The allocrunner sends several updates to the server during the early lifecycle
of an allocation and its tasks. Clients batch-up allocation updates every 200ms,
but experiments like the C2M challenge has shown that even with this batching,
servers can be overwhelmed with client updates during high volume
deployments. Benchmarking done in #9451 has shown that client updates can easily
represent ~70% of all Nomad Raft traffic.
Each allocation sends many updates during its lifetime, but only those that
change the `ClientStatus` field are critical for progressing a deployment or
kicking off a reschedule to recover from failures.
Add a priority to the client allocation sync and update the `syncTicker`
receiver so that we only send an update if there's a high priority update
waiting, or on every 5th tick. This means when there are no high priority
updates, the client will send updates at most every 1s instead of
200ms. Benchmarks have shown this can reduce overall Raft traffic by 10%, as
well as reduce client-to-server RPC traffic.
This changeset also switches from a channel-based collection of updates to a
shared buffer, so as to split batching from sending and prevent backpressure
onto the allocrunner when the RPC is slow. This doesn't have a major performance
benefit in the benchmarks but makes the implementation of the prioritized update
simpler.
Fixes: #9451
Tools like `nomad-nodesim` are unable to implement a minimal implementation of
an allocrunner so that we can test the client communication without having to
lug around the entire allocrunner/taskrunner code base. The allocrunner was
implemented with an interface specifically for this purpose, but there were
circular imports that made it challenging to use in practice.
Move the AllocRunner interface into an inner package and provide a factory
function type. Provide a minimal test that exercises the new function so that
consumers have some idea of what the minimum implementation required is.