This PR implements ACLAuthMethod type, acl_auth_methods table schema and crud state store methods. It also updates nomadSnapshot.Persist and nomadSnapshot.Restore methods in order for them to work with the new table, and adds two new Raft messages: ACLAuthMethodsUpsertRequestType and ACLAuthMethodsDeleteRequestType
This PR is part of the SSO work captured under ☂️ ticket #13120.
Add a new `Eval.Count` RPC and associated HTTP API endpoints. This API is
designed to support interactive use in the `nomad eval delete` command to get a
count of evals expected to be deleted before doing so.
The state store operations to do this sort of thing are somewhat expensive, but
it's cheaper than serializing a big list of evals to JSON. Note that although it
seems like this could be done as an extra parameter and response field on
`Eval.List`, having it as its own endpoint avoids having to change the response
body shape and lets us avoid handling the legacy filter params supported by
`Eval.List`.
* scheduler: allow updates after alloc reconnects
When an allocation reconnects to a cluster the scheduler needs to run
special logic to handle the reconnection, check if a replacement was
create and stop one of them.
If the allocation kept running while the node was disconnected, it will
be reconnected with `ClientStatus: running` and the node will have
`Status: ready`. This combination is the same as the normal steady state
of allocation, where everything is running as expected.
In order to differentiate between the two states (an allocation that is
reconnecting and one that is just running) the scheduler needs an extra
piece of state.
The current implementation uses the presence of a
`TaskClientReconnected` task event to detect when the allocation has
reconnected and thus must go through the reconnection process. But this
event remains even after the allocation is reconnected, causing all
future evals to consider the allocation as still reconnecting.
This commit changes the reconnect logic to use an `AllocState` to
register when the allocation was reconnected. This provides the
following benefits:
- Only a limited number of task states are kept, and they are used for
many other events. It's possible that, upon reconnecting, several
actions are triggered that could cause the `TaskClientReconnected`
event to be dropped.
- Task events are set by clients and so their timestamps are subject
to time skew from servers. This prevents using time to determine if
an allocation reconnected after a disconnect event.
- Disconnect events are already stored as `AllocState` and so storing
reconnects there as well makes it the only source of information
required.
With the new logic, the reconnection logic is only triggered if the
last `AllocState` is a disconnect event, meaning that the allocation has
not been reconnected yet. After the reconnection is handled, the new
`ClientStatus` is store in `AllocState` allowing future evals to skip
the reconnection logic.
* scheduler: prevent spurious placement on reconnect
When a client reconnects it makes two independent RPC calls:
- `Node.UpdateStatus` to heartbeat and set its status as `ready`.
- `Node.UpdateAlloc` to update the status of its allocations.
These two calls can happen in any order, and in case the allocations are
updated before a heartbeat it causes the state to be the same as a node
being disconnected: the node status will still be `disconnected` while
the allocation `ClientStatus` is set to `running`.
The current implementation did not handle this order of events properly,
and the scheduler would create an unnecessary placement since it
considered the allocation was being disconnected. This extra allocation
would then be quickly stopped by the heartbeat eval.
This commit adds a new code path to handle this order of events. If the
node is `disconnected` and the allocation `ClientStatus` is `running`
the scheduler will check if the allocation is actually reconnecting
using its `AllocState` events.
* rpc: only allow alloc updates from `ready` nodes
Clients interact with servers using three main RPC methods:
- `Node.GetAllocs` reads allocation data from the server and writes it
to the client.
- `Node.UpdateAlloc` reads allocation from from the client and writes
them to the server.
- `Node.UpdateStatus` writes the client status to the server and is
used as the heartbeat mechanism.
These three methods are called periodically by the clients and are done
so independently from each other, meaning that there can't be any
assumptions in their ordering.
This can generate scenarios that are hard to reason about and to code
for. For example, when a client misses too many heartbeats it will be
considered `down` or `disconnected` and the allocations it was running
are set to `lost` or `unknown`.
When connectivity is restored the to rest of the cluster, the natural
mental model is to think that the client will heartbeat first and then
update its allocations status into the servers.
But since there's no inherit order in these calls the reverse is just as
possible: the client updates the alloc status and then heartbeats. This
results in a state where allocs are, for example, `running` while the
client is still `disconnected`.
This commit adds a new verification to the `Node.UpdateAlloc` method to
reject updates from nodes that are not `ready`, forcing clients to
heartbeat first. Since this check is done server-side there is no need
to coordinate operations client-side: they can continue sending these
requests independently and alloc update will succeed after the heartbeat
is done.
