When an allocation stops, the `csi_hook` makes an unpublish RPC to the
servers to unpublish via the CSI RPCs: first to the node plugins and
then the controller plugins. The controller RPCs must happen after the
node RPCs so that the node has had a chance to unmount the volume
before the controller tries to detach the associated device.
But the client has local access to the node plugins and can
independently determine if it's safe to send unpublish RPC to those
plugins. This will allow the server to treat the node plugin as
abandoned if a client is disconnected and `stop_on_client_disconnect`
is set. This will let the server try to send unpublish RPCs to the
controller plugins, under the assumption that the client will be
trying to unmount the volume on its end first.
Note that the CSI `NodeUnpublishVolume`/`NodeUnstageVolume` RPCs can
return ignorable errors in the case where the volume has already been
unmounted from the node. Handle all other errors by retrying until we
get success so as to give operators the opportunity to reschedule a
failed node plugin (ex. in the case where they accidentally drained a
node without `-ignore-system`). Fan-out the work for each volume into
its own goroutine so that we can release a subset of volumes if only
one is stuck.
* The volume claim GC method and volumewatcher both have logic
collecting terminal allocations that duplicates most of the logic
that's now in the state store's `CSIVolumeDenormalize` method. Copy
this logic into the state store so that all code paths have the same
view of the past claims.
* Remove logic in the volume claim GC that now lives in the state
store's `CSIVolumeDenormalize` method.
* Remove logic in the volumewatcher that now lives in the state
store's `CSIVolumeDenormalize` method.
* Remove logic in the node unpublish RPC that now lives in the state
store's `CSIVolumeDenormalize` method.
In the client's `(*csiHook) Postrun()` method, we make an unpublish
RPC that includes a claim in the `CSIVolumeClaimStateUnpublishing`
state and using the mode from the client. But then in the
`(*CSIVolume) Unpublish` RPC handler, we query the volume from the
state store (because we only get an ID from the client). And when we
make the client RPC for the node unpublish step, we use the _current
volume's_ view of the mode. If the volume's mode has been changed
before the old allocations can have their claims released, then we end
up making a CSI RPC that will never succeed.
Why does this code path get the mode from the volume and not the
claim? Because the claim written by the GC job in `(*CoreScheduler)
csiVolumeClaimGC` doesn't have a mode. Instead it just writes a claim
in the unpublishing state to ensure the volumewatcher detects a "past
claim" change and reaps all the claims on the volumes.
Fix this by ensuring that the `CSIVolumeDenormalize` creates past
claims for all nil allocations with a correct access mode set.
* csi: resolve invalid claim states on read
It's currently possible for CSI volumes to be claimed by allocations
that no longer exist. This changeset asserts a reasonable state at
the state store level by registering these nil allocations as "past
claims" on any read. This will cause any pass through the periodic GC
or volumewatcher to trigger the unpublishing workflow for those claims.
* csi: make feasibility check errors more understandable
When the feasibility checker finds we have no free write claims, it
checks to see if any of those claims are for the job we're currently
scheduling (so that earlier versions of a job can't block claims for
new versions) and reports a conflict if the volume can't be scheduled
so that the user can fix their claims. But when the checker hits a
claim that has a GCd allocation, the state is recoverable by the
server once claim reaping completes and no user intervention is
required; the blocked eval should complete. Differentiate the
scheduler error produced by these two conditions.
This PR tweaks the TestCpusetManager_AddAlloc unit test to not break
when being run on a machine using cgroupsv2. The behavior of writing
an empty cpuset.cpu changes in cgroupv2, where such a group now inherits
the value of its parent group, rather than remaining empty.
The test in question was written such that a task would consume all available
cores shared on an alloc, causing the empty set to be written to the shared
group, which works fine on cgroupsv1 but breaks on cgroupsv2. By adjusting
the test to consume only 1 core instead of all cores, it no longer triggers
that edge case.
The actual fix for the new cgroupsv2 behavior will be in #11933
The HCL1 parser did not respect connect.sidecar_task.resources if the
connect.sidecar_service block was not set (an optimiztion that no longer
makes sense with connect gateways).
Fixes#10899
* driver: fix integer conversion error
The shared executor incorrectly parsed the user's group into int32 and
then cast to uint32 without bounds checking. This is harmless because
an out-of-bounds gid will throw an error later, but it triggers
security and code quality scans. Parse directly to uint32 so that we
get correct error handling.
* helper: fix integer conversion error
The autopilot flags helper incorrectly parses a uint64 to a uint which
is machine specific size. Although we don't have 32-bit builds, this
sets off security and code quality scaans. Parse to the machine sized
uint.
* driver: restrict bounds of port map
The plugin server doesn't constrain the maximum integer for port
maps. This could result in a user-visible misconfiguration, but it
also triggers security and code quality scans. Restrict the bounds
before casting to int32 and return an error.
* cpuset: restrict upper bounds of cpuset values
Our cpuset configuration expects values in the range of uint16 to
match the expectations set by the kernel, but we don't constrain the
values before downcasting. An underflow could lead to allocations
failing on the client rather than being caught earlier. This also make
security and code quality scanners happy.
* http: fix integer downcast for per_page parameter
The parser for the `per_page` query parameter downcasts to int32
without bounds checking. This could result in underflow and
nonsensical paging, but there's no server-side consequences for
this. Fixing this will silence some security and code quality scanners
though.
This PR sets the minimum Go version for the `api` submodule to Go 1.17.
It also upgrades
- gorilla/websocket 1.4.1 -> 1.4.2
- mitchelh/mapstructure 1.4.2 -> 1.4.3
- stretchr/testify 1.5.1 -> 1.7.0
Closes#11518#11602#11528
The volumewatcher that runs on the leader needs to make RPC calls
rather than writing to raft (as we do in the deploymentwatcher)
because the unpublish workflow needs to make RPC calls to the
clients. This requires that the volumewatcher has access to the
leader's ACL token.
But when leadership transitions, the new leader creates a new leader
ACL token. This ACL token needs to be passed into the volumewatcher
when we enable it, otherwise the volumewatcher can find itself with a
stale token.
The examples for `nomad volume create` and `nomad volume register` are
not setting `mount_flags` using an array of strings.
This fixes the issue by changing the example to be `mount_flags =
["noatime"]`.