vendor
This commit is contained in:
parent
bf2dafb8e9
commit
db93d51530
|
@ -0,0 +1,15 @@
|
|||
ISC License
|
||||
|
||||
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
|
||||
|
||||
Permission to use, copy, modify, and distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
@ -0,0 +1,152 @@
|
|||
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
|
||||
//
|
||||
// Permission to use, copy, modify, and distribute this software for any
|
||||
// purpose with or without fee is hereby granted, provided that the above
|
||||
// copyright notice and this permission notice appear in all copies.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
|
||||
// NOTE: Due to the following build constraints, this file will only be compiled
|
||||
// when the code is not running on Google App Engine, compiled by GopherJS, and
|
||||
// "-tags safe" is not added to the go build command line. The "disableunsafe"
|
||||
// tag is deprecated and thus should not be used.
|
||||
// +build !js,!appengine,!safe,!disableunsafe
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"reflect"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
const (
|
||||
// UnsafeDisabled is a build-time constant which specifies whether or
|
||||
// not access to the unsafe package is available.
|
||||
UnsafeDisabled = false
|
||||
|
||||
// ptrSize is the size of a pointer on the current arch.
|
||||
ptrSize = unsafe.Sizeof((*byte)(nil))
|
||||
)
|
||||
|
||||
var (
|
||||
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
|
||||
// internal reflect.Value fields. These values are valid before golang
|
||||
// commit ecccf07e7f9d which changed the format. The are also valid
|
||||
// after commit 82f48826c6c7 which changed the format again to mirror
|
||||
// the original format. Code in the init function updates these offsets
|
||||
// as necessary.
|
||||
offsetPtr = uintptr(ptrSize)
|
||||
offsetScalar = uintptr(0)
|
||||
offsetFlag = uintptr(ptrSize * 2)
|
||||
|
||||
// flagKindWidth and flagKindShift indicate various bits that the
|
||||
// reflect package uses internally to track kind information.
|
||||
//
|
||||
// flagRO indicates whether or not the value field of a reflect.Value is
|
||||
// read-only.
|
||||
//
|
||||
// flagIndir indicates whether the value field of a reflect.Value is
|
||||
// the actual data or a pointer to the data.
|
||||
//
|
||||
// These values are valid before golang commit 90a7c3c86944 which
|
||||
// changed their positions. Code in the init function updates these
|
||||
// flags as necessary.
|
||||
flagKindWidth = uintptr(5)
|
||||
flagKindShift = uintptr(flagKindWidth - 1)
|
||||
flagRO = uintptr(1 << 0)
|
||||
flagIndir = uintptr(1 << 1)
|
||||
)
|
||||
|
||||
func init() {
|
||||
// Older versions of reflect.Value stored small integers directly in the
|
||||
// ptr field (which is named val in the older versions). Versions
|
||||
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
|
||||
// scalar for this purpose which unfortunately came before the flag
|
||||
// field, so the offset of the flag field is different for those
|
||||
// versions.
|
||||
//
|
||||
// This code constructs a new reflect.Value from a known small integer
|
||||
// and checks if the size of the reflect.Value struct indicates it has
|
||||
// the scalar field. When it does, the offsets are updated accordingly.
|
||||
vv := reflect.ValueOf(0xf00)
|
||||
if unsafe.Sizeof(vv) == (ptrSize * 4) {
|
||||
offsetScalar = ptrSize * 2
|
||||
offsetFlag = ptrSize * 3
|
||||
}
|
||||
|
||||
// Commit 90a7c3c86944 changed the flag positions such that the low
|
||||
// order bits are the kind. This code extracts the kind from the flags
|
||||
// field and ensures it's the correct type. When it's not, the flag
|
||||
// order has been changed to the newer format, so the flags are updated
|
||||
// accordingly.
|
||||
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
|
||||
upfv := *(*uintptr)(upf)
|
||||
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
|
||||
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
|
||||
flagKindShift = 0
|
||||
flagRO = 1 << 5
|
||||
flagIndir = 1 << 6
|
||||
|
||||
// Commit adf9b30e5594 modified the flags to separate the
|
||||
// flagRO flag into two bits which specifies whether or not the
|
||||
// field is embedded. This causes flagIndir to move over a bit
|
||||
// and means that flagRO is the combination of either of the
|
||||
// original flagRO bit and the new bit.
|
||||
//
|
||||
// This code detects the change by extracting what used to be
|
||||
// the indirect bit to ensure it's set. When it's not, the flag
|
||||
// order has been changed to the newer format, so the flags are
|
||||
// updated accordingly.
|
||||
if upfv&flagIndir == 0 {
|
||||
flagRO = 3 << 5
|
||||
flagIndir = 1 << 7
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
|
||||
// the typical safety restrictions preventing access to unaddressable and
|
||||
// unexported data. It works by digging the raw pointer to the underlying
|
||||
// value out of the protected value and generating a new unprotected (unsafe)
|
||||
// reflect.Value to it.
|
||||
//
|
||||
// This allows us to check for implementations of the Stringer and error
|
||||
// interfaces to be used for pretty printing ordinarily unaddressable and
|
||||
// inaccessible values such as unexported struct fields.
|
||||
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
|
||||
indirects := 1
|
||||
vt := v.Type()
|
||||
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
|
||||
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
|
||||
if rvf&flagIndir != 0 {
|
||||
vt = reflect.PtrTo(v.Type())
|
||||
indirects++
|
||||
} else if offsetScalar != 0 {
|
||||
// The value is in the scalar field when it's not one of the
|
||||
// reference types.
|
||||
switch vt.Kind() {
|
||||
case reflect.Uintptr:
|
||||
case reflect.Chan:
|
||||
case reflect.Func:
|
||||
case reflect.Map:
|
||||
case reflect.Ptr:
|
||||
case reflect.UnsafePointer:
|
||||
default:
|
||||
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
|
||||
offsetScalar)
|
||||
}
|
||||
}
|
||||
|
||||
pv := reflect.NewAt(vt, upv)
|
||||
rv = pv
|
||||
for i := 0; i < indirects; i++ {
|
||||
rv = rv.Elem()
|
||||
}
|
||||
return rv
|
||||
}
|
|
@ -0,0 +1,341 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"reflect"
|
||||
"sort"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Some constants in the form of bytes to avoid string overhead. This mirrors
|
||||
// the technique used in the fmt package.
|
||||
var (
|
||||
panicBytes = []byte("(PANIC=")
|
||||
plusBytes = []byte("+")
|
||||
iBytes = []byte("i")
|
||||
trueBytes = []byte("true")
|
||||
falseBytes = []byte("false")
|
||||
interfaceBytes = []byte("(interface {})")
|
||||
commaNewlineBytes = []byte(",\n")
|
||||
newlineBytes = []byte("\n")
|
||||
openBraceBytes = []byte("{")
|
||||
openBraceNewlineBytes = []byte("{\n")
|
||||
closeBraceBytes = []byte("}")
|
||||
asteriskBytes = []byte("*")
|
||||
colonBytes = []byte(":")
|
||||
colonSpaceBytes = []byte(": ")
|
||||
openParenBytes = []byte("(")
|
||||
closeParenBytes = []byte(")")
|
||||
spaceBytes = []byte(" ")
|
||||
pointerChainBytes = []byte("->")
|
||||
nilAngleBytes = []byte("<nil>")
|
||||
maxNewlineBytes = []byte("<max depth reached>\n")
|
||||
maxShortBytes = []byte("<max>")
|
||||
circularBytes = []byte("<already shown>")
|
||||
circularShortBytes = []byte("<shown>")
|
||||
invalidAngleBytes = []byte("<invalid>")
|
||||
openBracketBytes = []byte("[")
|
||||
closeBracketBytes = []byte("]")
|
||||
percentBytes = []byte("%")
|
||||
precisionBytes = []byte(".")
|
||||
openAngleBytes = []byte("<")
|
||||
closeAngleBytes = []byte(">")
|
||||
openMapBytes = []byte("map[")
|
||||
closeMapBytes = []byte("]")
|
||||
lenEqualsBytes = []byte("len=")
|
||||
capEqualsBytes = []byte("cap=")
|
||||
)
|
||||
|
||||
// hexDigits is used to map a decimal value to a hex digit.
|
||||
var hexDigits = "0123456789abcdef"
|
||||
|
||||
// catchPanic handles any panics that might occur during the handleMethods
|
||||
// calls.
|
||||
func catchPanic(w io.Writer, v reflect.Value) {
|
||||
if err := recover(); err != nil {
|
||||
w.Write(panicBytes)
|
||||
fmt.Fprintf(w, "%v", err)
|
||||
w.Write(closeParenBytes)
|
||||
}
|
||||
}
|
||||
|
||||
// handleMethods attempts to call the Error and String methods on the underlying
|
||||
// type the passed reflect.Value represents and outputes the result to Writer w.
|
||||
//
|
||||
// It handles panics in any called methods by catching and displaying the error
|
||||
// as the formatted value.
|
||||
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
|
||||
// We need an interface to check if the type implements the error or
|
||||
// Stringer interface. However, the reflect package won't give us an
|
||||
// interface on certain things like unexported struct fields in order
|
||||
// to enforce visibility rules. We use unsafe, when it's available,
|
||||
// to bypass these restrictions since this package does not mutate the
|
||||
// values.
|
||||
if !v.CanInterface() {
|
||||
if UnsafeDisabled {
|
||||
return false
|
||||
}
|
||||
|
||||
v = unsafeReflectValue(v)
|
||||
}
|
||||
|
||||
// Choose whether or not to do error and Stringer interface lookups against
|
||||
// the base type or a pointer to the base type depending on settings.
|
||||
// Technically calling one of these methods with a pointer receiver can
|
||||
// mutate the value, however, types which choose to satisify an error or
|
||||
// Stringer interface with a pointer receiver should not be mutating their
|
||||
// state inside these interface methods.
|
||||
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
|
||||
v = unsafeReflectValue(v)
|
||||
}
|
||||
if v.CanAddr() {
|
||||
v = v.Addr()
|
||||
}
|
||||
|
||||
// Is it an error or Stringer?
|
||||
switch iface := v.Interface().(type) {
|
||||
case error:
|
||||
defer catchPanic(w, v)
|
||||
if cs.ContinueOnMethod {
|
||||
w.Write(openParenBytes)
|
||||
w.Write([]byte(iface.Error()))
|
||||
w.Write(closeParenBytes)
|
||||
w.Write(spaceBytes)
|
||||
return false
|
||||
}
|
||||
|
||||
w.Write([]byte(iface.Error()))
|
||||
return true
|
||||
|
||||
case fmt.Stringer:
|
||||
defer catchPanic(w, v)
|
||||
if cs.ContinueOnMethod {
|
||||
w.Write(openParenBytes)
|
||||
w.Write([]byte(iface.String()))
|
||||
w.Write(closeParenBytes)
|
||||
w.Write(spaceBytes)
|
||||
return false
|
||||
}
|
||||
w.Write([]byte(iface.String()))
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// printBool outputs a boolean value as true or false to Writer w.
|
||||
func printBool(w io.Writer, val bool) {
|
||||
if val {
|
||||
w.Write(trueBytes)
|
||||
} else {
|
||||
w.Write(falseBytes)
|
||||
}
|
||||
}
|
||||
|
||||
// printInt outputs a signed integer value to Writer w.
|
||||
func printInt(w io.Writer, val int64, base int) {
|
||||
w.Write([]byte(strconv.FormatInt(val, base)))
|
||||
}
|
||||
|
||||
// printUint outputs an unsigned integer value to Writer w.
