`admissionValidators` doesn't aggregate errors correctly, as it
aggregates errors in `errs` reference yet it always returns the nil
`err`.
Here, we avoid shadowing `err`, and move variable declarations to where
they are used.
`groupConnectHook` assumes that Networks is a non-empty slice, but TG
hasn't been validated yet and validation may depend on mutation results.
As such, we do basic check here before dereferencing network slice
elements.
Vault 1.2.0 deprecated `period` field in favor of `token_period` in auth
role:
> * Token store roles use new, common token fields for the values
> that overlap with other auth backends. `period`, `explicit_max_ttl`, and
> `bound_cidrs` will continue to work, with priority being given to the
> `token_` prefixed versions of those parameters. They will also be returned
> when doing a read on the role if they were used to provide values initially;
> however, in Vault 1.4 if `period` or `explicit_max_ttl` is zero they will no
> longer be returned. (`explicit_max_ttl` was already not returned if empty.)
https://github.com/hashicorp/vault/blob/master/CHANGELOG.md#120-july-30th-2019
This commit introduces support for configuring mount propagation when
mounting volumes with the `volume_mount` stanza on Linux targets.
Similar to Kubernetes, we expose 3 options for configuring mount
propagation:
- private, which is equivalent to `rprivate` on Linux, which does not allow the
container to see any new nested mounts after the chroot was created.
- host-to-task, which is equivalent to `rslave` on Linux, which allows new mounts
that have been created _outside of the container_ to be visible
inside the container after the chroot is created.
- bidirectional, which is equivalent to `rshared` on Linux, which allows both
the container to see new mounts created on the host, but
importantly _allows the container to create mounts that are
visible in other containers an don the host_
private and host-to-task are safe, but bidirectional mounts can be
dangerous, as if the code inside a container creates a mount, and does
not clean it up before tearing down the container, it can cause bad
things to happen inside the kernel.
To add a layer of safety here, we require that the user has ReadWrite
permissions on the volume before allowing bidirectional mounts, as a
defense in depth / validation case, although creating mounts should also require
a priviliged execution environment inside the container.
Fix a bug where a millicious user can access or manipulate an alloc in a
namespace they don't have access to. The allocation endpoints perform
ACL checks against the request namespace, not the allocation namespace,
and performs the allocation lookup independently from namespaces.
Here, we check that the requested can access the alloc namespace
regardless of the declared request namespace.
Ideally, we'd enforce that the declared request namespace matches
the actual allocation namespace. Unfortunately, we haven't documented
alloc endpoints as namespaced functions; we suspect starting to enforce
this will be very disruptive and inappropriate for a nomad point
release. As such, we maintain current behavior that doesn't require
passing the proper namespace in request. A future major release may
start enforcing checking declared namespace.
In a job registration request, ensure that the request namespace "header" and job
namespace field match. This should be the case already in prod, as http
handlers ensures that the values match [1].
This mitigates bugs that exploit bugs where we may check a value but act
on another, resulting into bypassing ACL system.
[1] https://github.com/hashicorp/nomad/blob/v0.9.5/command/agent/job_endpoint.go#L415-L418
Without a `LocalServicePort`, Connect services will try to use the
mapped port even when delivering traffic locally. A user can override
this behavior by pinning the port value in the `service` stanza but
this prevents us from using the Consul service name to reach the
service.
This commits configures the Consul proxy with its `LocalServicePort`
and `LocalServiceAddress` fields.
Currently, using a Volume in a job uses the following configuration:
```
volume "alias-name" {
type = "volume-type"
read_only = true
config {
source = "host_volume_name"
}
}
```
This commit migrates to the following:
```
volume "alias-name" {
type = "volume-type"
source = "host_volume_name"
read_only = true
}
```
The original design was based due to being uncertain about the future of storage
plugins, and to allow maxium flexibility.
However, this causes a few issues, namely:
- We frequently need to parse this configuration during submission,
scheduling, and mounting
- It complicates the configuration from and end users perspective
- It complicates the ability to do validation
As we understand the problem space of CSI a little more, it has become
clear that we won't need the `source` to be in config, as it will be
used in the majority of cases:
- Host Volumes: Always need a source
- Preallocated CSI Volumes: Always needs a source from a volume or claim name
- Dynamic Persistent CSI Volumes*: Always needs a source to attach the volumes
to for managing upgrades and to avoid dangling.
- Dynamic Ephemeral CSI Volumes*: Less thought out, but `source` will probably point
to the plugin name, and a `config` block will
allow you to pass meta to the plugin. Or will
point to a pre-configured ephemeral config.
