When we unmount a volume we need to be able to recover from cases
where the plugin has been shutdown before the allocation that needs
it, so in #11892 we blocked shutting down the alloc runner hook. But
this blocks client shutdown if we're in the middle of unmounting. The
client won't be able to communicate with the plugin or send the
unpublish RPC anyways, so we should cancel the context and assume that
we'll resume the unmounting process when the client restarts.
For `-dev` mode we don't send the graceful `Shutdown()` method and
instead destroy all the allocations. In this case, we'll never be able
to communicate with the plugin but also never close the context we
need to prevent the hook from blocking. To fix this, move the retries
into their own goroutine that doesn't block the main `Postrun`.
In #12112 and #12113 we solved for the problem of races in releasing
volume claims, but there was a case that we missed. During a node
drain with a controller attach/detach, we can hit a race where we call
controller publish before the unpublish has completed. This is
discouraged in the spec but plugins are supposed to handle it
safely. But if the storage provider's API is slow enough and the
plugin doesn't handle the case safely, the volume can get "locked"
into a state where the provider's API won't detach it cleanly.
Check the claim before making any external controller publish RPC
calls so that Nomad is responsible for the canonical information about
whether a volume is currently claimed.
This has a couple side-effects that also had to get fixed here:
* Changing the order means that the volume will have a past claim
without a valid external node ID because it came from the client, and
this uncovered a separate bug where we didn't assert the external node
ID was valid before returning it. Fallthrough to getting the ID from
the plugins in the state store in this case. We avoided this
originally because of concerns around plugins getting lost during node
drain but now that we've fixed that we may want to revisit it in
future work.
* We should make sure we're handling `FailedPrecondition` cases from
the controller plugin the same way we handle other retryable cases.
* Several tests had to be updated because they were assuming we fail
in a particular order that we're no longer doing.
When the alloc runner claims a volume, an allocation for a previous
version of the job may still have the volume claimed because it's
still shutting down. In this case we'll receive an error from the
server. Retry this error until we succeed or until a very long timeout
expires, to give operators a chance to recover broken plugins.
Make the alloc runner hook tolerant of temporary RPC failures.
In PR #11892 we updated the `csi_hook` to unmount the volume locally
via the CSI node RPCs before releasing the claim from the server. The
timer for this hook was initialized with the retry time, forcing us to
wait 1s before making the first unmount RPC calls.
Use the new helper for timers to ensure we clean up the timer nicely.
When an allocation stops, the `csi_hook` makes an unpublish RPC to the
servers to unpublish via the CSI RPCs: first to the node plugins and
then the controller plugins. The controller RPCs must happen after the
node RPCs so that the node has had a chance to unmount the volume
before the controller tries to detach the associated device.
But the client has local access to the node plugins and can
independently determine if it's safe to send unpublish RPC to those
plugins. This will allow the server to treat the node plugin as
abandoned if a client is disconnected and `stop_on_client_disconnect`
is set. This will let the server try to send unpublish RPCs to the
controller plugins, under the assumption that the client will be
trying to unmount the volume on its end first.
Note that the CSI `NodeUnpublishVolume`/`NodeUnstageVolume` RPCs can
return ignorable errors in the case where the volume has already been
unmounted from the node. Handle all other errors by retrying until we
get success so as to give operators the opportunity to reschedule a
failed node plugin (ex. in the case where they accidentally drained a
node without `-ignore-system`). Fan-out the work for each volume into
its own goroutine so that we can release a subset of volumes if only
one is stuck.
Registration of Nomad volumes previously allowed for a single volume
capability (access mode + attachment mode pair). The recent `volume create`
command requires that we pass a list of requested capabilities, but the
existing workflow for claiming volumes and attaching them on the client
assumed that the volume's single capability was correct and unchanging.
Add `AccessMode` and `AttachmentMode` to `CSIVolumeClaim`, use these fields to
set the initial claim value, and add backwards compatibility logic to handle
the existing volumes that already have claims without these fields.
Add a `PerAlloc` field to volume requests that directs the scheduler to test
feasibility for volumes with a source ID that includes the allocation index
suffix (ex. `[0]`), rather than the exact source ID.
