This changeset configures the RPC rate metrics that were added in #15515 to all
the RPCs that support authenticated HTTP API requests. These endpoints already
configured with pre-forwarding authentication in #15870, and a handful of others
were done already as part of the proof-of-concept work. So this changeset is
entirely copy-and-pasting one method call into a whole mess of handlers.
Upcoming PRs will wire up pre-forwarding auth and rate metrics for the remaining
set of RPCs that have no API consumers or aren't authenticated, in smaller
chunks that can be more thoughtfully reviewed.
This changeset allows Workload Identities to authenticate to all the RPCs that
support HTTP API endpoints, for use with PR #15864.
* Extends the work done for pre-forwarding authentication to all RPCs that
support a HTTP API endpoint.
* Consolidates the auth helpers used by the CSI, Service Registration, and Node
endpoints that are currently used to support both tokens and client secrets.
Intentionally excluded from this changeset:
* The Variables endpoint still has custom handling because of the implicit
policies. Ideally we'll figure out an efficient way to resolve those into real
policies and then we can get rid of that custom handling.
* The RPCs that don't currently support auth tokens (i.e. those that don't
support HTTP endpoints) have not been updated with the new pre-forwarding auth
We'll be doing this under a separate PR to support RPC rate metrics.
In #15417 we added a new `Authenticate` method to the server that returns an
`AuthenticatedIdentity` struct. This changeset implements this method for a
small number of RPC endpoints that together represent all the various ways in
which RPCs are sent, so that we can validate that we're happy with this
approach.
Upcoming work to instrument the rate of RPC requests by consumer (and eventually
rate limit) requires that we thread the `RPCContext` through all RPC
handlers so that we can access the underlying connection. This changeset adds
the context to everywhere we intend to initially support it and intentionally
excludes streaming RPCs and client RPCs.
To improve the ergonomics of adding the context everywhere its needed and to
clarify the requirements of dynamic vs static handlers, I've also done a good
bit of refactoring here:
* canonicalized the RPC handler fields so they're as close to identical as
possible without introducing unused fields (i.e. I didn't add loggers if the
handler doesn't use them already).
* canonicalized the imports in the handler files.
* added a `NewExampleEndpoint` function for each handler that ensures we're
constructing the handlers with the required arguments.
* reordered the registration in server.go to match the order of the files (to
make it easier to see if we've missed one), and added a bunch of commentary
there as to what the difference between static and dynamic handlers is.
In #14621 we added an eval canelation reaper goroutine with a channel that
allowed us to wake it up. But we forgot to actually send on this channel from
`Eval.Ack` and are still committing the cancelations synchronously. Fix this by
sending on the buffered channel to wake up the reaper instead.
When an evaluation is acknowledged by a scheduler, the resulting plan is
guaranteed to cover up to the `waitIndex` set by the worker based on the most
recent evaluation for that job in the state store. At that point, we no longer
need to retain blocked evaluations in the broker that are older than that index.
Move all but the highest priority / highest `ModifyIndex` blocked eval into a
canceled set. When the `Eval.Ack` RPC returns from the eval broker it will
signal a reap of a batch of cancelable evals to write to raft. This paces the
cancelations limited by how frequently the schedulers are acknowledging evals;
this should reduce the risk of cancelations from overwhelming raft relative to
scheduler progress. In order to avoid straggling batches when the cluster is
quiet, we also include a periodic sweep through the cancelable list.
During unusual outage recovery scenarios on large clusters, a backlog of
millions of evaluations can appear. In these cases, the `eval delete` command can
put excessive load on the cluster by listing large sets of evals to extract the
IDs and then sending larges batches of IDs. Although the command's batch size
was carefully tuned, we still need to be JSON deserialize, re-serialize to
MessagePack, send the log entries through raft, and get the FSM applied.