*If implemented
The new design simplifies this by merging the source into the volume
stanza to solve the above issues with usability, performance, and error
handling.
This is an attempt to ease dependency management for external driver
plugins, by avoiding requiring them to compile ugorji/go generated
files. Plugin developers reported some pain with the brittleness of
ugorji/go dependency in particular, specially when using go mod, the
default go mod manager in golang 1.13.
Context
--------
Nomad uses msgpack to persist and serialize internal structs, using
ugorji/go library. As an optimization, we use ugorji/go code generation
to speedup process and aovid the relection-based slow path.
We commit these generated files in repository when we cut and tag the
release to ease reproducability and debugging old releases. Thus,
downstream projects that depend on release tag, indirectly depends on
ugorji/go generated code.
Sadly, the generated code is brittle and specific to the version of
ugorji/go being used. When go mod picks another version of ugorji/go
then nomad (go mod by default uses release according to semver),
downstream projects face compilation errors.
Interestingly, downstream projects don't commonly serialize nomad
internal structs. Drivers and device plugins use grpc instead of
msgpack for the most part. In the few cases where they use msgpag (e.g.
decoding task config), they do without codegen path as they run on
driver specific structs not the nomad internal structs. Also, the
ugorji/go serialization through reflection is generally backward
compatible (mod some ugorji/go regression bugs that get introduced every
now and then :( ).
Proposal
---------
The proposal here is to keep committing ugorji/go codec generated files
for releases but to use a go tag for them.
All nomad development through the makefile, including releasing, CI and
dev flow, has the tag enabled.
Downstream plugin projects, by default, will skip these files and life
proceed as normal for them.
The downside is that nomad developers who use generated code but avoid
using make must start passing additional go tag argument. Though this
is not a blessed configuration.
Tests typically call join cluster directly rather than rely on consul
discovery. Worse, consul discovery seems to cause additional leadership
transitions when a server is shutdown in tests than tests expect.
* connect: add unix socket to proxy grpc for envoy
Fixes#6124
Implement a L4 proxy from a unix socket inside a network namespace to
Consul's gRPC endpoint on the host. This allows Envoy to connect to
Consul's xDS configuration API.
* connect: pointer receiver on structs with mutexes
* connect: warn on all proxy errors
* taskenv: add connect upstream env vars + test
* set taskenv upstreams instead of appending
* Update client/taskenv/env.go
Co-Authored-By: Michael Schurter <mschurter@hashicorp.com>
* adds meta object to service in job spec, sends it to consul
* adds tests for service meta
* fix tests
* adds docs
* better hashing for service meta, use helper for copying meta when registering service
* tried to be DRY, but looks like it would be more work to use the
helper function
Fixes#6041
Unlike all other Consul operations, boostrapping requires Consul be
available. This PR tries Consul 3 times with a backoff to account for
the group services being asynchronously registered with Consul.
Adds a check for differences in `job.Diff` so that task group networks
and services, including new Consul connect stanzas, show up in the job
plan outputs.
* nomad: add admission controller framework
* nomad: add admission controller framework and Consul Connect hooks
* run admission controllers before checking permissions
* client: add default node meta for connect configurables
* nomad: remove validateJob func since it has been moved to admission controller
* nomad: use new TaskKind type
* client: use consts for connect sidecar image and log level
* Apply suggestions from code review
Co-Authored-By: Michael Schurter <mschurter@hashicorp.com>
* nomad: add job register test with connect sidecar
* Update nomad/job_endpoint_hooks.go
Co-Authored-By: Michael Schurter <mschurter@hashicorp.com>
* jobspec: breakup parse.go into smaller files
* add sidecar_task parsing to jobspec and api
* jobspec: combine service parsing logic for task and group service stanzas
* api: use slice of ConsulUpstream values instead of pointers
This seems to be the minimum viable patch for fixing a deadlock between
establishConnection and SetConfig.
SetConfig calls tomb.Kill+tomb.Wait while holding v.lock.
establishConnection needs to acquire v.lock to exit but SetConfig is
holding v.lock until tomb.Wait exits. tomb.Wait can't exit until
establishConnect does!
```
SetConfig -> tomb.Wait
^ |
| v
v.lock <- establishConnection
```
Also includes unit tests for binpacker and preemption.
The tests verify that network resources specified at the
task group level are properly accounted for
This ensures that server-to-server streaming RPC calls use the tls
wrapped connections.