|
||||
func printUint(w io.Writer, val uint64, base int) {
|
||||
w.Write([]byte(strconv.FormatUint(val, base)))
|
||||
}
|
||||
|
||||
// printFloat outputs a floating point value using the specified precision,
|
||||
// which is expected to be 32 or 64bit, to Writer w.
|
||||
func printFloat(w io.Writer, val float64, precision int) {
|
||||
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
|
||||
}
|
||||
|
||||
// printComplex outputs a complex value using the specified float precision
|
||||
// for the real and imaginary parts to Writer w.
|
||||
func printComplex(w io.Writer, c complex128, floatPrecision int) {
|
||||
r := real(c)
|
||||
w.Write(openParenBytes)
|
||||
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
|
||||
i := imag(c)
|
||||
if i >= 0 {
|
||||
w.Write(plusBytes)
|
||||
}
|
||||
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
|
||||
w.Write(iBytes)
|
||||
w.Write(closeParenBytes)
|
||||
}
|
||||
|
||||
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
|
||||
// prefix to Writer w.
|
||||
func printHexPtr(w io.Writer, p uintptr) {
|
||||
// Null pointer.
|
||||
num := uint64(p)
|
||||
if num == 0 {
|
||||
w.Write(nilAngleBytes)
|
||||
return
|
||||
}
|
||||
|
||||
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
|
||||
buf := make([]byte, 18)
|
||||
|
||||
// It's simpler to construct the hex string right to left.
|
||||
base := uint64(16)
|
||||
i := len(buf) - 1
|
||||
for num >= base {
|
||||
buf[i] = hexDigits[num%base]
|
||||
num /= base
|
||||
i--
|
||||
}
|
||||
buf[i] = hexDigits[num]
|
||||
|
||||
// Add '0x' prefix.
|
||||
i--
|
||||
buf[i] = 'x'
|
||||
i--
|
||||
buf[i] = '0'
|
||||
|
||||
// Strip unused leading bytes.
|
||||
buf = buf[i:]
|
||||
w.Write(buf)
|
||||
}
|
||||
|
||||
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
|
||||
// elements to be sorted.
|
||||
type valuesSorter struct {
|
||||
values []reflect.Value
|
||||
strings []string // either nil or same len and values
|
||||
cs *ConfigState
|
||||
}
|
||||
|
||||
// newValuesSorter initializes a valuesSorter instance, which holds a set of
|
||||
// surrogate keys on which the data should be sorted. It uses flags in
|
||||
// ConfigState to decide if and how to populate those surrogate keys.
|
||||
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
|
||||
vs := &valuesSorter{values: values, cs: cs}
|
||||
if canSortSimply(vs.values[0].Kind()) {
|
||||
return vs
|
||||
}
|
||||
if !cs.DisableMethods {
|
||||
vs.strings = make([]string, len(values))
|
||||
for i := range vs.values {
|
||||
b := bytes.Buffer{}
|
||||
if !handleMethods(cs, &b, vs.values[i]) {
|
||||
vs.strings = nil
|
||||
break
|
||||
}
|
||||
vs.strings[i] = b.String()
|
||||
}
|
||||
}
|
||||
if vs.strings == nil && cs.SpewKeys {
|
||||
vs.strings = make([]string, len(values))
|
||||
for i := range vs.values {
|
||||
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
|
||||
}
|
||||
}
|
||||
return vs
|
||||
}
|
||||
|
||||
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
|
||||
// directly, or whether it should be considered for sorting by surrogate keys
|
||||
// (if the ConfigState allows it).
|
||||
func canSortSimply(kind reflect.Kind) bool {
|
||||
// This switch parallels valueSortLess, except for the default case.
|
||||
switch kind {
|
||||
case reflect.Bool:
|
||||
return true
|
||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
||||
return true
|
||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
|
||||
return true
|
||||
case reflect.Float32, reflect.Float64:
|
||||
return true
|
||||
case reflect.String:
|
||||
return true
|
||||
case reflect.Uintptr:
|
||||
return true
|
||||
case reflect.Array:
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// Len returns the number of values in the slice. It is part of the
|
||||
// sort.Interface implementation.
|
||||
func (s *valuesSorter) Len() int {
|
||||
return len(s.values)
|
||||
}
|
||||
|
||||
// Swap swaps the values at the passed indices. It is part of the
|
||||
// sort.Interface implementation.
|
||||
func (s *valuesSorter) Swap(i, j int) {
|
||||
s.values[i], s.values[j] = s.values[j], s.values[i]
|
||||
if s.strings != nil {
|
||||
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
|
||||
}
|
||||
}
|
||||
|
||||
// valueSortLess returns whether the first value should sort before the second
|
||||
// value. It is used by valueSorter.Less as part of the sort.Interface
|
||||
// implementation.
|
||||
func valueSortLess(a, b reflect.Value) bool {
|
||||
switch a.Kind() {
|
||||
case reflect.Bool:
|
||||
return !a.Bool() && b.Bool()
|
||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
||||
return a.Int() < b.Int()
|
||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
|
||||
return a.Uint() < b.Uint()
|
||||
case reflect.Float32, reflect.Float64:
|
||||
return a.Float() < b.Float()
|
||||
case reflect.String:
|
||||
return a.String() < b.String()
|
||||
case reflect.Uintptr:
|
||||
return a.Uint() < b.Uint()
|
||||
case reflect.Array:
|
||||
// Compare the contents of both arrays.
|
||||
l := a.Len()
|
||||
for i := 0; i < l; i++ {
|
||||
av := a.Index(i)
|
||||
bv := b.Index(i)
|
||||
if av.Interface() == bv.Interface() {
|
||||
continue
|
||||
}
|
||||
return valueSortLess(av, bv)
|
||||
}
|
||||
}
|
||||
return a.String() < b.String()
|
||||
}
|
||||
|
||||
// Less returns whether the value at index i should sort before the
|
||||
// value at index j. It is part of the sort.Interface implementation.
|
||||
func (s *valuesSorter) Less(i, j int) bool {
|
||||
if s.strings == nil {
|
||||
return valueSortLess(s.values[i], s.values[j])
|
||||
}
|
||||
return s.strings[i] < s.strings[j]
|
||||
}
|
||||
|
||||
// sortValues is a sort function that handles both native types and any type that
|
||||
// can be converted to error or Stringer. Other inputs are sorted according to
|
||||
// their Value.String() value to ensure display stability.
|
||||
func sortValues(values []reflect.Value, cs *ConfigState) {
|
||||
if len(values) == 0 {
|
||||
return
|
||||
}
|
||||
sort.Sort(newValuesSorter(values, cs))
|
||||
}
|
|
@ -0,0 +1,306 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
)
|
||||
|
||||
// ConfigState houses the configuration options used by spew to format and
|
||||
// display values. There is a global instance, Config, that is used to control
|
||||
// all top-level Formatter and Dump functionality. Each ConfigState instance
|
||||
// provides methods equivalent to the top-level functions.
|
||||
//
|
||||
// The zero value for ConfigState provides no indentation. You would typically
|
||||
// want to set it to a space or a tab.
|
||||
//
|
||||
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
|
||||
// with default settings. See the documentation of NewDefaultConfig for default
|
||||
// values.
|
||||
type ConfigState struct {
|
||||
// Indent specifies the string to use for each indentation level. The
|
||||
// global config instance that all top-level functions use set this to a
|
||||
// single space by default. If you would like more indentation, you might
|
||||
// set this to a tab with "\t" or perhaps two spaces with " ".
|
||||
Indent string
|
||||
|
||||
// MaxDepth controls the maximum number of levels to descend into nested
|
||||
// data structures. The default, 0, means there is no limit.
|
||||
//
|
||||
// NOTE: Circular data structures are properly detected, so it is not
|
||||
// necessary to set this value unless you specifically want to limit deeply
|
||||
// nested data structures.
|
||||
MaxDepth int
|
||||
|
||||
// DisableMethods specifies whether or not error and Stringer interfaces are
|
||||
// invoked for types that implement them.
|
||||
DisableMethods bool
|
||||
|
||||
// DisablePointerMethods specifies whether or not to check for and invoke
|
||||
// error and Stringer interfaces on types which only accept a pointer
|
||||
// receiver when the current type is not a pointer.
|
||||
//
|
||||
// NOTE: This might be an unsafe action since calling one of these methods
|
||||
// with a pointer receiver could technically mutate the value, however,
|
||||
// in practice, types which choose to satisify an error or Stringer
|
||||
// interface with a pointer receiver should not be mutating their state
|
||||
// inside these interface methods. As a result, this option relies on
|
||||
// access to the unsafe package, so it will not have any effect when
|
||||
// running in environments without access to the unsafe package such as
|
||||
// Google App Engine or with the "safe" build tag specified.
|
||||
DisablePointerMethods bool
|
||||
|
||||
// DisablePointerAddresses specifies whether to disable the printing of
|
||||
// pointer addresses. This is useful when diffing data structures in tests.
|
||||
DisablePointerAddresses bool
|
||||
|
||||
// DisableCapacities specifies whether to disable the printing of capacities
|
||||
// for arrays, slices, maps and channels. This is useful when diffing
|
||||
// data structures in tests.
|
||||
DisableCapacities bool
|
||||
|
||||
// ContinueOnMethod specifies whether or not recursion should continue once
|
||||
// a custom error or Stringer interface is invoked. The default, false,
|
||||
// means it will print the results of invoking the custom error or Stringer
|
||||
// interface and return immediately instead of continuing to recurse into
|
||||
// the internals of the data type.
|
||||
//
|
||||
// NOTE: This flag does not have any effect if method invocation is disabled
|
||||
// via the DisableMethods or DisablePointerMethods options.
|
||||
ContinueOnMethod bool
|
||||
|
||||
// SortKeys specifies map keys should be sorted before being printed. Use
|
||||
// this to have a more deterministic, diffable output. Note that only
|
||||
// native types (bool, int, uint, floats, uintptr and string) and types
|
||||
// that support the error or Stringer interfaces (if methods are
|
||||
// enabled) are supported, with other types sorted according to the
|
||||
// reflect.Value.String() output which guarantees display stability.
|
||||
SortKeys bool
|
||||
|
||||
// SpewKeys specifies that, as a last resort attempt, map keys should
|
||||
// be spewed to strings and sorted by those strings. This is only
|
||||
// considered if SortKeys is true.
|
||||
SpewKeys bool
|
||||
}
|
||||
|
||||
// Config is the active configuration of the top-level functions.
|
||||
// The configuration can be changed by modifying the contents of spew.Config.
|
||||
var Config = ConfigState{Indent: " "}
|
||||
|
||||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the formatted string as a value that satisfies error. See NewFormatter
|
||||
// for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
|
||||
return fmt.Errorf(format, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprint(w, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprintf(w, format, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
|
||||
// passed with a Formatter interface returned by c.NewFormatter. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprintln(w, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Print is a wrapper for fmt.Print that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
|
||||
return fmt.Print(c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
|
||||
return fmt.Printf(format, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Println is a wrapper for fmt.Println that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
|
||||
return fmt.Println(c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Sprint(a ...interface{}) string {
|
||||
return fmt.Sprint(c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
|
||||
// passed with a Formatter interface returned by c.NewFormatter. It returns
|
||||
// the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
|
||||
return fmt.Sprintf(format, c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
|
||||
// were passed with a Formatter interface returned by c.NewFormatter. It
|
||||
// returns the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
|
||||
func (c *ConfigState) Sprintln(a ...interface{}) string {
|
||||
return fmt.Sprintln(c.convertArgs(a)...)