* chagelog: add entry for #15068
* code review
* client: skip terminal allocations on reconnect
When the client reconnects with the server it synchronizes the state of
its allocations by sending data using the `Node.UpdateAlloc` RPC and
fetching data using the `Node.GetClientAllocs` RPC.
If the data fetch happens before the data write, `unknown` allocations
will still be in this state and would trigger the
`allocRunner.Reconnect` flow.
But when the server `DesiredStatus` for the allocation is `stop` the
client should not reconnect the allocation.
* apply more code review changes
* scheduler: persist changes to reconnected allocs
Reconnected allocs have a new AllocState entry that must be persisted by
the plan applier.
* rpc: read node ID from allocs in UpdateAlloc
The AllocUpdateRequest struct is used in three disjoint use cases:
1. Stripped allocs from clients Node.UpdateAlloc RPC using the Allocs,
and WriteRequest fields
2. Raft log message using the Allocs, Evals, and WriteRequest fields
3. Plan updates using the AllocsStopped, AllocsUpdated, and Job fields
Adding a new field that would only be used in one these cases (1) made
things more confusing and error prone. While in theory an
AllocUpdateRequest could send allocations from different nodes, in
practice this never actually happens since only clients call this method
with their own allocations.
* scheduler: remove logic to handle exceptional case
This condition could only be hit if, somehow, the allocation status was
set to "running" while the client was "unknown". This was addressed by
enforcing an order in "Node.UpdateStatus" and "Node.UpdateAlloc" RPC
calls, so this scenario is not expected to happen.
Adding unnecessary code to the scheduler makes it harder to read and
reason about it.
* more code review
* remove another unused test
* Adds meta to job list stub and displays a pack logo on the jobs index
* Changelog
* Modifying struct for optional meta param
* Explicitly ask for meta anytime I look up a job from index or job page
* Test case for the endpoint
* adding meta field to API struct and ommitting from response if empty
* passthru method added to api/jobs.list
* Meta param listed in docs for jobs list
* Update api/jobs.go
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Tim Gross <tgross@hashicorp.com>
If a GC claim is written and then volume is deleted before the `volumewatcher`
enters its run loop, we panic on the nil-pointer access. Simply doing a
nil-check at the top of the loop reveals a race condition around shutting down
the loop just as a new update is coming in.
Have the parent `volumeswatcher` send an initial update on the channel before
returning, so that we're still holding the lock. Update the watcher's `Stop`
method to set the running state, which lets us avoid having a second context and
makes stopping synchronous. This reduces the cases we have to handle in the run
loop.
Updated the tests now that we'll safely return from the goroutine and stop the
runner in a larger set of cases. Ran the tests with the `-race` detection flag
and fixed up any problems found here as well.
In order to limit how much the rekey job can monopolize a scheduler worker, we
limit how long it can run to 1min before stopping work and emitting a new
eval. But this exactly matches the default nack timeout, so it'll fail the eval
rather than getting a chance to emit a new one.
Set the timeout for the rekey eval to half the configured nack timeout.
When replication of a single key fails, the replication loop breaks early and
therefore keys that fall later in the sorting order will never get
replicated. This is particularly a problem for clusters impacted by the bug that
caused #14981 and that were later upgraded; the keys that were never replicated
can now never be replicated, and so we need to handle them safely.
Included in the replication fix:
* Refactor the replication loop so that each key replicated in a function call
that returns an error, to make the workflow more clear and reduce nesting. Log
the error and continue.
* Improve stability of keyring replication tests. We no longer block leadership
on initializing the keyring, so there's a race condition in the keyring tests
where we can test for the existence of the root key before the keyring has
been initialize. Change this to an "eventually" test.
But these fixes aren't enough to fix#14981 because they'll end up seeing an
error once a second complaining about the missing key, so we also need to fix
keyring GC so the keys can be removed from the state store. Now we'll store the
key ID used to sign a workload identity in the Allocation, and we'll index the
Allocation table on that so we can track whether any live Allocation was signed
with a particular key ID.
The `Eval.Delete` endpoint has a helper that takes a list of jobs and allocs and
determines whether the eval associated with those is safe to delete (based on
their state). Filtering improvements to the `Eval.Delete` endpoint are going to
need this check to run in the state store itself for consistency.
Refactor to push this check down into the state store to keep the eventual diff
for that work reasonable.
