This PR injects the 'NOMAD_CPU_CORES' environment variable into
tasks that have been allocated reserved cpu cores. The value uses
normal cpuset notation, as found in cpuset.cpu cgroup interface files.
Note this value is not necessiarly the same as the content of the actual
cpuset.cpus interface file, which will also include shared cpu cores when
using cgroups v2. This variable is a workaround for users who used to be
able to read the reserved cgroup cpuset file, but lose the information
about distinct reserved cores when using cgroups v2.
Side discussion in: https://github.com/hashicorp/nomad/issues/12374
When a service is updated, the service hooks update a number of
internal fields which helps generate the new workload. This also
needs to update the namespace for the service provider. It is
possible for these to be different, and in the case of Nomad and
Consul running OSS, this is to be expected.
This change modifies the template task runner to utilise the
new consul-template which includes Nomad service lookup template
funcs.
In order to provide security and auth to consul-template, we use
a custom HTTP dialer which is passed to consul-template when
setting up the runner. This method follows Vault implementation.
Co-authored-by: Michael Schurter <mschurter@hashicorp.com>
When we unmount a volume we need to be able to recover from cases
where the plugin has been shutdown before the allocation that needs
it, so in #11892 we blocked shutting down the alloc runner hook. But
this blocks client shutdown if we're in the middle of unmounting. The
client won't be able to communicate with the plugin or send the
unpublish RPC anyways, so we should cancel the context and assume that
we'll resume the unmounting process when the client restarts.
For `-dev` mode we don't send the graceful `Shutdown()` method and
instead destroy all the allocations. In this case, we'll never be able
to communicate with the plugin but also never close the context we
need to prevent the hook from blocking. To fix this, move the retries
into their own goroutine that doesn't block the main `Postrun`.
This PR adds support for the raw_exec driver on systems with only cgroups v2.
The raw exec driver is able to use cgroups to manage processes. This happens
only on Linux, when exec_driver is enabled, and the no_cgroups option is not
set. The driver uses the freezer controller to freeze processes of a task,
issue a sigkill, then unfreeze. Previously the implementation assumed cgroups
v1, and now it also supports cgroups v2.
There is a bit of refactoring in this PR, but the fundamental design remains
the same.
Closes#12351#12348
This is a test around upgrading from Nomad 0.8, which is long since
no longer supported. The test is slow, flaky, and imports consul/sdk.
Remove this test as it is no longer relevant.
In #12112 and #12113 we solved for the problem of races in releasing
volume claims, but there was a case that we missed. During a node
drain with a controller attach/detach, we can hit a race where we call
controller publish before the unpublish has completed. This is
discouraged in the spec but plugins are supposed to handle it
safely. But if the storage provider's API is slow enough and the
plugin doesn't handle the case safely, the volume can get "locked"
into a state where the provider's API won't detach it cleanly.
Check the claim before making any external controller publish RPC
calls so that Nomad is responsible for the canonical information about
whether a volume is currently claimed.
This has a couple side-effects that also had to get fixed here:
* Changing the order means that the volume will have a past claim
without a valid external node ID because it came from the client, and
this uncovered a separate bug where we didn't assert the external node
ID was valid before returning it. Fallthrough to getting the ID from
the plugins in the state store in this case. We avoided this
originally because of concerns around plugins getting lost during node
drain but now that we've fixed that we may want to revisit it in
future work.
* We should make sure we're handling `FailedPrecondition` cases from
the controller plugin the same way we handle other retryable cases.
* Several tests had to be updated because they were assuming we fail
in a particular order that we're no longer doing.
Resolves#12095 by WONTFIXing it.
This approach disables `writeToFile` as it allows arbitrary host
filesystem writes and is only a small quality of life improvement over
multiple `template` stanzas.
This approach has the significant downside of leaving people who have
altered their `template.function_denylist` *still vulnerable!* I added
an upgrade note, but we should have implemented the denylist as a
`map[string]bool` so that new funcs could be denied without overriding
custom configurations.
This PR also includes a bug fix that broke enabling all consul-template
funcs. We repeatedly failed to differentiate between a nil (unset)
denylist and an empty (allow all) one.
This PR introduces support for using Nomad on systems with cgroups v2 [1]
enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux
distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems
for Nomad users.
Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer,
but not so for managing cpuset cgroups. Before, Nomad has been making use of
a feature in v1 where a PID could be a member of more than one cgroup. In v2
this is no longer possible, and so the logic around computing cpuset values
must be modified. When Nomad detects v2, it manages cpuset values in-process,
rather than making use of cgroup heirarchy inheritence via shared/reserved
parents.
Nomad will only activate the v2 logic when it detects cgroups2 is mounted at
/sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2
mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to
use the v1 logic, and should operate as before. Systems that do not support
cgroups v2 are also not affected.
When v2 is activated, Nomad will create a parent called nomad.slice (unless
otherwise configured in Client conifg), and create cgroups for tasks using
naming convention <allocID>-<task>.scope. These follow the naming convention
set by systemd and also used by Docker when cgroups v2 is detected.
Client nodes now export a new fingerprint attribute, unique.cgroups.version
which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by
Nomad.
The new cpuset management strategy fixes#11705, where docker tasks that
spawned processes on startup would "leak". In cgroups v2, the PIDs are
started in the cgroup they will always live in, and thus the cause of
the leak is eliminated.