|
||||
}
|
||||
|
||||
/*
|
||||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
|
||||
interface. As a result, it integrates cleanly with standard fmt package
|
||||
printing functions. The formatter is useful for inline printing of smaller data
|
||||
types similar to the standard %v format specifier.
|
||||
|
||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer
|
||||
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
|
||||
combinations. Any other verbs such as %x and %q will be sent to the the
|
||||
standard fmt package for formatting. In addition, the custom formatter ignores
|
||||
the width and precision arguments (however they will still work on the format
|
||||
specifiers not handled by the custom formatter).
|
||||
|
||||
Typically this function shouldn't be called directly. It is much easier to make
|
||||
use of the custom formatter by calling one of the convenience functions such as
|
||||
c.Printf, c.Println, or c.Printf.
|
||||
*/
|
||||
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
|
||||
return newFormatter(c, v)
|
||||
}
|
||||
|
||||
// Fdump formats and displays the passed arguments to io.Writer w. It formats
|
||||
// exactly the same as Dump.
|
||||
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
|
||||
fdump(c, w, a...)
|
||||
}
|
||||
|
||||
/*
|
||||
Dump displays the passed parameters to standard out with newlines, customizable
|
||||
indentation, and additional debug information such as complete types and all
|
||||
pointer addresses used to indirect to the final value. It provides the
|
||||
following features over the built-in printing facilities provided by the fmt
|
||||
package:
|
||||
|
||||
* Pointers are dereferenced and followed
|
||||
* Circular data structures are detected and handled properly
|
||||
* Custom Stringer/error interfaces are optionally invoked, including
|
||||
on unexported types
|
||||
* Custom types which only implement the Stringer/error interfaces via
|
||||
a pointer receiver are optionally invoked when passing non-pointer
|
||||
variables
|
||||
* Byte arrays and slices are dumped like the hexdump -C command which
|
||||
includes offsets, byte values in hex, and ASCII output
|
||||
|
||||
The configuration options are controlled by modifying the public members
|
||||
of c. See ConfigState for options documentation.
|
||||
|
||||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
|
||||
get the formatted result as a string.
|
||||
*/
|
||||
func (c *ConfigState) Dump(a ...interface{}) {
|
||||
fdump(c, os.Stdout, a...)
|
||||
}
|
||||
|
||||
// Sdump returns a string with the passed arguments formatted exactly the same
|
||||
// as Dump.
|
||||
func (c *ConfigState) Sdump(a ...interface{}) string {
|
||||
var buf bytes.Buffer
|
||||
fdump(c, &buf, a...)
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
// convertArgs accepts a slice of arguments and returns a slice of the same
|
||||
// length with each argument converted to a spew Formatter interface using
|
||||
// the ConfigState associated with s.
|
||||
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
|
||||
formatters = make([]interface{}, len(args))
|
||||
for index, arg := range args {
|
||||
formatters[index] = newFormatter(c, arg)
|
||||
}
|
||||
return formatters
|
||||
}
|
||||
|
||||
// NewDefaultConfig returns a ConfigState with the following default settings.
|
||||
//
|
||||
// Indent: " "
|
||||
// MaxDepth: 0
|
||||
// DisableMethods: false
|
||||
// DisablePointerMethods: false
|
||||
// ContinueOnMethod: false
|
||||
// SortKeys: false
|
||||
func NewDefaultConfig() *ConfigState {
|
||||
return &ConfigState{Indent: " "}
|
||||
}
|
|
@ -0,0 +1,211 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/*
|
||||
Package spew implements a deep pretty printer for Go data structures to aid in
|
||||
debugging.
|
||||
|
||||
A quick overview of the additional features spew provides over the built-in
|
||||
printing facilities for Go data types are as follows:
|
||||
|
||||
* Pointers are dereferenced and followed
|
||||
* Circular data structures are detected and handled properly
|
||||
* Custom Stringer/error interfaces are optionally invoked, including
|
||||
on unexported types
|
||||
* Custom types which only implement the Stringer/error interfaces via
|
||||
a pointer receiver are optionally invoked when passing non-pointer
|
||||
variables
|
||||
* Byte arrays and slices are dumped like the hexdump -C command which
|
||||
includes offsets, byte values in hex, and ASCII output (only when using
|
||||
Dump style)
|
||||
|
||||
There are two different approaches spew allows for dumping Go data structures:
|
||||
|
||||
* Dump style which prints with newlines, customizable indentation,
|
||||
and additional debug information such as types and all pointer addresses
|
||||
used to indirect to the final value
|
||||
* A custom Formatter interface that integrates cleanly with the standard fmt
|
||||
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
|
||||
similar to the default %v while providing the additional functionality
|
||||
outlined above and passing unsupported format verbs such as %x and %q
|
||||
along to fmt
|
||||
|
||||
Quick Start
|
||||
|
||||
This section demonstrates how to quickly get started with spew. See the
|
||||
sections below for further details on formatting and configuration options.
|
||||
|
||||
To dump a variable with full newlines, indentation, type, and pointer
|
||||
information use Dump, Fdump, or Sdump:
|
||||
spew.Dump(myVar1, myVar2, ...)
|
||||
spew.Fdump(someWriter, myVar1, myVar2, ...)
|
||||
str := spew.Sdump(myVar1, myVar2, ...)
|
||||
|
||||
Alternatively, if you would prefer to use format strings with a compacted inline
|
||||
printing style, use the convenience wrappers Printf, Fprintf, etc with
|
||||
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
|
||||
%#+v (adds types and pointer addresses):
|
||||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
|
||||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
|
||||
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
|
||||
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
|
||||
|
||||
Configuration Options
|
||||
|
||||
Configuration of spew is handled by fields in the ConfigState type. For
|
||||
convenience, all of the top-level functions use a global state available
|
||||
via the spew.Config global.
|
||||
|
||||
It is also possible to create a ConfigState instance that provides methods
|
||||
equivalent to the top-level functions. This allows concurrent configuration
|
||||
options. See the ConfigState documentation for more details.
|
||||
|
||||
The following configuration options are available:
|
||||
* Indent
|
||||
String to use for each indentation level for Dump functions.
|
||||
It is a single space by default. A popular alternative is "\t".
|
||||
|
||||
* MaxDepth
|
||||
Maximum number of levels to descend into nested data structures.
|
||||
There is no limit by default.
|
||||
|
||||
* DisableMethods
|
||||
Disables invocation of error and Stringer interface methods.
|
||||
Method invocation is enabled by default.
|
||||
|
||||
* DisablePointerMethods
|
||||
Disables invocation of error and Stringer interface methods on types
|
||||
which only accept pointer receivers from non-pointer variables.
|
||||
Pointer method invocation is enabled by default.
|
||||
|
||||
* DisablePointerAddresses
|
||||
DisablePointerAddresses specifies whether to disable the printing of
|
||||
pointer addresses. This is useful when diffing data structures in tests.
|
||||
|
||||
* DisableCapacities
|
||||
DisableCapacities specifies whether to disable the printing of
|
||||
capacities for arrays, slices, maps and channels. This is useful when
|
||||
diffing data structures in tests.
|
||||
|
||||
* ContinueOnMethod
|
||||
Enables recursion into types after invoking error and Stringer interface
|
||||
methods. Recursion after method invocation is disabled by default.
|
||||
|
||||
* SortKeys
|
||||
Specifies map keys should be sorted before being printed. Use
|
||||
this to have a more deterministic, diffable output. Note that
|
||||
only native types (bool, int, uint, floats, uintptr and string)
|
||||
and types which implement error or Stringer interfaces are
|
||||
supported with other types sorted according to the
|
||||
reflect.Value.String() output which guarantees display
|
||||
stability. Natural map order is used by default.
|
||||
|
||||
* SpewKeys
|
||||
Specifies that, as a last resort attempt, map keys should be
|
||||
spewed to strings and sorted by those strings. This is only
|
||||
considered if SortKeys is true.
|
||||
|
||||
Dump Usage
|
||||
|
||||
Simply call spew.Dump with a list of variables you want to dump:
|
||||
|
||||
spew.Dump(myVar1, myVar2, ...)
|
||||
|
||||
You may also call spew.Fdump if you would prefer to output to an arbitrary
|
||||
io.Writer. For example, to dump to standard error:
|
||||
|
||||
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
|
||||
|
||||
A third option is to call spew.Sdump to get the formatted output as a string:
|
||||
|
||||
str := spew.Sdump(myVar1, myVar2, ...)
|
||||
|
||||
Sample Dump Output
|
||||
|
||||
See the Dump example for details on the setup of the types and variables being
|
||||
shown here.
|
||||
|
||||
(main.Foo) {
|
||||
unexportedField: (*main.Bar)(0xf84002e210)({
|
||||
flag: (main.Flag) flagTwo,
|
||||
data: (uintptr) <nil>
|
||||
}),
|
||||
ExportedField: (map[interface {}]interface {}) (len=1) {
|
||||
(string) (len=3) "one": (bool) true
|
||||
}
|
||||
}
|
||||
|
||||
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
|
||||
command as shown.
|
||||
([]uint8) (len=32 cap=32) {
|
||||
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
|
||||
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
|
||||
00000020 31 32 |12|
|
||||
}
|
||||
|
||||
Custom Formatter
|
||||
|
||||
Spew provides a custom formatter that implements the fmt.Formatter interface
|
||||
so that it integrates cleanly with standard fmt package printing functions. The
|
||||
formatter is useful for inline printing of smaller data types similar to the
|
||||
standard %v format specifier.
|
||||
|
||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer
|
||||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
|
||||
combinations. Any other verbs such as %x and %q will be sent to the the
|
||||
standard fmt package for formatting. In addition, the custom formatter ignores
|
||||
the width and precision arguments (however they will still work on the format
|
||||
specifiers not handled by the custom formatter).
|
||||
|
||||
Custom Formatter Usage
|
||||
|
||||
The simplest way to make use of the spew custom formatter is to call one of the
|
||||
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
|
||||
functions have syntax you are most likely already familiar with:
|
||||
|
||||
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
|
||||
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
|
||||
spew.Println(myVar, myVar2)
|
||||
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
|
||||
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
|
||||
|
||||
See the Index for the full list convenience functions.
|
||||
|
||||
Sample Formatter Output
|
||||
|
||||
Double pointer to a uint8:
|
||||
%v: <**>5
|
||||
%+v: <**>(0xf8400420d0->0xf8400420c8)5
|
||||
%#v: (**uint8)5
|
||||
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
|
||||
|
||||
Pointer to circular struct with a uint8 field and a pointer to itself:
|
||||
%v: <*>{1 <*><shown>}
|
||||
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
|
||||
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
|
||||
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
|
||||
|
||||
See the Printf example for details on the setup of variables being shown
|
||||
here.
|
||||
|
||||
Errors
|
||||
|
||||
Since it is possible for custom Stringer/error interfaces to panic, spew
|
||||
detects them and handles them internally by printing the panic information
|
||||
inline with the output. Since spew is intended to provide deep pretty printing
|
||||
capabilities on structures, it intentionally does not return any errors.
|
||||
*/
|
||||
package spew
|
|
@ -0,0 +1,509 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"io"
|
||||
"os"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
var (
|
||||
// uint8Type is a reflect.Type representing a uint8. It is used to
|
||||
// convert cgo types to uint8 slices for hexdumping.
|
||||
uint8Type = reflect.TypeOf(uint8(0))
|
||||
|
||||
// cCharRE is a regular expression that matches a cgo char.
