This PR modifies the disconnect helper job to run as root, which is necesary
for manipulating iptables as it does. Also re-organizes the final test logic
to wait for client re-connect before looking for the replacement (3rd) allocation
in case that client was needed to run the alloc (also giving the sheduler more
time to do its thing).
Skips the other 3 tests, which fail and I cannot yet figure out what is going on.
Adds @hashicorp/nomad-eng to the codeowners list for the build and release
workflow files, so that we can fix problems that arise without being
bottlenecked on another team.
The `ubuntu-latest` runner has been migrated to Ubuntu 22.04, which doesn't have
all the same multilib packages as 20.04. Although we'll probably want to migrate
eventually, we should ship Nomad 1.4.3 with the same toolchain as we did
previously so that we're not introducing new issues.
* e2e: fixup oversubscription test case for jammy
jammy uses cgroups v2, need to lookup the max memory limit from the
unified heirarchy format
* e2e: set constraint to require cgroups v2 on oversub docker test
* client: accommodate Consul 1.14.0 gRPC and agent self changes.
Consul 1.14.0 changed the way in which gRPC listeners are
configured, particularly when using TLS. Prior to the change, a
single listener was responsible for handling plain-text and
encrypted gRPC requests. In 1.14.0 and beyond, separate listeners
will be used for each, defaulting to 8502 and 8503 for plain-text
and TLS respectively.
The change means that Nomad’s Consul Connect integration would not
work when integrated with Consul clusters using TLS and running
1.14.0 or greater.
The Nomad Consul fingerprinter identifies the gRPC port Consul has
exposed using the "DebugConfig.GRPCPort" value from Consul’s
“/v1/agent/self” endpoint. In Consul 1.14.0 and greater, this only
represents the plain-text gRPC port which is likely to be disbaled
in clusters running TLS. In order to fix this issue, Nomad now
takes into account the Consul version and configured scheme to
optionally use “DebugConfig.GRPCTLSPort” value from Consul’s agent
self return.
The “consul_grcp_socket” allocrunner hook has also been updated so
that the fingerprinted gRPC port attribute is passed in. This
provides a better fallback method, when the operator does not
configure the “consul.grpc_address” option.
* docs: modify Consul Connect entries to detail 1.14.0 changes.
* changelog: add entry for #15309
* fixup: tidy tests and clean version match from review feedback.
* fixup: use strings tolower func.
This PR adds trace logging around the differential done between a Nomad service
registration and its corresponding Consul service registration, in an effort
to shed light on why a service registration request is being made.
* Add mount propagation to protobuf definition of mounts
* Fix formatting
* Add mount propagation to the simple roundtrip test.
* changelog: add entry for #15096
Co-authored-by: Luiz Aoqui <luiz@hashicorp.com>
In #14621 we added an eval canelation reaper goroutine with a channel that
allowed us to wake it up. But we forgot to actually send on this channel from
`Eval.Ack` and are still committing the cancelations synchronously. Fix this by
sending on the buffered channel to wake up the reaper instead.
When we migrated to the updated autopilot library in Nomad 1.4.0, the interface
for finding servers changed. Previously autopilot would get the serf members and
call `IsServer` on each of them, leaving it up to the implementor to filter out
clients (and in Nomad's case, other regions). But in the "new" autopilot
library, the equivalent interface is `KnownServers` for which we did not filter
by region. This causes spurious attempts for the cross-region stats fetching,
which results in TLS errors and a lot of log noise.
Filter the member set by region to fix the regression.
After Deployments were added in Nomad 0.6.0, the `AllocUpdateRequestType` raft
log entry was no longer in use. Mark this as deprecated, remove the associated
dead code, and remove references to the metrics it emits from the docs. We'll
leave the entry itself just in case we encounter old raft logs that we need to
be able to safely load.
This PR changes test-core to make use of
https://github.com/hashicorp/setup-golang
to consolidate the setting up of the Go compiler and the Go modules cache
used for the CI job.
Fixes: #14905
* keyring: update handle to state inside replication loop
When keyring replication starts, we take a handle to the state store. But
whenever a snapshot is restored, this handle is invalidated and no longer points
to a state store that is receiving new keys. This leaks a bunch of memory too!
In addition to operator-initiated restores, when fresh servers are added to
existing clusters with large-enough state, the keyring replication can get
started quickly enough that it's running before the snapshot from the existing
clusters have been restored.
Fix this by updating the handle to the state store on each pass.
When an evaluation is acknowledged by a scheduler, the resulting plan is
guaranteed to cover up to the `waitIndex` set by the worker based on the most
recent evaluation for that job in the state store. At that point, we no longer
need to retain blocked evaluations in the broker that are older than that index.
Move all but the highest priority / highest `ModifyIndex` blocked eval into a
canceled set. When the `Eval.Ack` RPC returns from the eval broker it will
signal a reap of a batch of cancelable evals to write to raft. This paces the
cancelations limited by how frequently the schedulers are acknowledging evals;
this should reduce the risk of cancelations from overwhelming raft relative to
scheduler progress. In order to avoid straggling batches when the cluster is
quiet, we also include a periodic sweep through the cancelable list.
The `TestLeader_Reelection` test waits for a leader to be elected and then makes
some other assertions. But it implcitly assumes that there's no failure of
leadership before shutting down the leader, which can lead to a panic in the
tests. Assert there's still a leader before the shutdown.
* feat: add tooltip to storage volumes
* chore: move Tooltip into td to preserve style
* styling: add overflow-x to section (#15246)
* styling: add overflow-x to section
* refact: use media query with display block
During unusual outage recovery scenarios on large clusters, a backlog of
millions of evaluations can appear. In these cases, the `eval delete` command can
put excessive load on the cluster by listing large sets of evals to extract the
IDs and then sending larges batches of IDs. Although the command's batch size
was carefully tuned, we still need to be JSON deserialize, re-serialize to
MessagePack, send the log entries through raft, and get the FSM applied.
To improve performance of this recovery case, move the batching process into the
RPC handler and the state store. The design here is a little weird, so let's
look a the failed options first:
* A naive solution here would be to just send the filter as the raft request and
let the FSM apply delete the whole set in a single operation. Benchmarking with
1M evals on a 3 node cluster demonstrated this can block the FSM apply for
several minutes, which puts the cluster at risk if there's a leadership
failover (the barrier write can't be made while this apply is in-flight).
* A less naive but still bad solution would be to have the RPC handler filter
and paginate, and then hand a list of IDs to the existing raft log
entry. Benchmarks showed this blocked the FSM apply for 20-30s at a time and
took roughly an hour to complete.
Instead, we're filtering and paginating in the RPC handler to find a page token,
and then passing both the filter and page token in the raft log. The FSM apply
recreates the paginator using the filter and page token to get roughly the same
page of evaluations, which it then deletes. The pagination process is fairly
cheap (only abut 5% of the total FSM apply time), so counter-intuitively this
rework ends up being much faster. A benchmark of 1M evaluations showed this
blocked the FSM apply for 20-30ms at a time (typical for normal operations) and
completes in less than 4 minutes.
Note that, as with the existing design, this delete is not consistent: a new
evaluation inserted "behind" the cursor of the pagination will fail to be
deleted.