Read the `PerAlloc` field when making the volume claim at the client to
determine if the allocation index suffix (ex. `[0]`) should be added to the
volume source ID.
The unpublish workflow requires that we know the mode (RW vs RO) if we want to
unpublish the node. Update the hook and the Unpublish RPC so that we mark the
claim for release in a new state but leave the mode alone. This fixes a bug
where RO claims were failing node unpublish.
The core job GC doesn't know the mode, but we don't need it for that workflow,
so add a mode specifically for GC; the volumewatcher uses this as a sentinel
to check whether claims (with their specific RW vs RO modes) need to be claimed.
Add a Postrun hook to send the `CSIVolume.Unpublish` RPC to the server. This
may forward client RPCs to the node plugins or to the controller plugins,
depending on whether other allocations on this node have claims on this
volume.
By making clients responsible for running the `CSIVolume.Unpublish` RPC (and
making the RPC available to a `nomad volume detach` command), the
volumewatcher becomes only used by the core GC job and we no longer need
async volume GC from job deregister and node update.
When an allocation runs for a task driver that can't support volume mounts,
the mounting will fail in a way that can be hard to understand. With host
volumes this usually means failing silently, whereas with CSI the operator
gets inscrutable internals exposed in the `nomad alloc status`.
This changeset adds a MountConfig field to the task driver Capabilities
response. We validate this when the `csi_hook` or `volume_hook` fires and
return a user-friendly error.
Note that we don't currently have a way to get driver capabilities up to the
server, except through attributes. Validating this when the user initially
submits the jobspec would be even better than what we're doing here (and could
be useful for all our other capabilities), but that's out of scope for this
changeset.
Also note that the MountConfig enum starts with "supports all" in order to
support community plugins in a backwards compatible way, rather than cutting
them off from volume mounting unexpectedly.
Adds a `CSIVolumeClaim` type to be tracked as current and past claims
on a volume. Allows for a client RPC failure during node or controller
detachment without having to keep the allocation around after the
first garbage collection eval.
This changeset lays groundwork for moving the actual detachment RPCs
into a volume watching loop outside the GC eval.
If a volume-claiming alloc stops and the CSI Node plugin that serves
that alloc's volumes is missing, there's no way for the allocrunner
hook to send the `NodeUnpublish` and `NodeUnstage` RPCs.
This changeset addresses this issue with a redesign of the client-side
for CSI. Rather than unmounting in the alloc runner hook, the alloc
runner hook will simply exit. When the server gets the
`Node.UpdateAlloc` for the terminal allocation that had a volume claim,
it creates a volume claim GC job. This job will made client RPCs to a
new node plugin RPC endpoint, and only once that succeeds, move on to
making the client RPCs to the controller plugin. If the node plugin is
unavailable, the GC job will fail and be requeued.
Add mount_options to both the volume definition on registration and to the volume block in the group where the volume is requested. If both are specified, the options provided in the request replace the options defined in the volume. They get passed to the NodePublishVolume, which causes the node plugin to actually mount the volume on the host.
Individual tasks just mount bind into the host mounted volume (unchanged behavior). An operator can mount the same volume with different options by specifying it twice in the group context.