While working on filtering improvements to the `Eval.Delete` endpoint I noticed
that this test was going to need to expand significantly and needed some
refactoring to make that work nicely. In order to reduce the size of the
eventual diff, I've pulled this refactoring out into its own changeset.
The List RPC correctly authorized against the prefix argument. But when
filtering results underneath the prefix, it only checked authorization for
standard ACL tokens and not Workload Identity. This results in WI tokens being
able to read List results (metadata only: variable paths and timestamps) for
variables under the `nomad/` prefix that belong to other jobs in the same
namespace.
Fixes the filtering and split the `handleMixedAuthEndpoint` function into
separate authentication and authorization steps so that we don't need to
re-verify the claim token on each filtered object.
Also includes:
* update semgrep rule for mixed auth endpoints
* variables: List returns empty set when all results are filtered
This change ensures that a token's expiry is checked before every
event is sent to the caller. Previously, a token could still be
used to listen for events after it had expired, as long as the
subscription was made while it was unexpired. This would last until
the token was garbage collected from state.
The check occurs within the RPC as there is currently no state
update when a token expires.
The configuration knobs for root keyring garbage collection are present in the
consumer and present in the user-facing config, but we missed the spot where we
copy from one to the other. Fix this so that users can set their own thresholds.
The root key is automatically rotated every ~30d, but the function that does
both rotation and key GC was wired up such that `nomad system gc` caused an
unexpected key rotation. Split this into two functions so that `nomad system gc`
cleans up old keys without forcing a rotation, which will be done periodially
or by the `nomad operator root keyring rotate` command.
* keyring: don't unblock early if rate limit burst exceeded
The rate limiter returns an error and unblocks early if its burst limit is
exceeded (unless the burst limit is Inf). Ensure we're not unblocking early,
otherwise we'll only slow down the cases where we're already pausing to make
external RPC requests.
* keyring: set MinQueryIndex on stale queries
When keyring replication makes a stale query to non-leader peers to find a key
the leader doesn't have, we need to make sure the peer we're querying has had a
chance to catch up to the most current index for that key. Otherwise it's
possible for newly-added servers to query another newly-added server and get a
non-error nil response for that key ID.
Ensure that we're setting the correct reply index in the blocking query.
Note that the "not found" case does not return an error, just an empty key. So
as a belt-and-suspenders, update the handling of empty responses so that we
don't break the loop early if we hit a server that doesn't have the key.
* test for adding new servers to keyring
* leader: initialize keyring after we have consistent reads
Wait until we're sure the FSM is current before we try to initialize the
keyring.
Also, if a key is rotated immediately following a leader election, plans that
are in-flight may get signed before the new leader has the key. Allow for a
short timeout-and-retry to avoid rejecting plans
ACL tokens are granted permissions either by direct policy links
or via ACL role links. Callers should therefore be able to read
policies directly assigned to the caller token or indirectly by
ACL role links.
This changes adds ACL role creation and deletion to the event
stream. It is exposed as a single topic with two types; the filter
is primarily the role ID but also includes the role name.
While conducting this work it was also discovered that the events
stream has its own ACL resolution logic. This did not account for
ACL tokens which included role links, or tokens with expiry times.
ACL role links are now resolved to their policies and tokens are
checked for expiry correctly.
* One-time tokens are not replicated between regions, so we don't want to enforce
that the version check across all of serf, just members in the same region.
* Scheduler: Disconnected clients handling is specific to a single region, so we
don't want to enforce that the version check across all of serf, just members in
the same region.
* Variables: enforce version check in Apply RPC
* Cleans up a bunch of legacy checks.
This changeset is specific to 1.4.x and the changes for previous versions of
Nomad will be manually backported in a separate PR.
In #14821 we fixed a panic that can happen if a leadership election happens in
the middle of an upgrade. That fix checks that all servers are at the minimum
version before initializing the keyring (which blocks evaluation processing
during trhe upgrade). But the check we implemented is over the serf membership,
which includes servers in any federated regions, which don't necessarily have
the same upgrade cycle.
Filter the version check by the leader's region.
Also bump up log levels of major keyring operations
This PR adds a jobspec mutator to constrain jobs making use of checks
in the nomad service provider to nomad clients of at least v1.4.0.
Before, in a mixed client version cluster it was possible to submit
an NSD job making use of checks and for that job to land on an older,
incompatible client node.
