Fix CSIMountOptions.Copy() and VolumeRequest.Copy() where they
accidentally returned a reference to self rather than a deep copy.
`&(*ref)` in Golang apparently equivalent to plain `&ref`.
The initial implementation of global job stop for MRD looped over all the
regions in the CLI for expedience. This changeset includes the OSS parts of
moving this into the RPC layer so that API consumers don't have to implement
this logic themselves.
Multiregion deployments use the `NomadTokenID` to allow the deploymentwatcher
to send RPCs between regions with the original submitter's ACL token. This ID
should be filtered from diffs so that it doesn't cause a difference for
purposes of job plans.
When consul.allow_unauthenticated is set to false, the job_endpoint hook validates
that a `-consul-token` is provided and validates the token against the privileges
inherent to a Consul Service Identity policy for all the Connect enabled services
defined in the job.
Before, the check was assuming the service was of type sidecar-proxy. This fixes the
check to use the type of the task so we can distinguish between the different connect
types.
This PR adds initial support for running Consul Connect Ingress Gateways (CIGs) in Nomad. These gateways are declared as part of a task group level service definition within the connect stanza.
```hcl
service {
connect {
gateway {
proxy {
// envoy proxy configuration
}
ingress {
// ingress-gateway configuration entry
}
}
}
}
```
A gateway can be run in `bridge` or `host` networking mode, with the caveat that host networking necessitates manually specifying the Envoy admin listener (which cannot be disabled) via the service port value.
Currently Envoy is the only supported gateway implementation in Consul, and Nomad only supports running Envoy as a gateway using the docker driver.
Aims to address #8294 and tangentially #8647
This change fixes a bug where lost/failed allocations are replaced by
allocations with the latest versions, even if the version hasn't been
promoted yet.
Now, when generating a plan for lost/failed allocations, the scheduler
first checks if the current deployment is in Canary stage, and if so, it
ensures that any lost/failed allocations is replaced one with the latest
promoted version instead.
If a core job fails more than the delivery limit, the leader will create a new
eval with the TriggeredBy field set to `failed-follow-up`.
Evaluations for core jobs have the leader's ACL, which is not valid on another
leader after an election. The `failed-follow-up` evals do not have ACLs, so
core job evals that fail more than the delivery limit or core job evals that
span leader elections will never succeed and will be re-enqueued forever. So
we should not retry with a `failed-follow-up`.
The soundness guarantees of the CSI specification leave a little to be desired
in our ability to provide a 100% reliable automated solution for managing
volumes. This changeset provides a new command to bridge this gap by providing
the operator the ability to intervene.
The command doesn't take an allocation ID so that the operator doesn't have to
keep track of alloc IDs that may have been GC'd. Handle this case in the
unpublish RPC by sending the client RPC for all the terminal/nil allocs on the
selected node.
The CSI client RPC uses error wrapping to detect the type of error bubbling up
from plugins, but if the errors we get aren't wrapped at each layer, we can't
unwrap the inner error.
Also eliminates some unused args.
This change adds the ability to set the fields `success_before_passing` and
`failures_before_critical` on Consul service check definitions. This is a
feature added to Consul v1.7.0 and later.
https://www.consul.io/docs/agent/checks#success-failures-before-passing-critical
Nomad doesn't do much besides pass the fields through to Consul.
Fixes#6913
When deregistering a client, CSI plugins running on that client may not get a
chance to fingerprint before being stopped. Account for the case where a
plugin allocation is the last instance of the plugin and has been deleted from
the state store to avoid errors during node deregistration.
When the client-side actions of a CSI client RPC succeed but we get
disconnected during the RPC or we fail to checkpoint the claim state, we want
to be able to retry the client RPC without getting blocked by the client-side
state (ex. mount points) already having been cleaned up in previous calls.
Using the count of node claims from earlier in the `CSIVolume.Unpublish RPC
doesn't correctly account for cases where the RPC was interrupted but
checkpointed. Instead, we'll check the current allocation count and status to
determine whether we need to send a controller unpublish.
Add a Postrun hook to send the `CSIVolume.Unpublish` RPC to the server. This
may forward client RPCs to the node plugins or to the controller plugins,
depending on whether other allocations on this node have claims on this
volume.
By making clients responsible for running the `CSIVolume.Unpublish` RPC (and
making the RPC available to a `nomad volume detach` command), the
volumewatcher becomes only used by the core GC job and we no longer need
async volume GC from job deregister and node update.
This changeset updates `nomad/volumewatcher` to take advantage of the
`CSIVolume.Unpublish` RPC. This lets us eliminate a bunch of code and
associated tests. The raft batching code can be safely dropped, as the
characteristic times of the CSI RPCs are on the order of seconds or even
minutes, so batching up raft RPCs added complexity without any real world
performance wins.
Includes refactor w/ test cleanup and dead code elimination in volumewatcher
The documentation encourages operators to run multiple controller plugin
instances for HA, but the client RPCs don't take advantage of this by retrying
when the RPC fails in cases when the plugin is unavailable (because the node
has drained or the alloc has failed but we haven't received an updated
fingerprint yet).
This changeset tries all known controllers on ready nodes before giving up,
and adds tests that exercise the client RPC routing and retries.
This log line should be rare since:
1. Most tokens should be logged synchronously, not via this async
batched method. Async revocation only takes place when Vault
connectivity is lost and after leader election so no revocations are
missed.
2. There should rarely be >1 batch (1,000) tokens to revoke since the
above conditions should be brief and infrequent.
3. Interval is 5 minutes, so this log line will be emitted at *most*
once every 5 minutes.
What makes this log line rare is also what makes it interesting: due to
a bug prior to Nomad 0.11.2 some tokens may never get revoked. Therefore
Nomad tries to re-revoke them on every leader election. This caused a
massive buildup of old tokens that would never be properly revoked and
purged. Nomad 0.11.3 mostly fixed this but still had a bug in purging
revoked tokens via Raft (fixed in #8553).
The nomad.vault.distributed_tokens_revoked metric is only ticked upon
successful revocation and purging, making any bugs or slowness in the
process difficult to detect.
Logging before a potentially slow revocation+purge operation is
performed will give users much better indications of what activity is
going on should the process fail to make it to the metric.