closes#7007
* nomad/structs/volumes: add MountOptions to volume request
* jobspec/test-fixtures/basic.hcl: add mount_options to volume block
* jobspec/parse_test: add expected MountOptions
* api/tasks: add mount_options
* jobspec/parse_group: use hcl decode not mapstructure, mount_options
* client/allocrunner/csi_hook: pass MountOptions through
client/allocrunner/csi_hook: add a VolumeMountOptions
client/allocrunner/csi_hook: drop Options
client/allocrunner/csi_hook: use the structs options
* client/pluginmanager/csimanager/interface: UsageOptions.MountOptions
* client/pluginmanager/csimanager/volume: pass MountOptions in capabilities
* plugins/csi/plugin: remove todo 7007 comment
* nomad/structs/csi: MountOptions
* api/csi: add options to the api for parsing, match structs
* plugins/csi/plugin: move VolumeMountOptions to structs
* api/csi: use specific type for mount_options
* client/allocrunner/csi_hook: merge MountOptions here
* rename CSIOptions to CSIMountOptions
* client/allocrunner/csi_hook
* client/pluginmanager/csimanager/volume
* nomad/structs/csi
* plugins/csi/fake/client: add PrevVolumeCapability
* plugins/csi/plugin
* client/pluginmanager/csimanager/volume_test: remove debugging
* client/pluginmanager/csimanager/volume: fix odd merging logic
* api: rename CSIOptions -> CSIMountOptions
* nomad/csi_endpoint: remove a 7007 comment
* command/alloc_status: show mount options in the volume list
* nomad/structs/csi: include MountOptions in the volume stub
* api/csi: add MountOptions to stub
* command/volume_status_csi: clean up csiVolMountOption, add it
* command/alloc_status: csiVolMountOption lives in volume_csi_status
* command/node_status: display mount flags
* nomad/structs/volumes: npe
* plugins/csi/plugin: npe in ToCSIRepresentation
* jobspec/parse_test: expand volume parse test cases
* command/agent/job_endpoint: ApiTgToStructsTG needs MountOptions
* command/volume_status_csi: copy paste error
* jobspec/test-fixtures/basic: hclfmt
* command/volume_status_csi: clean up csiVolMountOption
* client/allocrunner/csi_hook: tag errors
* nomad/client_csi_endpoint: tag errors
* nomad/client_rpc: remove an unnecessary error tag
* nomad/state/state_store: ControllerRequired fix intent
We use ControllerRequired to indicate that a volume should use the
publish/unpublish workflow, rather than that it has a controller. We
need to check both RequiresControllerPlugin and SupportsAttachDetach
from the fingerprint to check that.
* nomad/csi_endpoint: tag errors
* nomad/csi_endpoint_test: longer error messages, mock fingerprints
This commit is the initial implementation of claiming volumes from the
server and passes through any publishContext information as appropriate.
There's nothing too fancy here.
The CSI Spec requires us to attach and stage volumes based on different
types of usage information when it may effect how they are bound. Here
we pass through some basic usage options in the CSI Hook (specifically
the volume aliases ReadOnly field), and the attachment/access mode from
the volume. We pass the attachment/access mode seperately from the
volume as it simplifies some handling and doesn't necessarily force
every attachment to use the same mode should more be supported (I.e if
we let each `volume "foo" {}` specify an override in the future).
This commit introduces initial support for unmounting csi volumes.
It takes a relatively simplistic approach to performing
NodeUnpublishVolume calls, optimising for cleaning up any leftover state
rather than terminating early in the case of errors.
This is because it happens during an allocation's shutdown flow and may
not always have a corresponding call to `NodePublishVolume` that
succeeded.
This commit is an initial (read: janky) approach to forwarding state
from an allocrunner hook to a taskrunner using a similar `hookResources`
approach that tr's use internally.
It should eventually probably be replaced with something a little bit
more message based, but for things that only come from pre-run hooks,
and don't change, it's probably fine for now.
This commit introduces the first stage of volume mounting for an
allocation. The csimanager.VolumeMounter interface manages the blocking
and actual minutia of the CSI implementation allowing this hook to do
the minimal work of volume retrieval and creating mount info.
In the future the `CSIVolume.Get` request should be replaced by
`CSIVolume.Claim(Batch?)` to minimize the number of RPCs and to handle
external triggering of a ControllerPublishVolume request as required.
We also need to ensure that if pre-run hooks fail, we still get a full
unwinding of any publish and staged volumes to ensure that there are no hanging
references to volumes. That is not handled in this commit.
As part of introducing support for CSI, AllocRunner hooks need to be
able to communicate with Nomad Servers for validation of and interaction
with storage volumes. Here we create a small RPCer interface and pass
the client (rpc client) to the AR in preparation for making these RPCs.
This changeset is some pre-requisite boilerplate that is required for
introducing CSI volume management for client nodes.
It extracts out fingerprinting logic from the csi instance manager.
This change is to facilitate reusing the csimanager to also manage the
node-local CSI functionality, as it is the easiest place for us to
guaruntee health checking and to provide additional visibility into the
running operations through the fingerprinter mechanism and goroutine.
It also introduces the VolumeMounter interface that will be used to
manage staging/publishing unstaging/unpublishing of volumes on the host.