[1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.htmlCloses#11289Fixes#11705#11773#11933
* Use unix:// prefix for CSI_ENDPOINT variable by default
* Some plugins have strict validation over the format of the
`CSI_ENDPOINT` variable, and unfortunately not all plugins
agree. Allow the user to override the `CSI_ENDPOINT` to workaround
those cases.
* Update all demos and tests with CSI_ENDPOINT
The service registration wrapper handles sending requests to
backend providers without the caller needing to know this
information. This will be used within the task and alloc runner
service hooks when performing service registration activities.
This commit performs refactoring to pull out common service
registration objects into a new `client/serviceregistration`
package. This new package will form the base point for all
client specific service registration functionality.
The Consul specific implementation is not moved as it also
includes non-service registration implementations; this reduces
the blast radius of the changes as well.
CSI `CreateVolume` RPC is idempotent given that the topology,
capabilities, and parameters are unchanged. CSI volumes have many
user-defined fields that are immutable once set, and many fields that
are not user-settable.
Update the `Register` RPC so that updating a volume via the API merges
onto any existing volume without touching Nomad-controlled fields,
while validating it with the same strict requirements expected for
idempotent `CreateVolume` RPCs.
Also, clarify that this state store method is used for everything, not just
for the `Register` RPC.
The Prestart hook for task runner hooks doesn't get called when we
restore a task, because the task is already running. The Postrun hook
for CSI plugin supervisors needs the socket path to have been
populated so that the client has a valid path.
When the alloc runner claims a volume, an allocation for a previous
version of the job may still have the volume claimed because it's
still shutting down. In this case we'll receive an error from the
server. Retry this error until we succeed or until a very long timeout
expires, to give operators a chance to recover broken plugins.
Make the alloc runner hook tolerant of temporary RPC failures.
The dynamic plugin registry assumes that plugins are singletons, which
matches the behavior of other Nomad plugins. But because dynamic
plugins like CSI are implemented by allocations, we need to handle the
possibility of multiple allocations for a given plugin type + ID, as
well as behaviors around interleaved allocation starts and stops.
Update the data structure for the dynamic registry so that more recent
allocations take over as the instance manager singleton, but we still
preserve the previous running allocations so that restores work
without racing.
Multiple allocations can run on a client for the same plugin, even if
only during updates. Provide each plugin task a unique path for the
control socket so that the tasks don't interfere with each other.
In PR #11892 we updated the `csi_hook` to unmount the volume locally
via the CSI node RPCs before releasing the claim from the server. The
timer for this hook was initialized with the retry time, forcing us to
wait 1s before making the first unmount RPC calls.
Use the new helper for timers to ensure we clean up the timer nicely.
Nomad inherited protocol version numbering configuration from Consul and
Serf, but unlike those projects Nomad has never used it. Nomad's
`protocol_version` has always been `1`.
While the code is effectively unused and therefore poses no runtime
risks to leave, I felt like removing it was best because:
1. Nomad's RPC subsystem has been able to evolve extensively without
needing to increment the version number.
2. Nomad's HTTP API has evolved extensively without increment
`API{Major,Minor}Version`. If we want to version the HTTP API in the
future, I doubt this is the mechanism we would choose.
3. The presence of the `server.protocol_version` configuration
parameter is confusing since `server.raft_protocol` *is* an important
parameter for operators to consider. Even more confusing is that
there is a distinct Serf protocol version which is included in `nomad
server members` output under the heading `Protocol`. `raft_protocol`
is the *only* protocol version relevant to Nomad developers and
operators. The other protocol versions are either deadcode or have
never changed (Serf).
4. If we were to need to version the RPC, HTTP API, or Serf protocols, I
don't think these configuration parameters and variables are the best
choice. If we come to that point we should choose a versioning scheme
based on the use case and modern best practices -- not this 6+ year
old dead code.
This PR modifies the Consul CLI arguments used to bootstrap envoy for
Connect sidecars to make use of '-proxy-id' instead of '-sidecar-for'.
Nomad registers the sidecar service, so we know what ID it has. The
'-sidecar-for' was intended for use when you only know the name of the
service for which the sidecar is being created.
The improvement here is that using '-proxy-id' does not require an underlying
request for listing Consul services. This will make make the interaction
between Nomad and Consul more efficient.
Closes#10452
When Consul Connect just works, it's wonderful. When it doesn't work it
can be exceeding difficult to debug: operators have to check task
events, Nomad logs, Consul logs, Consul APIs, and even then critical
information is missing.
Using Consul to generate a bootstrap config for Envoy is notoriously
difficult. Nomad doesn't even log stderr, so operators are left trying
to piece together what went wrong.
This patch attempts to provide *maximal* context which unfortunately
includes secrets. **Secrets are always restricted to the secrets/
directory.** This makes debugging a little harder, but allows operators
to know exactly what operation Nomad was trying to perform.
What's added:
- stderr is sent to alloc/logs/envoy_bootstrap.stderr.0
- the CLI is written to secrets/.envoy_bootstrap.cmd
- the environment is written to secrets/.envoy_bootstrap.env as JSON
Accessing this information is unfortunately awkward:
```
nomad alloc exec -task connect-proxy-count-countdash b36a cat secrets/.envoy_bootstrap.env
nomad alloc exec -task connect-proxy-count-countdash b36a cat secrets/.envoy_bootstrap.cmd
nomad alloc fs b36a alloc/logs/envoy_bootstrap.stderr.0
```
The above assumes an alloc id that starts with `b36a` and a Connect
sidecar proxy for a service named `count-countdash`.
If the alloc is unable to start successfully, the debugging files are
only accessible from the host filesystem.