|
||||
// It is used to detect character arrays to hexdump them.
|
||||
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
|
||||
|
||||
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
|
||||
// char. It is used to detect unsigned character arrays to hexdump
|
||||
// them.
|
||||
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
|
||||
|
||||
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
|
||||
// It is used to detect uint8_t arrays to hexdump them.
|
||||
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
|
||||
)
|
||||
|
||||
// dumpState contains information about the state of a dump operation.
|
||||
type dumpState struct {
|
||||
w io.Writer
|
||||
depth int
|
||||
pointers map[uintptr]int
|
||||
ignoreNextType bool
|
||||
ignoreNextIndent bool
|
||||
cs *ConfigState
|
||||
}
|
||||
|
||||
// indent performs indentation according to the depth level and cs.Indent
|
||||
// option.
|
||||
func (d *dumpState) indent() {
|
||||
if d.ignoreNextIndent {
|
||||
d.ignoreNextIndent = false
|
||||
return
|
||||
}
|
||||
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
|
||||
}
|
||||
|
||||
// unpackValue returns values inside of non-nil interfaces when possible.
|
||||
// This is useful for data types like structs, arrays, slices, and maps which
|
||||
// can contain varying types packed inside an interface.
|
||||
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
|
||||
if v.Kind() == reflect.Interface && !v.IsNil() {
|
||||
v = v.Elem()
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// dumpPtr handles formatting of pointers by indirecting them as necessary.
|
||||
func (d *dumpState) dumpPtr(v reflect.Value) {
|
||||
// Remove pointers at or below the current depth from map used to detect
|
||||
// circular refs.
|
||||
for k, depth := range d.pointers {
|
||||
if depth >= d.depth {
|
||||
delete(d.pointers, k)
|
||||
}
|
||||
}
|
||||
|
||||
// Keep list of all dereferenced pointers to show later.
|
||||
pointerChain := make([]uintptr, 0)
|
||||
|
||||
// Figure out how many levels of indirection there are by dereferencing
|
||||
// pointers and unpacking interfaces down the chain while detecting circular
|
||||
// references.
|
||||
nilFound := false
|
||||
cycleFound := false
|
||||
indirects := 0
|
||||
ve := v
|
||||
for ve.Kind() == reflect.Ptr {
|
||||
if ve.IsNil() {
|
||||
nilFound = true
|
||||
break
|
||||
}
|
||||
indirects++
|
||||
addr := ve.Pointer()
|
||||
pointerChain = append(pointerChain, addr)
|
||||
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
|
||||
cycleFound = true
|
||||
indirects--
|
||||
break
|
||||
}
|
||||
d.pointers[addr] = d.depth
|
||||
|
||||
ve = ve.Elem()
|
||||
if ve.Kind() == reflect.Interface {
|
||||
if ve.IsNil() {
|
||||
nilFound = true
|
||||
break
|
||||
}
|
||||
ve = ve.Elem()
|
||||
}
|
||||
}
|
||||
|
||||
// Display type information.
|
||||
d.w.Write(openParenBytes)
|
||||
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
|
||||
d.w.Write([]byte(ve.Type().String()))
|
||||
d.w.Write(closeParenBytes)
|
||||
|
||||
// Display pointer information.
|
||||
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
|
||||
d.w.Write(openParenBytes)
|
||||
for i, addr := range pointerChain {
|
||||
if i > 0 {
|
||||
d.w.Write(pointerChainBytes)
|
||||
}
|
||||
printHexPtr(d.w, addr)
|
||||
}
|
||||
d.w.Write(closeParenBytes)
|
||||
}
|
||||
|
||||
// Display dereferenced value.
|
||||
d.w.Write(openParenBytes)
|
||||
switch {
|
||||
case nilFound == true:
|
||||
d.w.Write(nilAngleBytes)
|
||||
|
||||
case cycleFound == true:
|
||||
d.w.Write(circularBytes)
|
||||
|
||||
default:
|
||||
d.ignoreNextType = true
|
||||
d.dump(ve)
|
||||
}
|
||||
d.w.Write(closeParenBytes)
|
||||
}
|
||||
|
||||
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
|
||||
// reflection) arrays and slices are dumped in hexdump -C fashion.
|
||||
func (d *dumpState) dumpSlice(v reflect.Value) {
|
||||
// Determine whether this type should be hex dumped or not. Also,
|
||||
// for types which should be hexdumped, try to use the underlying data
|
||||
// first, then fall back to trying to convert them to a uint8 slice.
|
||||
var buf []uint8
|
||||
doConvert := false
|
||||
doHexDump := false
|
||||
numEntries := v.Len()
|
||||
if numEntries > 0 {
|
||||
vt := v.Index(0).Type()
|
||||
vts := vt.String()
|
||||
switch {
|
||||
// C types that need to be converted.
|
||||
case cCharRE.MatchString(vts):
|
||||
fallthrough
|
||||
case cUnsignedCharRE.MatchString(vts):
|
||||
fallthrough
|
||||
case cUint8tCharRE.MatchString(vts):
|
||||
doConvert = true
|
||||
|
||||
// Try to use existing uint8 slices and fall back to converting
|
||||
// and copying if that fails.
|
||||
case vt.Kind() == reflect.Uint8:
|
||||
// We need an addressable interface to convert the type
|
||||
// to a byte slice. However, the reflect package won't
|
||||
// give us an interface on certain things like
|
||||
// unexported struct fields in order to enforce
|
||||
// visibility rules. We use unsafe, when available, to
|
||||
// bypass these restrictions since this package does not
|
||||
// mutate the values.
|
||||
vs := v
|
||||
if !vs.CanInterface() || !vs.CanAddr() {
|
||||
vs = unsafeReflectValue(vs)
|
||||
}
|
||||
if !UnsafeDisabled {
|
||||
vs = vs.Slice(0, numEntries)
|
||||
|
||||
// Use the existing uint8 slice if it can be
|
||||
// type asserted.
|
||||
iface := vs.Interface()
|
||||
if slice, ok := iface.([]uint8); ok {
|
||||
buf = slice
|
||||
doHexDump = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// The underlying data needs to be converted if it can't
|
||||
// be type asserted to a uint8 slice.
|
||||
doConvert = true
|
||||
}
|
||||
|
||||
// Copy and convert the underlying type if needed.
|
||||
if doConvert && vt.ConvertibleTo(uint8Type) {
|
||||
// Convert and copy each element into a uint8 byte
|
||||
// slice.
|
||||
buf = make([]uint8, numEntries)
|
||||
for i := 0; i < numEntries; i++ {
|
||||
vv := v.Index(i)
|
||||
buf[i] = uint8(vv.Convert(uint8Type).Uint())
|
||||
}
|
||||
doHexDump = true
|
||||
}
|
||||
}
|
||||
|
||||
// Hexdump the entire slice as needed.
|
||||
if doHexDump {
|
||||
indent := strings.Repeat(d.cs.Indent, d.depth)
|
||||
str := indent + hex.Dump(buf)
|
||||
str = strings.Replace(str, "\n", "\n"+indent, -1)
|
||||
str = strings.TrimRight(str, d.cs.Indent)
|
||||
d.w.Write([]byte(str))
|
||||
return
|
||||
}
|
||||
|
||||
// Recursively call dump for each item.
|
||||
for i := 0; i < numEntries; i++ {
|
||||
d.dump(d.unpackValue(v.Index(i)))
|
||||
if i < (numEntries - 1) {
|
||||
d.w.Write(commaNewlineBytes)
|
||||
} else {
|
||||
d.w.Write(newlineBytes)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// dump is the main workhorse for dumping a value. It uses the passed reflect
|
||||
// value to figure out what kind of object we are dealing with and formats it
|
||||
// appropriately. It is a recursive function, however circular data structures
|
||||
// are detected and handled properly.
|
||||
func (d *dumpState) dump(v reflect.Value) {
|
||||
// Handle invalid reflect values immediately.
|
||||
kind := v.Kind()
|
||||
if kind == reflect.Invalid {
|
||||
d.w.Write(invalidAngleBytes)
|
||||
return
|
||||
}
|
||||
|
||||
// Handle pointers specially.
|
||||
if kind == reflect.Ptr {
|
||||
d.indent()
|
||||
d.dumpPtr(v)
|
||||
return
|
||||
}
|
||||
|
||||
// Print type information unless already handled elsewhere.
|
||||
if !d.ignoreNextType {
|
||||
d.indent()
|
||||
d.w.Write(openParenBytes)
|
||||
d.w.Write([]byte(v.Type().String()))
|
||||
d.w.Write(closeParenBytes)
|
||||
d.w.Write(spaceBytes)
|
||||
}
|
||||
d.ignoreNextType = false
|
||||
|
||||
// Display length and capacity if the built-in len and cap functions
|
||||
// work with the value's kind and the len/cap itself is non-zero.
|
||||
valueLen, valueCap := 0, 0
|
||||
switch v.Kind() {
|
||||
case reflect.Array, reflect.Slice, reflect.Chan:
|
||||
valueLen, valueCap = v.Len(), v.Cap()
|
||||
case reflect.Map, reflect.String:
|
||||
valueLen = v.Len()
|
||||
}
|
||||
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
|
||||
d.w.Write(openParenBytes)
|
||||
if valueLen != 0 {
|
||||
d.w.Write(lenEqualsBytes)
|
||||
printInt(d.w, int64(valueLen), 10)
|
||||
}
|
||||
if !d.cs.DisableCapacities && valueCap != 0 {
|
||||
if valueLen != 0 {
|
||||
d.w.Write(spaceBytes)
|
||||
}
|
||||
d.w.Write(capEqualsBytes)
|
||||
printInt(d.w, int64(valueCap), 10)
|
||||
}
|
||||
d.w.Write(closeParenBytes)
|
||||
d.w.Write(spaceBytes)
|
||||
}
|
||||
|
||||
// Call Stringer/error interfaces if they exist and the handle methods flag
|
||||
// is enabled
|
||||
if !d.cs.DisableMethods {
|
||||
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
|
||||
if handled := handleMethods(d.cs, d.w, v); handled {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch kind {
|
||||
case reflect.Invalid:
|
||||
// Do nothing. We should never get here since invalid has already
|
||||
// been handled above.
|
||||
|
||||
case reflect.Bool:
|
||||
printBool(d.w, v.Bool())
|
||||
|
||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
||||
printInt(d.w, v.Int(), 10)
|
||||
|
||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
|
||||
printUint(d.w, v.Uint(), 10)
|
||||
|
||||
case reflect.Float32:
|
||||
printFloat(d.w, v.Float(), 32)
|
||||
|
||||
case reflect.Float64:
|
||||
printFloat(d.w, v.Float(), 64)
|
||||
|
||||
case reflect.Complex64:
|
||||
printComplex(d.w, v.Complex(), 32)
|
||||
|
||||
case reflect.Complex128:
|
||||
printComplex(d.w, v.Complex(), 64)
|
||||
|
||||
case reflect.Slice:
|
||||
if v.IsNil() {
|
||||
d.w.Write(nilAngleBytes)
|
||||
break
|
||||
}
|
||||
fallthrough
|
||||
|
||||
case reflect.Array:
|
||||
d.w.Write(openBraceNewlineBytes)
|
||||
d.depth++
|
||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
|
||||
d.indent()
|
||||
d.w.Write(maxNewlineBytes)
|
||||
} else {
|
||||
d.dumpSlice(v)
|
||||
}
|
||||
d.depth--
|
||||
d.indent()
|
||||
d.w.Write(closeBraceBytes)
|
||||
|
||||
case reflect.String:
|
||||
d.w.Write([]byte(strconv.Quote(v.String())))
|
||||
|
||||
case reflect.Interface:
|
||||
// The only time we should get here is for nil interfaces due to
|
||||
// unpackValue calls.