Prior to this, `streamingRpcImpl` function uses tls for setting header
and invoking the rpc method, but returns unwrapped tls connection.
Thus, streaming writes fail with tls errors.
This tls streaming bug existed since 0.8.0[1], but PR #5654[2]
exacerbated it in 0.9.2. Prior to PR #5654, nomad client used to
shuffle servers at every heartbeat -- `servers.Manager.setServers`[3]
always shuffled servers and was called by heartbeat code[4]. Shuffling
servers meant that a nomad client would heartbeat and establish a
connection against all nomad servers eventually. When handling
streaming RPC calls, nomad servers used these local connection to
communicate directly to the client. The server-to-server forwarding
logic was left mostly unexercised.
PR #5654 means that a nomad client may connect to a single server only
and caused the server-to-server forward streaming RPC code to get
exercised more and unearthed the problem.
[1] https://github.com/hashicorp/nomad/blob/v0.8.0/nomad/rpc.go#L501-L515
[2] https://github.com/hashicorp/nomad/pull/5654
[3] https://github.com/hashicorp/nomad/blob/v0.9.1/client/servers/manager.go#L198-L216
[4] https://github.com/hashicorp/nomad/blob/v0.9.1/client/client.go#L1603
Here, we ensure that when leader only responds to RPC calls when state
store is up to date. At leadership transition or launch with restored
state, the server local store might not be caught up with latest raft
logs and may return a stale read.
The solution here is to have an RPC consistency read gate, enabled when
`establishLeadership` completes before we respond to RPC calls.
`establishLeadership` is gated by a `raft.Barrier` which ensures that
all prior raft logs have been applied.
Conversely, the gate is disabled when leadership is lost.
This is very much inspired by https://github.com/hashicorp/consul/pull/3154/files
Rename SnapshotAfter to SnapshotMinIndex. The old name was not
technically accurate. SnapshotAtOrAfter is more accurate, but wordy and
still lacks context about what precisely it is at or after (the index).
SnapshotMinIndex was chosen as it describes the action (snapshot), a
constraint (minimum), and the object of the constraint (index).
The previous commit prevented evaluating plans against a state snapshot
which is older than the snapshot at which the plan was created. This is
correct and prevents failures trying to retrieve referenced objects that
may not exist until the plan's snapshot. However, this is insufficient
to guarantee consistency if the following events occur:
1. P1, P2, and P3 are enqueued with snapshot @ 100
2. Leader evaluates and applies Plan P1 with snapshot @ 100
3. Leader evaluates Plan P2 with snapshot+P1 @ 100
4. P1 commits @ 101
4. Leader evaluates applies Plan P3 with snapshot+P2 @ 100
Since only the previous plan is optimistically applied to the state
store, the snapshot used to evaluate a plan may not contain the N-2
plan!
To ensure plans are evaluated and applied serially we must consider all
previous plan's committed indexes when evaluating further plans.
Therefore combined with the last PR, the minimum index at which to
evaluate a plan is:
min(previousPlanResultIndex, plan.SnapshotIndex)
Plan application should use a state snapshot at or after the Raft index
at which the plan was created otherwise it risks being rejected based on
stale data.
This commit adds a Plan.SnapshotIndex which is set by workers when
submitting plan. SnapshotIndex is set to the Raft index of the snapshot
the worker used to generate the plan.
Plan.SnapshotIndex plays a similar role to PlanResult.RefreshIndex.
While RefreshIndex informs workers their StateStore is behind the
leader's, SnapshotIndex is a way to prevent the leader from using a
StateStore behind the worker's.
Plan.SnapshotIndex should be considered the *lower bound* index for
consistently handling plan application.
Plans must also be committed serially, so Plan N+1 should use a state
snapshot containing Plan N. This is guaranteed for plans *after* the
first plan after a leader election.
The Raft barrier on leader election ensures the leader's statestore has
caught up to the log index at which it was elected. This guarantees its
StateStore is at an index > lastPlanIndex.
- updated region in job metadata that gets persisted to nomad datastore
- fixed many unrelated unit tests that used an invalid region value
(they previously passed because hcl wasn't getting picked up and
the job would default to global region)
Enterprise only.
Disable preemption for service and batch jobs by default.
Maintain backward compatibility in a x.y.Z release. Consider switching
the default for new clusters in the future.
Revert plan_apply.go changes from #5411
Since non-Command Raft messages do not update the StateStore index,
SnapshotAfter may unnecessarily block and needlessly fail in idle
clusters where the last Raft message is a non-Command message.