To improve performance of this recovery case, move the batching process into the
RPC handler and the state store. The design here is a little weird, so let's
look a the failed options first:
* A naive solution here would be to just send the filter as the raft request and
let the FSM apply delete the whole set in a single operation. Benchmarking with
1M evals on a 3 node cluster demonstrated this can block the FSM apply for
several minutes, which puts the cluster at risk if there's a leadership
failover (the barrier write can't be made while this apply is in-flight).
* A less naive but still bad solution would be to have the RPC handler filter
and paginate, and then hand a list of IDs to the existing raft log
entry. Benchmarks showed this blocked the FSM apply for 20-30s at a time and
took roughly an hour to complete.
Instead, we're filtering and paginating in the RPC handler to find a page token,
and then passing both the filter and page token in the raft log. The FSM apply
recreates the paginator using the filter and page token to get roughly the same
page of evaluations, which it then deletes. The pagination process is fairly
cheap (only abut 5% of the total FSM apply time), so counter-intuitively this
rework ends up being much faster. A benchmark of 1M evaluations showed this
blocked the FSM apply for 20-30ms at a time (typical for normal operations) and
completes in less than 4 minutes.
Note that, as with the existing design, this delete is not consistent: a new
evaluation inserted "behind" the cursor of the pagination will fail to be
deleted.
Add a new `Eval.Count` RPC and associated HTTP API endpoints. This API is
designed to support interactive use in the `nomad eval delete` command to get a
count of evals expected to be deleted before doing so.
The state store operations to do this sort of thing are somewhat expensive, but
it's cheaper than serializing a big list of evals to JSON. Note that although it
seems like this could be done as an extra parameter and response field on
`Eval.List`, having it as its own endpoint avoids having to change the response
body shape and lets us avoid handling the legacy filter params supported by
`Eval.List`.
The `Eval.Delete` endpoint has a helper that takes a list of jobs and allocs and
determines whether the eval associated with those is safe to delete (based on
their state). Filtering improvements to the `Eval.Delete` endpoint are going to
need this check to run in the state store itself for consistency.
Refactor to push this check down into the state store to keep the eventual diff
for that work reasonable.
* Failing test and TODO for wildcard
* Alias the namespace query parameter for Evals
* eval: fix list when using ACLs and * namespace
Apply the same verification process as in job, allocs and scaling
policy list endpoints to handle the eval list when using an ACL token
with limited namespace support but querying using the `*` wildcard
namespace.
* changelog: add entry for #13530
* ui: set namespace when querying eval
Evals have a unique UUID as ID, but when querying them the Nomad API
still expects a namespace query param, otherwise it assumes `default`.
Co-authored-by: Luiz Aoqui <luiz@hashicorp.com>
* core: allow pause/un-pause of eval broker on region leader.
* agent: add ability to pause eval broker via scheduler config.
* cli: add operator scheduler commands to interact with config.
* api: add ability to pause eval broker via scheduler config
* e2e: add operator scheduler test for eval broker pause.
* docs: include new opertor scheduler CLI and pause eval API info.
The `related` query param is used to indicate that the request should
return a list of related (next, previous, and blocked) evaluations.
Co-authored-by: Jasmine Dahilig <jasmine@hashicorp.com>
The paginator logic was built when go-memdb iterators would return items
ordered lexicographically by their ID prefixes, but #12054 added the
option for some tables to return results ordered by their `CreateIndex`
instead, which invalidated the previous paginator assumption.
The iterator used for pagination must still return results in some order
so that the paginator can properly handle requests where the next_token
value is not present in the results anymore (e.g., the eval was GC'ed).
In these situations, the paginator will start the returned page in the
first element right after where the requested token should've been.
This commit moves the logic to generate pagination tokens from the
elements being paginated to the iterator itself so that callers can have
more control over the token format to make sure they are properly
ordered and stable.
It also allows configuring the paginator as being ordered in ascending
or descending order, which is relevant when looking for a token that may
not be present anymore.
These API endpoints now return results in chronological order. They
can return results in reverse chronological order by setting the
query parameter ascending=true.