|
||||
if v.IsNil() {
|
||||
d.w.Write(nilAngleBytes)
|
||||
}
|
||||
|
||||
case reflect.Ptr:
|
||||
// Do nothing. We should never get here since pointers have already
|
||||
// been handled above.
|
||||
|
||||
case reflect.Map:
|
||||
// nil maps should be indicated as different than empty maps
|
||||
if v.IsNil() {
|
||||
d.w.Write(nilAngleBytes)
|
||||
break
|
||||
}
|
||||
|
||||
d.w.Write(openBraceNewlineBytes)
|
||||
d.depth++
|
||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
|
||||
d.indent()
|
||||
d.w.Write(maxNewlineBytes)
|
||||
} else {
|
||||
numEntries := v.Len()
|
||||
keys := v.MapKeys()
|
||||
if d.cs.SortKeys {
|
||||
sortValues(keys, d.cs)
|
||||
}
|
||||
for i, key := range keys {
|
||||
d.dump(d.unpackValue(key))
|
||||
d.w.Write(colonSpaceBytes)
|
||||
d.ignoreNextIndent = true
|
||||
d.dump(d.unpackValue(v.MapIndex(key)))
|
||||
if i < (numEntries - 1) {
|
||||
d.w.Write(commaNewlineBytes)
|
||||
} else {
|
||||
d.w.Write(newlineBytes)
|
||||
}
|
||||
}
|
||||
}
|
||||
d.depth--
|
||||
d.indent()
|
||||
d.w.Write(closeBraceBytes)
|
||||
|
||||
case reflect.Struct:
|
||||
d.w.Write(openBraceNewlineBytes)
|
||||
d.depth++
|
||||
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
|
||||
d.indent()
|
||||
d.w.Write(maxNewlineBytes)
|
||||
} else {
|
||||
vt := v.Type()
|
||||
numFields := v.NumField()
|
||||
for i := 0; i < numFields; i++ {
|
||||
d.indent()
|
||||
vtf := vt.Field(i)
|
||||
d.w.Write([]byte(vtf.Name))
|
||||
d.w.Write(colonSpaceBytes)
|
||||
d.ignoreNextIndent = true
|
||||
d.dump(d.unpackValue(v.Field(i)))
|
||||
if i < (numFields - 1) {
|
||||
d.w.Write(commaNewlineBytes)
|
||||
} else {
|
||||
d.w.Write(newlineBytes)
|
||||
}
|
||||
}
|
||||
}
|
||||
d.depth--
|
||||
d.indent()
|
||||
d.w.Write(closeBraceBytes)
|
||||
|
||||
case reflect.Uintptr:
|
||||
printHexPtr(d.w, uintptr(v.Uint()))
|
||||
|
||||
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
|
||||
printHexPtr(d.w, v.Pointer())
|
||||
|
||||
// There were not any other types at the time this code was written, but
|
||||
// fall back to letting the default fmt package handle it in case any new
|
||||
// types are added.
|
||||
default:
|
||||
if v.CanInterface() {
|
||||
fmt.Fprintf(d.w, "%v", v.Interface())
|
||||
} else {
|
||||
fmt.Fprintf(d.w, "%v", v.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// fdump is a helper function to consolidate the logic from the various public
|
||||
// methods which take varying writers and config states.
|
||||
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
|
||||
for _, arg := range a {
|
||||
if arg == nil {
|
||||
w.Write(interfaceBytes)
|
||||
w.Write(spaceBytes)
|
||||
w.Write(nilAngleBytes)
|
||||
w.Write(newlineBytes)
|
||||
continue
|
||||
}
|
||||
|
||||
d := dumpState{w: w, cs: cs}
|
||||
d.pointers = make(map[uintptr]int)
|
||||
d.dump(reflect.ValueOf(arg))
|
||||
d.w.Write(newlineBytes)
|
||||
}
|
||||
}
|
||||
|
||||
// Fdump formats and displays the passed arguments to io.Writer w. It formats
|
||||
// exactly the same as Dump.
|
||||
func Fdump(w io.Writer, a ...interface{}) {
|
||||
fdump(&Config, w, a...)
|
||||
}
|
||||
|
||||
// Sdump returns a string with the passed arguments formatted exactly the same
|
||||
// as Dump.
|
||||
func Sdump(a ...interface{}) string {
|
||||
var buf bytes.Buffer
|
||||
fdump(&Config, &buf, a...)
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
/*
|
||||
Dump displays the passed parameters to standard out with newlines, customizable
|
||||
indentation, and additional debug information such as complete types and all
|
||||
pointer addresses used to indirect to the final value. It provides the
|
||||
following features over the built-in printing facilities provided by the fmt
|
||||
package:
|
||||
|
||||
* Pointers are dereferenced and followed
|
||||
* Circular data structures are detected and handled properly
|
||||
* Custom Stringer/error interfaces are optionally invoked, including
|
||||
on unexported types
|
||||
* Custom types which only implement the Stringer/error interfaces via
|
||||
a pointer receiver are optionally invoked when passing non-pointer
|
||||
variables
|
||||
* Byte arrays and slices are dumped like the hexdump -C command which
|
||||
includes offsets, byte values in hex, and ASCII output
|
||||
|
||||
The configuration options are controlled by an exported package global,
|
||||
spew.Config. See ConfigState for options documentation.
|
||||
|
||||
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
|
||||
get the formatted result as a string.
|
||||
*/
|
||||
func Dump(a ...interface{}) {
|
||||
fdump(&Config, os.Stdout, a...)
|
||||
}
|
|
@ -0,0 +1,419 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"reflect"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// supportedFlags is a list of all the character flags supported by fmt package.
|
||||
const supportedFlags = "0-+# "
|
||||
|
||||
// formatState implements the fmt.Formatter interface and contains information
|
||||
// about the state of a formatting operation. The NewFormatter function can
|
||||
// be used to get a new Formatter which can be used directly as arguments
|
||||
// in standard fmt package printing calls.
|
||||
type formatState struct {
|
||||
value interface{}
|
||||
fs fmt.State
|
||||
depth int
|
||||
pointers map[uintptr]int
|
||||
ignoreNextType bool
|
||||
cs *ConfigState
|
||||
}
|
||||
|
||||
// buildDefaultFormat recreates the original format string without precision
|
||||
// and width information to pass in to fmt.Sprintf in the case of an
|
||||
// unrecognized type. Unless new types are added to the language, this
|
||||
// function won't ever be called.
|
||||
func (f *formatState) buildDefaultFormat() (format string) {
|
||||
buf := bytes.NewBuffer(percentBytes)
|
||||
|
||||
for _, flag := range supportedFlags {
|
||||
if f.fs.Flag(int(flag)) {
|
||||
buf.WriteRune(flag)
|
||||
}
|
||||
}
|
||||
|
||||
buf.WriteRune('v')
|
||||
|
||||
format = buf.String()
|
||||
return format
|
||||
}
|
||||
|
||||
// constructOrigFormat recreates the original format string including precision
|
||||
// and width information to pass along to the standard fmt package. This allows
|
||||
// automatic deferral of all format strings this package doesn't support.
|
||||
func (f *formatState) constructOrigFormat(verb rune) (format string) {
|
||||
buf := bytes.NewBuffer(percentBytes)
|
||||
|
||||
for _, flag := range supportedFlags {
|
||||
if f.fs.Flag(int(flag)) {
|
||||
buf.WriteRune(flag)
|
||||
}
|
||||
}
|
||||
|
||||
if width, ok := f.fs.Width(); ok {
|
||||
buf.WriteString(strconv.Itoa(width))
|
||||
}
|
||||
|
||||
if precision, ok := f.fs.Precision(); ok {
|
||||
buf.Write(precisionBytes)
|
||||
buf.WriteString(strconv.Itoa(precision))
|
||||
}
|
||||
|
||||
buf.WriteRune(verb)
|
||||
|
||||
format = buf.String()
|
||||
return format
|
||||
}
|
||||
|
||||
// unpackValue returns values inside of non-nil interfaces when possible and
|
||||
// ensures that types for values which have been unpacked from an interface
|
||||
// are displayed when the show types flag is also set.
|
||||
// This is useful for data types like structs, arrays, slices, and maps which
|
||||
// can contain varying types packed inside an interface.
|
||||
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
|
||||
if v.Kind() == reflect.Interface {
|
||||
f.ignoreNextType = false
|
||||
if !v.IsNil() {
|
||||
v = v.Elem()
|
||||
}
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
// formatPtr handles formatting of pointers by indirecting them as necessary.
|
||||
func (f *formatState) formatPtr(v reflect.Value) {
|
||||
// Display nil if top level pointer is nil.
|
||||
showTypes := f.fs.Flag('#')
|
||||
if v.IsNil() && (!showTypes || f.ignoreNextType) {
|
||||
f.fs.Write(nilAngleBytes)
|
||||
return
|
||||
}
|
||||
|
||||
// Remove pointers at or below the current depth from map used to detect
|
||||
// circular refs.
|
||||
for k, depth := range f.pointers {
|
||||
if depth >= f.depth {
|
||||
delete(f.pointers, k)
|
||||
}
|
||||
}
|
||||
|
||||
// Keep list of all dereferenced pointers to possibly show later.
|
||||
pointerChain := make([]uintptr, 0)
|
||||
|
||||
// Figure out how many levels of indirection there are by derferencing
|
||||
// pointers and unpacking interfaces down the chain while detecting circular
|
||||
// references.
|
||||
nilFound := false
|
||||
cycleFound := false
|
||||
indirects := 0
|
||||
ve := v
|
||||
for ve.Kind() == reflect.Ptr {
|
||||
if ve.IsNil() {
|
||||
nilFound = true
|
||||
break
|
||||
}
|
||||
indirects++
|
||||
addr := ve.Pointer()
|
||||
pointerChain = append(pointerChain, addr)
|
||||
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
|
||||
cycleFound = true
|
||||
indirects--
|
||||
break
|
||||
}
|
||||
f.pointers[addr] = f.depth
|
||||
|
||||
ve = ve.Elem()
|
||||
if ve.Kind() == reflect.Interface {
|
||||
if ve.IsNil() {
|
||||
nilFound = true
|
||||
break
|
||||
}
|
||||
ve = ve.Elem()
|
||||
}
|
||||
}
|
||||
|
||||
// Display type or indirection level depending on flags.
|
||||
if showTypes && !f.ignoreNextType {
|
||||
f.fs.Write(openParenBytes)
|
||||
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
|
||||
f.fs.Write([]byte(ve.Type().String()))
|
||||
f.fs.Write(closeParenBytes)
|
||||
} else {
|
||||
if nilFound || cycleFound {
|
||||
indirects += strings.Count(ve.Type().String(), "*")
|
||||
}
|
||||
f.fs.Write(openAngleBytes)
|
||||
f.fs.Write([]byte(strings.Repeat("*", indirects)))
|
||||
f.fs.Write(closeAngleBytes)
|
||||
}
|
||||
|
||||
// Display pointer information depending on flags.
|
||||
if f.fs.Flag('+') && (len(pointerChain) > 0) {
|
||||
f.fs.Write(openParenBytes)
|
||||
for i, addr := range pointerChain {
|
||||
if i > 0 {
|
||||
f.fs.Write(pointerChainBytes)
|
||||
}
|
||||
printHexPtr(f.fs, addr)
|
||||
}
|
||||
f.fs.Write(closeParenBytes)
|
||||
}
|
||||
|
||||
// Display dereferenced value.