Closes#14862
This PR removes the assertion around when the 'task' field of
a check may be set. Starting in Nomad 1.4 we automatically set
the task field on all checks in support of the NSD checks feature.
This is causing validation problems elsewhere, e.g. when a group
service using the Consul provider sets 'task' it will fail
validation that worked previously.
The assertion of leaving 'task' unset was only about making sure
job submitters weren't expecting some behavior, but in practice
is causing bugs now that we need the task field for more than it
was originally added for.
We can simply update the docs, noting when the task field set by
job submitters actually has value.
During an upgrade to Nomad 1.4.0, if a server running 1.4.0 becomes the leader
before one of the 1.3.x servers, the old server will crash because the keyring
is initialized and writes a raft entry.
Wait until all members are on a version that supports the keyring before
initializing it.
A test flake revealed a bug in the CSI unpublish workflow, where an unpublish
that comes from a client that's successfully done the node-unpublish step will
not have the claim checkpointed if the controller-unpublish step fails. This
will result in a delay in releasing the volume claim until the next GC.
This changeset also ensures we're using a new snapshot after each write to raft,
and fixes two timing issues in test where either the volume watcher can
unpublish before the unpublish RPC is sent or we don't wait long enough in
resource-restricted environements like GHA.
This PR splits up the nomad/mock package into more files. Specific features
that have a lot of mocks get their own file (e.g. acl, variables, csi, connect, etc.).
Above that, functions that return jobs/allocs/nodes are in the job/alloc/node file. And
lastly other mocks/helpers are in mock.go
* scheduler: Fix bug where the scheduler would treat multiregion jobs as paused for job types that don't use deployments
Co-authored-by: Tim Gross <tgross@hashicorp.com>
Co-authored-by: Tim Gross <tgross@hashicorp.com>
* cleanup: refactor MapStringStringSliceValueSet to be cleaner
* cleanup: replace SliceStringToSet with actual set
* cleanup: replace SliceStringSubset with real set
* cleanup: replace SliceStringContains with slices.Contains
* cleanup: remove unused function SliceStringHasPrefix
* cleanup: fixup StringHasPrefixInSlice doc string
* cleanup: refactor SliceSetDisjoint to use real set
* cleanup: replace CompareSliceSetString with SliceSetEq
* cleanup: replace CompareMapStringString with maps.Equal
* cleanup: replace CopyMapStringString with CopyMap
* cleanup: replace CopyMapStringInterface with CopyMap
* cleanup: fixup more CopyMapStringString and CopyMapStringInt
* cleanup: replace CopySliceString with slices.Clone
* cleanup: remove unused CopySliceInt
* cleanup: refactor CopyMapStringSliceString to be generic as CopyMapOfSlice
* cleanup: replace CopyMap with maps.Clone
* cleanup: run go mod tidy
* test: don't use loop vars in goroutines
fixes a data race in the test
* test: copy objects in statestore before mutating
fixes data race in test
* test: @lgfa29's segmgrep rule for loops/goroutines
Found 2 places where we were improperly using loop variables inside
goroutines.
* scheduler: stopped-yet-running allocs are still running
* scheduler: test new stopped-but-running logic
* test: assert nonoverlapping alloc behavior
Also add a simpler Wait test helper to improve line numbers and save few
lines of code.
* docs: tried my best to describe #10446
it's not concise... feedback welcome
* scheduler: fix test that allowed overlapping allocs
* devices: only free devices when ClientStatus is terminal
* test: output nicer failure message if err==nil
Co-authored-by: Mahmood Ali <mahmood@hashicorp.com>
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
This PR implements support for check_restart for checks registered
in the Nomad service provider.
Unlike Consul, Nomad service checks never report a "warning" status,
and so the check_restart.ignore_warnings configuration is not valid
for Nomad service checks.
Restrict variable paths to RFC3986 URL-safe characters that don't conflict with
the use of characters "@" and "." in `template` blocks. This prevents users from
writing variables that will require tricky templating syntax or that they simply
won't be able to use.
Also restrict the length so that a user can't make queries in the state store
unusually expensive (as they are O(k) on the key length).
This PR refactors agent/consul/check_watcher into client/serviceregistration,
and abstracts away the Consul-specific check lookups.
In doing so we should be able to reuse the existing check watcher logic for
also watching NSD checks in a followup PR.
A chunk of consul/unit_test.go is removed - we'll cover that in e2e tests
in a follow PR if needed. In the long run I'd like to remove this whole file.