- Eval.List
- Deployment.List
PR #11956 implemented a new mTLS RPC check to validate the role of the
certificate used in the request, but further testing revealed two flaws:
1. client-only endpoints did not accept server certificates so the
request would fail when forwarded from one server to another.
2. the certificate was being checked after the request was forwarded,
so the check would happen over the server certificate, not the
actual source.
This commit checks for the desired mTLS level, where the client level
accepts both, a server or a client certificate. It also validates the
cercertificate before the request is forwarded.
API queries can request pagination using the `NextToken` and `PerPage`
fields of `QueryOptions`, when supported by the underlying API.
Add a `NextToken` field to the `structs.QueryMeta` so that we have a
common field across RPCs to tell the caller where to resume paging
from on their next API call. Include this field on the `api.QueryMeta`
as well so that it's available for future versions of List HTTP APIs
that wrap the response with `QueryMeta` rather than returning a simple
list of structs. In the meantime callers can get the `X-Nomad-NextToken`.
Add pagination to the `Eval.List` RPC by checking for pagination token
and page size in `QueryOptions`. This will allow resuming from the
last ID seen so long as the query parameters and the state store
itself are unchanged between requests.
Add filtering by job ID or evaluation status over the results we get
out of the state store.
Parse the query parameters of the `Eval.List` API into the arguments
expected for filtering in the RPC call.
* Throw away result of multierror.Append
When given a *multierror.Error, it is mutated, therefore the return
value is not needed.
* Simplify MergeMultierrorWarnings, use StringBuilder
* Hash.Write() never returns an error
* Remove error that was always nil
* Remove error from Resources.Add signature
When this was originally written it could return an error, but that was
refactored away, and callers of it as of today never handle the error.
* Throw away results of io.Copy during Bridge
* Handle errors when computing node class in test
Fixes#9017
The ?resources=true query parameter includes resources in the object
stub listings. Specifically:
- For `/v1/nodes?resources=true` both the `NodeResources` and
`ReservedResources` field are included.
- For `/v1/allocations?resources=true` the `AllocatedResources` field is
included.
The ?task_states=false query parameter removes TaskStates from
/v1/allocations responses. (By default TaskStates are included.)
Fix a bug where a millicious user can access or manipulate an alloc in a
namespace they don't have access to. The allocation endpoints perform
ACL checks against the request namespace, not the allocation namespace,
and performs the allocation lookup independently from namespaces.
Here, we check that the requested can access the alloc namespace
regardless of the declared request namespace.
Ideally, we'd enforce that the declared request namespace matches
the actual allocation namespace. Unfortunately, we haven't documented
alloc endpoints as namespaced functions; we suspect starting to enforce
this will be very disruptive and inappropriate for a nomad point
release. As such, we maintain current behavior that doesn't require
passing the proper namespace in request. A future major release may
start enforcing checking declared namespace.
Consider currently dequeued Evaluation's ModifyIndex when determining
its WaitIndex. Normally the Evaluation itself would already be in the
state store snapshot used to determine the WaitIndex. However, since the FSM
applies Raft messages to the state store concurrently with Dequeueing,
it's possible the currently dequeued Evaluation won't yet exist in the
state store snapshot used by JobsForEval.
This can be solved by always considering the current eval's modify index
and using it if it is greater than all of the evals returned by the
state store.
The ForceLeaveRequest endpoint may only be called on servers, but the
code was using a Client to resolve tokens. This would cause a panic when
an agent wasn't both a Server and a Client.
This PR fixes a scheduling race condition in which the plan results from
one invocation of the scheduler were not being considered by the next
since the Worker was not waiting for the correct index.
Fixes https://github.com/hashicorp/nomad/issues/3198
* Reverted changes to get methods
* Added prefix query parameter
* Updated node status to use prefix based searching
* Fixed tests
* Removed truncation logic
* Use go-memdb prefix indexer for lookups
* Add Job lookups
* Update state store with new ByIDPrefix get methods
* Call new methods when exact lookup fails or is not applicable