* client: sandbox go-getter subprocess with landlock
This PR re-implements the getter package for artifact downloads as a subprocess.
Key changes include
On all platforms, run getter as a child process of the Nomad agent.
On Linux platforms running as root, run the child process as the nobody user.
On supporting Linux kernels, uses landlock for filesystem isolation (via go-landlock).
On all platforms, restrict environment variables of the child process to a static set.
notably TMP/TEMP now points within the allocation's task directory
kernel.landlock attribute is fingerprinted (version number or unavailable)
These changes make Nomad client more resilient against a faulty go-getter implementation that may panic, and more secure against bad actors attempting to use artifact downloads as a privilege escalation vector.
Adds new e2e/artifact suite for ensuring artifact downloading works.
TODO: Windows git test (need to modify the image, etc... followup PR)
* landlock: fixup items from cr
* cr: fixup tests and go.mod file
Fix numerous go-getter security issues:
- Add timeouts to http, git, and hg operations to prevent DoS
- Add size limit to http to prevent resource exhaustion
- Disable following symlinks in both artifacts and `job run`
- Stop performing initial HEAD request to avoid file corruption on
retries and DoS opportunities.
**Approach**
Since Nomad has no ability to differentiate a DoS-via-large-artifact vs
a legitimate workload, all of the new limits are configurable at the
client agent level.
The max size of HTTP downloads is also exposed as a node attribute so
that if some workloads have large artifacts they can specify a high
limit in their jobspecs.
In the future all of this plumbing could be extended to enable/disable
specific getters or artifact downloading entirely on a per-node basis.
This change makes few compromises:
* Looks up the devices associated with tasks at look up time. Given
that `nomad alloc status` is called rarely generally (compared to stats
telemetry and general job reporting), it seems fine. However, the
lookup overhead grows bounded by number of `tasks x total-host-devices`,
which can be significant.
* `client.Client` performs the task devices->statistics lookup. It
passes self to alloc/task runners so they can look up the device statistics
allocated to them.
* Currently alloc/task runners are responsible for constructing the
entire RPC response for stats
* The alternatives for making task runners device statistics aware
don't seem appealing (e.g. having task runners contain reference to hostStats)
* On the alloc aggregation resource usage, I did a naive merging of task device statistics.
* Personally, I question the value of such aggregation, compared to
costs of struct duplication and bloating the response - but opted to be
consistent in the API.
* With naive concatination, device instances from a single device group used by separate tasks in the alloc, would be aggregated in two separate device group statistics.