Listing snapshots was incorrectly returning nanoseconds instead of
seconds, and formatting of timestamps both list and create snapshot
was treating the timestamp as though it were nanoseconds instead of
seconds. This resulted in create timestamps always being displayed as
zero values.
Fix the unit conversion error in the command line and the incorrect
extraction in the CSI plugin client code. Beef up the unit tests to
make sure this code is actually exercised.
Nomad communicates with CSI plugin tasks via gRPC. The plugin
supervisor hook uses this to ping the plugin for health checks which
it emits as task events. After the first successful health check the
plugin supervisor registers the plugin in the client's dynamic plugin
registry, which in turn creates a CSI plugin manager instance that has
its own gRPC client for fingerprinting the plugin and sending mount
requests.
If the plugin manager instance fails to connect to the plugin on its
first attempt, it exits. The plugin supervisor hook is unaware that
connection failed so long as its own pings continue to work. A
transient failure during plugin startup may mislead the plugin
supervisor hook into thinking the plugin is up (so there's no need to
restart the allocation) but no fingerprinter is started.
* Refactors the gRPC client to connect on first use. This provides the
plugin manager instance the ability to retry the gRPC client
connection until success.
* Add a 30s timeout to the plugin supervisor so that we don't poll
forever waiting for a plugin that will never come back up.
Minor improvements:
* The plugin supervisor hook creates a new gRPC client for every probe
and then throws it away. Instead, reuse the client as we do for the
plugin manager.
* The gRPC client constructor has a 1 second timeout. Clarify that this
timeout applies to the connection and not the rest of the client
lifetime.
When `nomad volume create` was introduced in Nomad 1.1.0, we changed the
volume spec to take a list of capabilities rather than a single capability, to
meet the requirements of the CSI spec. When a volume is registered via `nomad
volume register`, we should be using the same fields to validate the volume
with the controller plugin.
In order to support new node RPCs, we need to fingerprint plugin capabilities
in more detail. This changeset mirrors recent work to fingerprint controller
capabilities, but is not yet in use by any Nomad RPC.
In order to support new controller RPCs, we need to fingerprint volume
capabilities in more detail and perform controller RPCs only when the specific
capability is present. This fixes a bug in Ceph support where the plugin can
only suport create/delete but we assume that it also supports attach/detach.
Note that unset proto fields for volume create should be nil. The CSI spec
handles empty fields and nil fields in the protobuf differently, which may
result in validation failures for creating volumes with no prior source (and
does in testing with the AWS EBS plugin). Refactor the `CreateVolumeRequest`
mapping to the protobuf in the plugin client to avoid this bug.
The CSI specification for `ValidateVolumeCapability` says that we shall
"reconcile successful capability-validation responses by comparing the
validated capabilities with those that it had originally requested" but leaves
the details of that reconcilation unspecified. This API is not implemented in
Kubernetes, so controller plugins don't have a real-world implementation to
verify their behavior against.
We have found that CSI plugins in the wild may return "successful" but
incomplete `VolumeCapability` responses, so we can't require that all
capabilities we expect have been validated, only that the ones that have been
validated match. This appears to violate the CSI specification but until
that's been resolved in upstream we have to loosen our validation
requirements. The tradeoff is that we're more likely to have runtime errors
during `NodeStageVolume` instead of at the time of volume registration.
In #7957 we added support for passing a volume context to the controller RPCs.
This is an opaque map that's created by `CreateVolume` or, in Nomad's case,
in the volume registration spec.
However, we missed passing this field to the `NodeStage` and `NodePublish` RPC,
which prevents certain plugins (such as MooseFS) from making node RPCs.
Some CSI plugins don't return much for errors over the gRPC socket
above and beyond the bare minimum error codes. This changeset improves
the operator experience by unpacking the error codes when available
and wrapping the error with some user-friendly direction.
Improving these errors also revealed a bad comparison with
`require.Error` when `require.EqualError` should be used in the test
code for plugin errors. This defect in turn was hiding a bug in volume
validation where we're being overly permissive in allowing mount
flags, which is now fixed.
The MVP for CSI in the 0.11.0 release of Nomad did not include support
for opaque volume parameters or volume context. This changeset adds
support for both.
This also moves args for ControllerValidateCapabilities into a struct.
The CSI plugin `ControllerValidateCapabilities` struct that we turn
into a CSI RPC is accumulating arguments, so moving it into a request
struct will reduce the churn of this internal API, make the plugin
code more readable, and make this method consistent with the other
plugin methods in that package.
The CSI plugins RPCs require the use of the storage provider's volume
ID, rather than the user-defined volume ID. Although changing the RPCs
to use the field name `ExternalID` risks breaking backwards
compatibility, we can use the `ExternalID` name internally for the
client and only use `VolumeID` at the RPC boundaries.
CSI plugins can require credentials for some publishing and
unpublishing workflow RPCs. Secrets are configured at the time of
volume registration, stored in the volume struct, and then passed
around as an opaque map by Nomad to the plugins.
Several of the CSI `VolumeCapability` methods return pointers, which
we were then comparing to pointers in the request rather than
dereferencing them and comparing their contents.
This changeset does a more fine-grained comparison of the request vs
the capabilities, and adds better error messaging.
This changeset corrects handling of the `ValidationVolumeCapabilities`
response:
* The CSI spec for the `ValidationVolumeCapabilities` requires that
plugins only set the `Confirmed` field if they've validated all
capabilities. The Nomad client improperly assumes that the lack of a
`Confirmed` field should be treated as a failure. This breaks the
Azure and Linode block storage plugins, which don't set this
optional field.
* The CSI spec also requires that the orchestrator check the validation
responses to guard against older versions of a plugin reporting
"valid" for newer fields it doesn't understand.
Derive a provider name and version for plugins (and the volumes that
use them) from the CSI identity API `GetPluginInfo`. Expose the vendor
name as `Provider` in the API and CLI commands.
This changeset implements the minimal structs on the client-side we
need to compile the work-in-progress implementation of the
server-to-controller RPCs. It doesn't include implementing the
`ClientCSI.DettachVolume` RPC on the client.
This changeset implements the initial registration and fingerprinting
of CSI Plugins as part of #5378. At a high level, it introduces the
following:
* A `csi_plugin` stanza as part of a Nomad task configuration, to
allow a task to expose that it is a plugin.
* A new task runner hook: `csi_plugin_supervisor`. This hook does two
things. When the `csi_plugin` stanza is detected, it will
automatically configure the plugin task to receive bidirectional
mounts to the CSI intermediary directory. At runtime, it will then
perform an initial heartbeat of the plugin and handle submitting it to
the new `dynamicplugins.Registry` for further use by the client, and
then run a lightweight heartbeat loop that will emit task events
when health changes.
* The `dynamicplugins.Registry` for handling plugins that run
as Nomad tasks, in contrast to the existing catalog that requires
`go-plugin` type plugins and to know the plugin configuration in
advance.
* The `csimanager` which fingerprints CSI plugins, in a similar way to
`drivermanager` and `devicemanager`. It currently only fingerprints
the NodeID from the plugin, and assumes that all plugins are
monolithic.
Missing features
* We do not use the live updates of the `dynamicplugin` registry in
the `csimanager` yet.
* We do not deregister the plugins from the client when they shutdown
yet, they just become indefinitely marked as unhealthy. This is
deliberate until we figure out how we should manage deploying new
versions of plugins/transitioning them.