|
||||
switch {
|
||||
case nilFound == true:
|
||||
f.fs.Write(nilAngleBytes)
|
||||
|
||||
case cycleFound == true:
|
||||
f.fs.Write(circularShortBytes)
|
||||
|
||||
default:
|
||||
f.ignoreNextType = true
|
||||
f.format(ve)
|
||||
}
|
||||
}
|
||||
|
||||
// format is the main workhorse for providing the Formatter interface. It
|
||||
// uses the passed reflect value to figure out what kind of object we are
|
||||
// dealing with and formats it appropriately. It is a recursive function,
|
||||
// however circular data structures are detected and handled properly.
|
||||
func (f *formatState) format(v reflect.Value) {
|
||||
// Handle invalid reflect values immediately.
|
||||
kind := v.Kind()
|
||||
if kind == reflect.Invalid {
|
||||
f.fs.Write(invalidAngleBytes)
|
||||
return
|
||||
}
|
||||
|
||||
// Handle pointers specially.
|
||||
if kind == reflect.Ptr {
|
||||
f.formatPtr(v)
|
||||
return
|
||||
}
|
||||
|
||||
// Print type information unless already handled elsewhere.
|
||||
if !f.ignoreNextType && f.fs.Flag('#') {
|
||||
f.fs.Write(openParenBytes)
|
||||
f.fs.Write([]byte(v.Type().String()))
|
||||
f.fs.Write(closeParenBytes)
|
||||
}
|
||||
f.ignoreNextType = false
|
||||
|
||||
// Call Stringer/error interfaces if they exist and the handle methods
|
||||
// flag is enabled.
|
||||
if !f.cs.DisableMethods {
|
||||
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
|
||||
if handled := handleMethods(f.cs, f.fs, v); handled {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch kind {
|
||||
case reflect.Invalid:
|
||||
// Do nothing. We should never get here since invalid has already
|
||||
// been handled above.
|
||||
|
||||
case reflect.Bool:
|
||||
printBool(f.fs, v.Bool())
|
||||
|
||||
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
||||
printInt(f.fs, v.Int(), 10)
|
||||
|
||||
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
|
||||
printUint(f.fs, v.Uint(), 10)
|
||||
|
||||
case reflect.Float32:
|
||||
printFloat(f.fs, v.Float(), 32)
|
||||
|
||||
case reflect.Float64:
|
||||
printFloat(f.fs, v.Float(), 64)
|
||||
|
||||
case reflect.Complex64:
|
||||
printComplex(f.fs, v.Complex(), 32)
|
||||
|
||||
case reflect.Complex128:
|
||||
printComplex(f.fs, v.Complex(), 64)
|
||||
|
||||
case reflect.Slice:
|
||||
if v.IsNil() {
|
||||
f.fs.Write(nilAngleBytes)
|
||||
break
|
||||
}
|
||||
fallthrough
|
||||
|
||||
case reflect.Array:
|
||||
f.fs.Write(openBracketBytes)
|
||||
f.depth++
|
||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
|
||||
f.fs.Write(maxShortBytes)
|
||||
} else {
|
||||
numEntries := v.Len()
|
||||
for i := 0; i < numEntries; i++ {
|
||||
if i > 0 {
|
||||
f.fs.Write(spaceBytes)
|
||||
}
|
||||
f.ignoreNextType = true
|
||||
f.format(f.unpackValue(v.Index(i)))
|
||||
}
|
||||
}
|
||||
f.depth--
|
||||
f.fs.Write(closeBracketBytes)
|
||||
|
||||
case reflect.String:
|
||||
f.fs.Write([]byte(v.String()))
|
||||
|
||||
case reflect.Interface:
|
||||
// The only time we should get here is for nil interfaces due to
|
||||
// unpackValue calls.
|
||||
if v.IsNil() {
|
||||
f.fs.Write(nilAngleBytes)
|
||||
}
|
||||
|
||||
case reflect.Ptr:
|
||||
// Do nothing. We should never get here since pointers have already
|
||||
// been handled above.
|
||||
|
||||
case reflect.Map:
|
||||
// nil maps should be indicated as different than empty maps
|
||||
if v.IsNil() {
|
||||
f.fs.Write(nilAngleBytes)
|
||||
break
|
||||
}
|
||||
|
||||
f.fs.Write(openMapBytes)
|
||||
f.depth++
|
||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
|
||||
f.fs.Write(maxShortBytes)
|
||||
} else {
|
||||
keys := v.MapKeys()
|
||||
if f.cs.SortKeys {
|
||||
sortValues(keys, f.cs)
|
||||
}
|
||||
for i, key := range keys {
|
||||
if i > 0 {
|
||||
f.fs.Write(spaceBytes)
|
||||
}
|
||||
f.ignoreNextType = true
|
||||
f.format(f.unpackValue(key))
|
||||
f.fs.Write(colonBytes)
|
||||
f.ignoreNextType = true
|
||||
f.format(f.unpackValue(v.MapIndex(key)))
|
||||
}
|
||||
}
|
||||
f.depth--
|
||||
f.fs.Write(closeMapBytes)
|
||||
|
||||
case reflect.Struct:
|
||||
numFields := v.NumField()
|
||||
f.fs.Write(openBraceBytes)
|
||||
f.depth++
|
||||
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
|
||||
f.fs.Write(maxShortBytes)
|
||||
} else {
|
||||
vt := v.Type()
|
||||
for i := 0; i < numFields; i++ {
|
||||
if i > 0 {
|
||||
f.fs.Write(spaceBytes)
|
||||
}
|
||||
vtf := vt.Field(i)
|
||||
if f.fs.Flag('+') || f.fs.Flag('#') {
|
||||
f.fs.Write([]byte(vtf.Name))
|
||||
f.fs.Write(colonBytes)
|
||||
}
|
||||
f.format(f.unpackValue(v.Field(i)))
|
||||
}
|
||||
}
|
||||
f.depth--
|
||||
f.fs.Write(closeBraceBytes)
|
||||
|
||||
case reflect.Uintptr:
|
||||
printHexPtr(f.fs, uintptr(v.Uint()))
|
||||
|
||||
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
|
||||
printHexPtr(f.fs, v.Pointer())
|
||||
|
||||
// There were not any other types at the time this code was written, but
|
||||
// fall back to letting the default fmt package handle it if any get added.
|
||||
default:
|
||||
format := f.buildDefaultFormat()
|
||||
if v.CanInterface() {
|
||||
fmt.Fprintf(f.fs, format, v.Interface())
|
||||
} else {
|
||||
fmt.Fprintf(f.fs, format, v.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
|
||||
// details.
|
||||
func (f *formatState) Format(fs fmt.State, verb rune) {
|
||||
f.fs = fs
|
||||
|
||||
// Use standard formatting for verbs that are not v.
|
||||
if verb != 'v' {
|
||||
format := f.constructOrigFormat(verb)
|
||||
fmt.Fprintf(fs, format, f.value)
|
||||
return
|
||||
}
|
||||
|
||||
if f.value == nil {
|
||||
if fs.Flag('#') {
|
||||
fs.Write(interfaceBytes)
|
||||
}
|
||||
fs.Write(nilAngleBytes)
|
||||
return
|
||||
}
|
||||
|
||||
f.format(reflect.ValueOf(f.value))
|
||||
}
|
||||
|
||||
// newFormatter is a helper function to consolidate the logic from the various
|
||||
// public methods which take varying config states.
|
||||
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
|
||||
fs := &formatState{value: v, cs: cs}
|
||||
fs.pointers = make(map[uintptr]int)
|
||||
return fs
|
||||
}
|
||||
|
||||
/*
|
||||
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
|
||||
interface. As a result, it integrates cleanly with standard fmt package
|
||||
printing functions. The formatter is useful for inline printing of smaller data
|
||||
types similar to the standard %v format specifier.
|
||||
|
||||
The custom formatter only responds to the %v (most compact), %+v (adds pointer
|
||||
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
|
||||
combinations. Any other verbs such as %x and %q will be sent to the the
|
||||
standard fmt package for formatting. In addition, the custom formatter ignores
|
||||
the width and precision arguments (however they will still work on the format
|
||||
specifiers not handled by the custom formatter).
|
||||
|
||||
Typically this function shouldn't be called directly. It is much easier to make
|
||||
use of the custom formatter by calling one of the convenience functions such as
|
||||
Printf, Println, or Fprintf.
|
||||
*/
|
||||
func NewFormatter(v interface{}) fmt.Formatter {
|
||||
return newFormatter(&Config, v)
|
||||
}
|
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
package spew
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
)
|
||||
|
||||
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the formatted string as a value that satisfies error. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Errorf(format string, a ...interface{}) (err error) {
|
||||
return fmt.Errorf(format, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprint(w, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprintf(w, format, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
|
||||
// passed with a default Formatter interface returned by NewFormatter. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
|
||||
return fmt.Fprintln(w, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Print is a wrapper for fmt.Print that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Print(a ...interface{}) (n int, err error) {
|
||||
return fmt.Print(convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Printf(format string, a ...interface{}) (n int, err error) {
|
||||
return fmt.Printf(format, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Println is a wrapper for fmt.Println that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the number of bytes written and any write error encountered. See
|
||||
// NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Println(a ...interface{}) (n int, err error) {
|
||||
return fmt.Println(convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Sprint(a ...interface{}) string {
|
||||
return fmt.Sprint(convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
|
||||
// passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Sprintf(format string, a ...interface{}) string {
|
||||
return fmt.Sprintf(format, convertArgs(a)...)
|
||||
}
|
||||
|
||||
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
|
||||
// were passed with a default Formatter interface returned by NewFormatter. It
|
||||
// returns the resulting string. See NewFormatter for formatting details.
|
||||
//
|
||||
// This function is shorthand for the following syntax:
|
||||
//
|
||||
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
|
||||
func Sprintln(a ...interface{}) string {
|
||||
return fmt.Sprintln(convertArgs(a)...)
|
||||
}
|
||||
|
||||
// convertArgs accepts a slice of arguments and returns a slice of the same
|
||||
// length with each argument converted to a default spew Formatter interface.
|
||||
func convertArgs(args []interface{}) (formatters []interface{}) {
|
||||
formatters = make([]interface{}, len(args))
|
||||
for index, arg := range args {
|
||||
formatters[index] = NewFormatter(arg)
|
||||
}
|
||||
return formatters
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
Copyright (c) 2013, Patrick Mezard
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
The names of its contributors may not be used to endorse or promote
|
||||
products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -0,0 +1,772 @@
|
|||
// Package difflib is a partial port of Python difflib module.
|
||||
//
|
||||
// It provides tools to compare sequences of strings and generate textual diffs.
|
||||
//
|
||||
// The following class and functions have been ported:
|
||||
//
|
||||
// - SequenceMatcher
|
||||
//
|
||||
// - unified_diff
|
||||
//
|
||||
// - context_diff
|
||||
//
|
||||
// Getting unified diffs was the main goal of the port. Keep in mind this code
|
||||
// is mostly suitable to output text differences in a human friendly way, there
|
||||
// are no guarantees generated diffs are consumable by patch(1).