This is trivially reproducible with the dev agent and a job that has 2
tasks, 1 of which fails.
The correct logic would be to SnapshotAfter the previous plan's index to
ensure consistency. New clusters or newly elected leaders will not have
a previous plan, so the index the leader was elected should be used
instead.
Fix a case where `node.StatusUpdatedAt` was manipulated directly in
memory.
This ensures that StatusUpdatedAt is set in raft layer, and ensures that
the field is updated when node drain/eligibility is updated too.
Previous commit could introduce a deadlock if the capacityChangeCh was
full and the receiving side exited before freeing a slot for the sending
side could send. Flush would then block forever waiting to acquire the
lock just to throw the pending update away.
The race is around getting/setting the chan field, not chan operations,
so only lock around getting the chan field.
I assume the mutex was being released before sending on capacityChangeCh
to avoid blocking in the critical section, but:
1. This is race.
2. capacityChangeCh has a *huge* buffer (8096). If it's full things
already seem Very Bad, and a little backpressure seems appropriate.
This fixes a bug in the state store during plan apply. When
denormalizing preempted allocations it incorrectly set the preemptor's
job during the update. This eventually causes a panic downstream in the
client. Added a test assertion that failed before and passes after this fix
* master: (912 commits)
Update redirects.txt
Added redirect for Spark guide link
client: log when server list changes
docs: mention regression in task config validation
fix update to changelog
update CHANGELOG with datacenter config validation https://github.com/hashicorp/nomad/pull/5665
typo: "atleast" -> "at least"
implement nomad exec for rkt
docs: fixed typo
use pty/tty terminology similar to github.com/kr/pty
vendor github.com/kr/pty
drivers: implement streaming exec for executor based drivers
executors: implement streaming exec
executor: scaffolding for executor grpc handling
client: expose allocated memory per task
client improve a comment in updateNetworks
stalebot: Add 'thinking' as an exempt label (#5684)
Added Sparrow link
update links to use new canonical location
Add redirects for restructing done in GH-5667
...
Fixes#1795
Running restored allocations and pulling what allocations to run from
the server happen concurrently. This means that if a client is rebooted,
and has its allocations rescheduled, it may restart the dead allocations
before it contacts the server and determines they should be dead.
This commit makes tasks that fail to reattach on restore wait until the
server is contacted before restarting.
Currently when an evalbroker is disabled, it still recieves delayed
enqueues via log application in the fsm. This causes an ever growing
heap of evaluations that will never be drained, and can cause memory
issues in larger clusters, or when left running for an extended period
of time without a leader election.
This commit prevents the enqueuing of evaluations while we are
disabled, and relies on the leader restoreEvals routine to handle
reconciling state during a leadership transition.
Existing dequeues during an Enabled->Disabled broker state transition are
handled by the enqueueLocked function dropping evals.
Primarily a cleanup commit, however, currently there is a potential race
condition (that I'm not sure we've ever actually hit) during a flapping
SetEnabled/Disabled state where we may never correctly restart the eval
broker, if it was being called from multiple routines.
Our testing so far indicates that ugorji/go/codec maintains backward
compatiblity with the version we are using now, for purposes of Nomad
serialization.
Using latest ugorji/go allows us to get back to using upstream library,
get get the optimizations benefits in RPC paths (including code
generation optimizations).
ugorji/go introduced two significant changes:
* time binary format in debb8e2d2e. Setting `h.BasicHandle.TimeNotBuiltin = true` restores old behavior
* ugorji/go started honoring `json` tag as well:
v1.1.4 is the latest but has a bug in handling RawString that's fixed in
d09a80c1e0
.
`Index` is already included as part of `WriteMeta` embedding.
This is a backward compatible change: Clients never read the field; and
Server refernces to `EmitNodeEventsResponse.Index` would be using the
value in `WriteMeta`, which is consistent with other response structs.
This command will be used to send a signal to either a single task within an
allocation, or all of the tasks if <task-name> is omitted. If the sent signal
terminates the allocation, it will be treated as if the allocation has crashed,
rather than as if it was operator-terminated.
Signal validation is currently handled by the driver itself and nomad
does not attempt to restrict or validate them.
This adds a `nomad alloc stop` command that can be used to stop and
force migrate an allocation to a different node.
This is built on top of the AllocUpdateDesiredTransitionRequest and
explicitly limits the scope of access to that transition to expose it
under the alloc-lifecycle ACL.
The API returns the follow up eval that can be used as part of
monitoring in the CLI or parsed and used in an external tool.