorts": [
{
"Label": "db",
"Value": 21722
}
],
"IP": "10.199.0.21",
"MBits": 10,
"ReservedPorts": null
}
]
}
}
```
Also, updated the test values to mimic how Nomad 0.8 structs are
represented, and made its result match the non compact values in
`TestEnvironment_AsList`.
[1] 24e9040b18/client/taskenv/env.go (L624-L639)
[2] https://github.com/hashicorp/nomad/blob/master/client/allocrunner/taskrunner/task_runner.go#L287-L303
This commit causes sync to skip deregistering checks that are not
managed by nomad, such as service maintenance mode checks. This is
handled in the same way as service registrations - by doing a Nomad
specific prefix match.
The current implementation of Service Registration uses a hash of the
nomad-internal state of a service to register it with Consul, this means that
any update to the service invalidates this name and we then deregister, and
recreate the service in Consul.
While this behaviour slightly simplifies reasoning about service registration,
this becomes problematic when we add consul health checks to a service. When
the service is re-registered, so are the checks, which default to failing for
at least one check period.
This commit migrates us to using a stable identifier based on the
allocation, task, and service identifiers, and uses the difference
between the remote and local state to decide when to push updates.
It uses the existing hashing mechanic to decide when UpdateTask should
regenerate service registrations for providing to Sync, but this should
be removable as part of a future refactor.
It additionally introduces the _nomad-check- prefix for check
definitions, to allow for future allowing of consul features like
maintenance mode.
- Rewrote overview description
- Reformatted "Community" scetion for consistency with GitHub
- Removed IRC (redundant with Gitter)
- Added "Community Calls" section with links to prior sessions
- Added "Webinar" section with links to prior sessions
- Revised Bug Tracker copy
- Renamed "Tools for Provisioning & Experimentation" to "How to Install Nomad" section
- Bumped up the "How to Install Nomad" section right below to second on the list "Community"
- Removed "Videos" & "Blog Posts" section in favor of accurate segmentation between user talks, webinars, blog posts
- Added "Who Uses Nomad" section in consistency with new GitHub ReadME
- Removed the "Trusted By" section and disclaimer at bottom
In this commit, we add two driver interfaces for supporting `nomad exec`
invocation:
* A high level `ExecTaskStreamingDriver`, that operates on io reader/writers.
Drivers should prefer using this interface
* A low level `ExecTaskStreamingRawDriver` that operates on the raw stream of
input structs; useful when a driver delegates handling to driver backend (e.g.
across RPC/grpc).
The interfaces are optional for a driver, as `nomad exec` support is opt-in.
Existing drivers continue to compile without exec support, until their
maintainer add such support.
Furthermore, we create protobuf structures to represent exec stream entities:
`ExecTaskStreamingRequest` and `ExecTaskStreamingResponse`. We aim to reuse the
protobuf generated code as much as possible, without translation to avoid
conversion overhead.
`ExecTaskStream` abstract fetching and sending stream entities. It's influenced
by the grpc bi-directional stream interface, to avoid needing any adapter. I
considered using channels, but the asynchronisity and concurrency makes buffer
reuse too complicated, which would put more pressure on GC and slows exec operation.
This adds `alloc-exec` capability to allow operator to execute command into a
running task. Furthermore, it adds `alloc-node-exec` capability, required when
the alloc task is raw_exec or a driver with no FSIsolation.