|
||||
package difflib
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"fmt"
|
||||
"io"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func min(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func max(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func calculateRatio(matches, length int) float64 {
|
||||
if length > 0 {
|
||||
return 2.0 * float64(matches) / float64(length)
|
||||
}
|
||||
return 1.0
|
||||
}
|
||||
|
||||
type Match struct {
|
||||
A int
|
||||
B int
|
||||
Size int
|
||||
}
|
||||
|
||||
type OpCode struct {
|
||||
Tag byte
|
||||
I1 int
|
||||
I2 int
|
||||
J1 int
|
||||
J2 int
|
||||
}
|
||||
|
||||
// SequenceMatcher compares sequence of strings. The basic
|
||||
// algorithm predates, and is a little fancier than, an algorithm
|
||||
// published in the late 1980's by Ratcliff and Obershelp under the
|
||||
// hyperbolic name "gestalt pattern matching". The basic idea is to find
|
||||
// the longest contiguous matching subsequence that contains no "junk"
|
||||
// elements (R-O doesn't address junk). The same idea is then applied
|
||||
// recursively to the pieces of the sequences to the left and to the right
|
||||
// of the matching subsequence. This does not yield minimal edit
|
||||
// sequences, but does tend to yield matches that "look right" to people.
|
||||
//
|
||||
// SequenceMatcher tries to compute a "human-friendly diff" between two
|
||||
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
|
||||
// longest *contiguous* & junk-free matching subsequence. That's what
|
||||
// catches peoples' eyes. The Windows(tm) windiff has another interesting
|
||||
// notion, pairing up elements that appear uniquely in each sequence.
|
||||
// That, and the method here, appear to yield more intuitive difference
|
||||
// reports than does diff. This method appears to be the least vulnerable
|
||||
// to synching up on blocks of "junk lines", though (like blank lines in
|
||||
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
|
||||
// because this is the only method of the 3 that has a *concept* of
|
||||
// "junk" <wink>.
|
||||
//
|
||||
// Timing: Basic R-O is cubic time worst case and quadratic time expected
|
||||
// case. SequenceMatcher is quadratic time for the worst case and has
|
||||
// expected-case behavior dependent in a complicated way on how many
|
||||
// elements the sequences have in common; best case time is linear.
|
||||
type SequenceMatcher struct {
|
||||
a []string
|
||||
b []string
|
||||
b2j map[string][]int
|
||||
IsJunk func(string) bool
|
||||
autoJunk bool
|
||||
bJunk map[string]struct{}
|
||||
matchingBlocks []Match
|
||||
fullBCount map[string]int
|
||||
bPopular map[string]struct{}
|
||||
opCodes []OpCode
|
||||
}
|
||||
|
||||
func NewMatcher(a, b []string) *SequenceMatcher {
|
||||
m := SequenceMatcher{autoJunk: true}
|
||||
m.SetSeqs(a, b)
|
||||
return &m
|
||||
}
|
||||
|
||||
func NewMatcherWithJunk(a, b []string, autoJunk bool,
|
||||
isJunk func(string) bool) *SequenceMatcher {
|
||||
|
||||
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
|
||||
m.SetSeqs(a, b)
|
||||
return &m
|
||||
}
|
||||
|
||||
// Set two sequences to be compared.
|
||||
func (m *SequenceMatcher) SetSeqs(a, b []string) {
|
||||
m.SetSeq1(a)
|
||||
m.SetSeq2(b)
|
||||
}
|
||||
|
||||
// Set the first sequence to be compared. The second sequence to be compared is
|
||||
// not changed.
|
||||
//
|
||||
// SequenceMatcher computes and caches detailed information about the second
|
||||
// sequence, so if you want to compare one sequence S against many sequences,
|
||||
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
|
||||
// sequences.
|
||||
//
|
||||
// See also SetSeqs() and SetSeq2().
|
||||
func (m *SequenceMatcher) SetSeq1(a []string) {
|
||||
if &a == &m.a {
|
||||
return
|
||||
}
|
||||
m.a = a
|
||||
m.matchingBlocks = nil
|
||||
m.opCodes = nil
|
||||
}
|
||||
|
||||
// Set the second sequence to be compared. The first sequence to be compared is
|
||||
// not changed.
|
||||
func (m *SequenceMatcher) SetSeq2(b []string) {
|
||||
if &b == &m.b {
|
||||
return
|
||||
}
|
||||
m.b = b
|
||||
m.matchingBlocks = nil
|
||||
m.opCodes = nil
|
||||
m.fullBCount = nil
|
||||
m.chainB()
|
||||
}
|
||||
|
||||
func (m *SequenceMatcher) chainB() {
|
||||
// Populate line -> index mapping
|
||||
b2j := map[string][]int{}
|
||||
for i, s := range m.b {
|
||||
indices := b2j[s]
|
||||
indices = append(indices, i)
|
||||
b2j[s] = indices
|
||||
}
|
||||
|
||||
// Purge junk elements
|
||||
m.bJunk = map[string]struct{}{}
|
||||
if m.IsJunk != nil {
|
||||
junk := m.bJunk
|
||||
for s, _ := range b2j {
|
||||
if m.IsJunk(s) {
|
||||
junk[s] = struct{}{}
|
||||
}
|
||||
}
|
||||
for s, _ := range junk {
|
||||
delete(b2j, s)
|
||||
}
|
||||
}
|
||||
|
||||
// Purge remaining popular elements
|
||||
popular := map[string]struct{}{}
|
||||
n := len(m.b)
|
||||
if m.autoJunk && n >= 200 {
|
||||
ntest := n/100 + 1
|
||||
for s, indices := range b2j {
|
||||
if len(indices) > ntest {
|
||||
popular[s] = struct{}{}
|
||||
}
|
||||
}
|
||||
for s, _ := range popular {
|
||||
delete(b2j, s)
|
||||
}
|
||||
}
|
||||
m.bPopular = popular
|
||||
m.b2j = b2j
|
||||
}
|
||||
|
||||
func (m *SequenceMatcher) isBJunk(s string) bool {
|
||||
_, ok := m.bJunk[s]
|
||||
return ok
|
||||
}
|
||||
|
||||
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
|
||||
//
|
||||
// If IsJunk is not defined:
|
||||
//
|
||||
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
|
||||
// alo <= i <= i+k <= ahi
|
||||
// blo <= j <= j+k <= bhi
|
||||
// and for all (i',j',k') meeting those conditions,
|
||||
// k >= k'
|
||||
// i <= i'
|
||||
// and if i == i', j <= j'
|
||||
//
|
||||
// In other words, of all maximal matching blocks, return one that
|
||||
// starts earliest in a, and of all those maximal matching blocks that
|
||||
// start earliest in a, return the one that starts earliest in b.
|
||||
//
|
||||
// If IsJunk is defined, first the longest matching block is
|
||||
// determined as above, but with the additional restriction that no
|
||||
// junk element appears in the block. Then that block is extended as
|
||||
// far as possible by matching (only) junk elements on both sides. So
|
||||
// the resulting block never matches on junk except as identical junk
|
||||
// happens to be adjacent to an "interesting" match.
|
||||
//
|
||||
// If no blocks match, return (alo, blo, 0).
|
||||
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
|
||||
// CAUTION: stripping common prefix or suffix would be incorrect.
|
||||
// E.g.,
|
||||
// ab
|
||||
// acab
|
||||
// Longest matching block is "ab", but if common prefix is
|
||||
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
|
||||
// strip, so ends up claiming that ab is changed to acab by
|
||||
// inserting "ca" in the middle. That's minimal but unintuitive:
|
||||
// "it's obvious" that someone inserted "ac" at the front.
|
||||
// Windiff ends up at the same place as diff, but by pairing up
|
||||
// the unique 'b's and then matching the first two 'a's.
|
||||
besti, bestj, bestsize := alo, blo, 0
|
||||
|
||||
// find longest junk-free match
|
||||
// during an iteration of the loop, j2len[j] = length of longest
|
||||
// junk-free match ending with a[i-1] and b[j]
|
||||
j2len := map[int]int{}
|
||||
for i := alo; i != ahi; i++ {
|
||||
// look at all instances of a[i] in b; note that because
|
||||
// b2j has no junk keys, the loop is skipped if a[i] is junk
|
||||
newj2len := map[int]int{}
|
||||
for _, j := range m.b2j[m.a[i]] {
|
||||
// a[i] matches b[j]
|
||||
if j < blo {
|
||||
continue
|
||||
}
|
||||
if j >= bhi {
|
||||
break
|
||||
}
|
||||
k := j2len[j-1] + 1
|
||||
newj2len[j] = k
|
||||
if k > bestsize {
|
||||
besti, bestj, bestsize = i-k+1, j-k+1, k
|
||||
}
|
||||
}
|
||||
j2len = newj2len
|
||||
}
|
||||
|
||||
// Extend the best by non-junk elements on each end. In particular,
|
||||
// "popular" non-junk elements aren't in b2j, which greatly speeds
|
||||
// the inner loop above, but also means "the best" match so far
|
||||
// doesn't contain any junk *or* popular non-junk elements.
|
||||
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
|
||||
m.a[besti-1] == m.b[bestj-1] {
|
||||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
|
||||
}
|
||||
for besti+bestsize < ahi && bestj+bestsize < bhi &&
|
||||
!m.isBJunk(m.b[bestj+bestsize]) &&
|
||||
m.a[besti+bestsize] == m.b[bestj+bestsize] {
|
||||
bestsize += 1
|
||||
}
|
||||
|
||||
// Now that we have a wholly interesting match (albeit possibly
|
||||
// empty!), we may as well suck up the matching junk on each
|
||||
// side of it too. Can't think of a good reason not to, and it
|
||||
// saves post-processing the (possibly considerable) expense of
|
||||
// figuring out what to do with it. In the case of an empty
|
||||
// interesting match, this is clearly the right thing to do,
|
||||
// because no other kind of match is possible in the regions.
|
||||
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
|
||||
m.a[besti-1] == m.b[bestj-1] {
|
||||
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
|
||||
}
|
||||
for besti+bestsize < ahi && bestj+bestsize < bhi &&
|
||||
m.isBJunk(m.b[bestj+bestsize]) &&
|
||||
m.a[besti+bestsize] == m.b[bestj+bestsize] {
|
||||
bestsize += 1
|
||||
}
|
||||
|
||||
return Match{A: besti, B: bestj, Size: bestsize}
|
||||
}
|
||||
|
||||
// Return list of triples describing matching subsequences.
|
||||
//
|
||||
// Each triple is of the form (i, j, n), and means that
|
||||
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
|
||||
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
|
||||
// adjacent triples in the list, and the second is not the last triple in the
|
||||
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
|
||||
// adjacent equal blocks.
|
||||
//
|
||||
// The last triple is a dummy, (len(a), len(b), 0), and is the only
|
||||
// triple with n==0.
|
||||
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
|
||||
if m.matchingBlocks != nil {
|
||||
return m.matchingBlocks
|
||||
}
|
||||
|
||||
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
|
||||
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
|
||||
match := m.findLongestMatch(alo, ahi, blo, bhi)
|
||||
i, j, k := match.A, match.B, match.Size
|
||||
if match.Size > 0 {
|
||||
if alo < i && blo < j {
|
||||
matched = matchBlocks(alo, i, blo, j, matched)
|
||||
}
|
||||
matched = append(matched, match)
|
||||
if i+k < ahi && j+k < bhi {
|
||||
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
|
||||
}
|
||||
}
|
||||
return matched
|
||||
}
|
||||
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
|
||||
|
||||
// It's possible that we have adjacent equal blocks in the
|
||||
// matching_blocks list now.
