When a Nomad service starts it tries to establish a connection with
servers, but it also runs alloc runners to manage whatever allocations
it needs to run.
The alloc runner will invoke several hooks to perform actions, with some
of them requiring access to the Nomad servers, such as Native Service
Discovery Registration.
If the alloc runner starts before a connection is established the alloc
runner will fail, causing the allocation to be shutdown. This is
particularly problematic for disconnected allocations that are
reconnecting, as they may fail as soon as the client reconnects.
This commit changes the RPC request logic to retry it, using the
existing retry mechanism, if there are no servers available.
Before this change, Client had 2 copies of the config object: config and configCopy. There was no guidance around which to use where (other than configCopy's comment to pass it to alloc runners), both are shared among goroutines and mutated in data racy ways. At least at one point I think the idea was to have `config` be mutable and then grab a lock to overwrite `configCopy`'s pointer atomically. This would have allowed alloc runners to read their config copies in data race safe ways, but this isn't how the current implementation worked.
This change takes the following approach to safely handling configs in the client:
1. `Client.config` is the only copy of the config and all access must go through the `Client.configLock` mutex
2. Since the mutex *only protects the config pointer itself and not fields inside the Config struct:* all config mutation must be done on a *copy* of the config, and then Client's config pointer is overwritten while the mutex is acquired. Alloc runners and other goroutines with the old config pointer will not see config updates.
3. Deep copying is implemented on the Config struct to satisfy the previous approach. The TLS Keyloader is an exception because it has its own internal locking to support mutating in place. An unfortunate complication but one I couldn't find a way to untangle in a timely fashion.
4. To facilitate deep copying I made an *internally backward incompatible API change:* our `helper/funcs` used to turn containers (slices and maps) with 0 elements into nils. This probably saves a few memory allocations but makes it very easy to cause panics. Since my new config handling approach uses more copying, it became very difficult to ensure all code that used containers on configs could handle nils properly. Since this code has caused panics in the past, I fixed it: nil containers are copied as nil, but 0-element containers properly return a new 0-element container. No more "downgrading to nil!"
Nomad inherited protocol version numbering configuration from Consul and
Serf, but unlike those projects Nomad has never used it. Nomad's
`protocol_version` has always been `1`.
While the code is effectively unused and therefore poses no runtime
risks to leave, I felt like removing it was best because:
1. Nomad's RPC subsystem has been able to evolve extensively without
needing to increment the version number.
2. Nomad's HTTP API has evolved extensively without increment
`API{Major,Minor}Version`. If we want to version the HTTP API in the
future, I doubt this is the mechanism we would choose.
3. The presence of the `server.protocol_version` configuration
parameter is confusing since `server.raft_protocol` *is* an important
parameter for operators to consider. Even more confusing is that
there is a distinct Serf protocol version which is included in `nomad
server members` output under the heading `Protocol`. `raft_protocol`
is the *only* protocol version relevant to Nomad developers and
operators. The other protocol versions are either deadcode or have
never changed (Serf).
4. If we were to need to version the RPC, HTTP API, or Serf protocols, I
don't think these configuration parameters and variables are the best
choice. If we come to that point we should choose a versioning scheme
based on the use case and modern best practices -- not this 6+ year
old dead code.
Track usage of incoming streams on a connection. Connections without
reference counts get marked as unused and reaped in a periodic job.
This fixes a bug where `alloc exec` and `alloc fs` sessions get terminated
unexpectedly. Previously, when a client heartbeats switches between
servers, the pool connection reaper eventually identifies the connection
as unused and closes it even if it has an active exec/fs sessions.
Fixes#10579
This commit includes a new test client that allows overriding the RPC
protocols. Only the RPCs that are passed in are registered, which lets you
implement a mock RPC in the server tests. This commit includes an example of
this for the ClientCSI RPC server.
The current implementation measures RPC request timeout only against
config.RPCHoldTimeout, which is fine for non-blocking requests but will
almost surely be exceeded by long-poll requests that block for minutes
at a time.
This adds an HasTimedOut method on the RPCInfo interface that takes into
account whether the request is blocking, its maximum wait time, and the
RPCHoldTimeout.
If a volume-claiming alloc stops and the CSI Node plugin that serves
that alloc's volumes is missing, there's no way for the allocrunner
hook to send the `NodeUnpublish` and `NodeUnstage` RPCs.
This changeset addresses this issue with a redesign of the client-side
for CSI. Rather than unmounting in the alloc runner hook, the alloc
runner hook will simply exit. When the server gets the
`Node.UpdateAlloc` for the terminal allocation that had a volume claim,
it creates a volume claim GC job. This job will made client RPCs to a
new node plugin RPC endpoint, and only once that succeeds, move on to
making the client RPCs to the controller plugin. If the node plugin is
unavailable, the GC job will fail and be requeued.
This commit introduces a new set of endpoints to a Nomad Client:
ClientCSI.
ClientCSI is responsible for mediating requests from a Nomad Server to
a CSI Plugin running on a Nomad Client. It should only really be used to
make controller RPCs.
This PR introduces an ack allowing the receiving end of the streaming
RPC to return any error that may have occured during the establishment
of the streaming RPC.