|
||||
nonAdjacent := []Match{}
|
||||
i1, j1, k1 := 0, 0, 0
|
||||
for _, b := range matched {
|
||||
// Is this block adjacent to i1, j1, k1?
|
||||
i2, j2, k2 := b.A, b.B, b.Size
|
||||
if i1+k1 == i2 && j1+k1 == j2 {
|
||||
// Yes, so collapse them -- this just increases the length of
|
||||
// the first block by the length of the second, and the first
|
||||
// block so lengthened remains the block to compare against.
|
||||
k1 += k2
|
||||
} else {
|
||||
// Not adjacent. Remember the first block (k1==0 means it's
|
||||
// the dummy we started with), and make the second block the
|
||||
// new block to compare against.
|
||||
if k1 > 0 {
|
||||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
|
||||
}
|
||||
i1, j1, k1 = i2, j2, k2
|
||||
}
|
||||
}
|
||||
if k1 > 0 {
|
||||
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
|
||||
}
|
||||
|
||||
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
|
||||
m.matchingBlocks = nonAdjacent
|
||||
return m.matchingBlocks
|
||||
}
|
||||
|
||||
// Return list of 5-tuples describing how to turn a into b.
|
||||
//
|
||||
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
|
||||
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
|
||||
// tuple preceding it, and likewise for j1 == the previous j2.
|
||||
//
|
||||
// The tags are characters, with these meanings:
|
||||
//
|
||||
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
|
||||
//
|
||||
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
|
||||
//
|
||||
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
|
||||
//
|
||||
// 'e' (equal): a[i1:i2] == b[j1:j2]
|
||||
func (m *SequenceMatcher) GetOpCodes() []OpCode {
|
||||
if m.opCodes != nil {
|
||||
return m.opCodes
|
||||
}
|
||||
i, j := 0, 0
|
||||
matching := m.GetMatchingBlocks()
|
||||
opCodes := make([]OpCode, 0, len(matching))
|
||||
for _, m := range matching {
|
||||
// invariant: we've pumped out correct diffs to change
|
||||
// a[:i] into b[:j], and the next matching block is
|
||||
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
|
||||
// out a diff to change a[i:ai] into b[j:bj], pump out
|
||||
// the matching block, and move (i,j) beyond the match
|
||||
ai, bj, size := m.A, m.B, m.Size
|
||||
tag := byte(0)
|
||||
if i < ai && j < bj {
|
||||
tag = 'r'
|
||||
} else if i < ai {
|
||||
tag = 'd'
|
||||
} else if j < bj {
|
||||
tag = 'i'
|
||||
}
|
||||
if tag > 0 {
|
||||
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
|
||||
}
|
||||
i, j = ai+size, bj+size
|
||||
// the list of matching blocks is terminated by a
|
||||
// sentinel with size 0
|
||||
if size > 0 {
|
||||
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
|
||||
}
|
||||
}
|
||||
m.opCodes = opCodes
|
||||
return m.opCodes
|
||||
}
|
||||
|
||||
// Isolate change clusters by eliminating ranges with no changes.
|
||||
//
|
||||
// Return a generator of groups with up to n lines of context.
|
||||
// Each group is in the same format as returned by GetOpCodes().
|
||||
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
|
||||
if n < 0 {
|
||||
n = 3
|
||||
}
|
||||
codes := m.GetOpCodes()
|
||||
if len(codes) == 0 {
|
||||
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
|
||||
}
|
||||
// Fixup leading and trailing groups if they show no changes.
|
||||
if codes[0].Tag == 'e' {
|
||||
c := codes[0]
|
||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
||||
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
|
||||
}
|
||||
if codes[len(codes)-1].Tag == 'e' {
|
||||
c := codes[len(codes)-1]
|
||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
||||
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
|
||||
}
|
||||
nn := n + n
|
||||
groups := [][]OpCode{}
|
||||
group := []OpCode{}
|
||||
for _, c := range codes {
|
||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
||||
// End the current group and start a new one whenever
|
||||
// there is a large range with no changes.
|
||||
if c.Tag == 'e' && i2-i1 > nn {
|
||||
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
|
||||
j1, min(j2, j1+n)})
|
||||
groups = append(groups, group)
|
||||
group = []OpCode{}
|
||||
i1, j1 = max(i1, i2-n), max(j1, j2-n)
|
||||
}
|
||||
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
|
||||
}
|
||||
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
|
||||
groups = append(groups, group)
|
||||
}
|
||||
return groups
|
||||
}
|
||||
|
||||
// Return a measure of the sequences' similarity (float in [0,1]).
|
||||
//
|
||||
// Where T is the total number of elements in both sequences, and
|
||||
// M is the number of matches, this is 2.0*M / T.
|
||||
// Note that this is 1 if the sequences are identical, and 0 if
|
||||
// they have nothing in common.
|
||||
//
|
||||
// .Ratio() is expensive to compute if you haven't already computed
|
||||
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
|
||||
// want to try .QuickRatio() or .RealQuickRation() first to get an
|
||||
// upper bound.
|
||||
func (m *SequenceMatcher) Ratio() float64 {
|
||||
matches := 0
|
||||
for _, m := range m.GetMatchingBlocks() {
|
||||
matches += m.Size
|
||||
}
|
||||
return calculateRatio(matches, len(m.a)+len(m.b))
|
||||
}
|
||||
|
||||
// Return an upper bound on ratio() relatively quickly.
|
||||
//
|
||||
// This isn't defined beyond that it is an upper bound on .Ratio(), and
|
||||
// is faster to compute.
|
||||
func (m *SequenceMatcher) QuickRatio() float64 {
|
||||
// viewing a and b as multisets, set matches to the cardinality
|
||||
// of their intersection; this counts the number of matches
|
||||
// without regard to order, so is clearly an upper bound
|
||||
if m.fullBCount == nil {
|
||||
m.fullBCount = map[string]int{}
|
||||
for _, s := range m.b {
|
||||
m.fullBCount[s] = m.fullBCount[s] + 1
|
||||
}
|
||||
}
|
||||
|
||||
// avail[x] is the number of times x appears in 'b' less the
|
||||
// number of times we've seen it in 'a' so far ... kinda
|
||||
avail := map[string]int{}
|
||||
matches := 0
|
||||
for _, s := range m.a {
|
||||
n, ok := avail[s]
|
||||
if !ok {
|
||||
n = m.fullBCount[s]
|
||||
}
|
||||
avail[s] = n - 1
|
||||
if n > 0 {
|
||||
matches += 1
|
||||
}
|
||||
}
|
||||
return calculateRatio(matches, len(m.a)+len(m.b))
|
||||
}
|
||||
|
||||
// Return an upper bound on ratio() very quickly.
|
||||
//
|
||||
// This isn't defined beyond that it is an upper bound on .Ratio(), and
|
||||
// is faster to compute than either .Ratio() or .QuickRatio().
|
||||
func (m *SequenceMatcher) RealQuickRatio() float64 {
|
||||
la, lb := len(m.a), len(m.b)
|
||||
return calculateRatio(min(la, lb), la+lb)
|
||||
}
|
||||
|
||||
// Convert range to the "ed" format
|
||||
func formatRangeUnified(start, stop int) string {
|
||||
// Per the diff spec at http://www.unix.org/single_unix_specification/
|
||||
beginning := start + 1 // lines start numbering with one
|
||||
length := stop - start
|
||||
if length == 1 {
|
||||
return fmt.Sprintf("%d", beginning)
|
||||
}
|
||||
if length == 0 {
|
||||
beginning -= 1 // empty ranges begin at line just before the range
|
||||
}
|
||||
return fmt.Sprintf("%d,%d", beginning, length)
|
||||
}
|
||||
|
||||
// Unified diff parameters
|
||||
type UnifiedDiff struct {
|
||||
A []string // First sequence lines
|
||||
FromFile string // First file name
|
||||
FromDate string // First file time
|
||||
B []string // Second sequence lines
|
||||
ToFile string // Second file name
|
||||
ToDate string // Second file time
|
||||
Eol string // Headers end of line, defaults to LF
|
||||
Context int // Number of context lines
|
||||
}
|
||||
|
||||
// Compare two sequences of lines; generate the delta as a unified diff.
|
||||
//
|
||||
// Unified diffs are a compact way of showing line changes and a few
|
||||
// lines of context. The number of context lines is set by 'n' which
|
||||
// defaults to three.
|
||||
//
|
||||
// By default, the diff control lines (those with ---, +++, or @@) are
|
||||
// created with a trailing newline. This is helpful so that inputs
|
||||
// created from file.readlines() result in diffs that are suitable for
|
||||
// file.writelines() since both the inputs and outputs have trailing
|
||||
// newlines.
|
||||
//
|
||||
// For inputs that do not have trailing newlines, set the lineterm
|
||||
// argument to "" so that the output will be uniformly newline free.
|
||||
//
|
||||
// The unidiff format normally has a header for filenames and modification
|
||||
// times. Any or all of these may be specified using strings for
|
||||
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
|
||||
// The modification times are normally expressed in the ISO 8601 format.
|
||||
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
|
||||
buf := bufio.NewWriter(writer)
|
||||
defer buf.Flush()
|
||||
wf := func(format string, args ...interface{}) error {
|
||||
_, err := buf.WriteString(fmt.Sprintf(format, args...))
|
||||
return err
|
||||
}
|
||||
ws := func(s string) error {
|
||||
_, err := buf.WriteString(s)
|
||||
return err
|
||||
}
|
||||
|
||||
if len(diff.Eol) == 0 {
|
||||
diff.Eol = "\n"
|
||||
}
|
||||
|
||||
started := false
|
||||
m := NewMatcher(diff.A, diff.B)
|
||||
for _, g := range m.GetGroupedOpCodes(diff.Context) {
|
||||
if !started {
|
||||
started = true
|
||||
fromDate := ""
|
||||
if len(diff.FromDate) > 0 {
|
||||
fromDate = "\t" + diff.FromDate
|
||||
}
|
||||
toDate := ""
|
||||
if len(diff.ToDate) > 0 {
|
||||
toDate = "\t" + diff.ToDate
|
||||
}
|
||||
if diff.FromFile != "" || diff.ToFile != "" {
|
||||
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
first, last := g[0], g[len(g)-1]
|
||||
range1 := formatRangeUnified(first.I1, last.I2)
|
||||
range2 := formatRangeUnified(first.J1, last.J2)
|
||||
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
|
||||
return err
|
||||
}
|
||||
for _, c := range g {
|
||||
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
|
||||
if c.Tag == 'e' {
|
||||
for _, line := range diff.A[i1:i2] {
|
||||
if err := ws(" " + line); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
continue
|
||||
}
|
||||
if c.Tag == 'r' || c.Tag == 'd' {
|
||||
for _, line := range diff.A[i1:i2] {
|
||||
if err := ws("-" + line); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
if c.Tag == 'r' || c.Tag == 'i' {
|
||||
for _, line := range diff.B[j1:j2] {
|
||||
if err := ws("+" + line); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Like WriteUnifiedDiff but returns the diff a string.
|
||||
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
|
||||
w := &bytes.Buffer{}
|
||||
err := WriteUnifiedDiff(w, diff)
|
||||
return string(w.Bytes()), err
|
||||
}
|
||||
|
||||
// Convert range to the "ed" format.
|
||||
func formatRangeContext(start, stop int) string {
|
||||
// Per the diff spec at http://www.unix.org/single_unix_specification/
|
||||
beginning := start + 1 // lines start numbering with one
|
||||
length := stop - start
|
||||
if length == 0 {
|
||||
beginning -= 1 // empty ranges begin at line just before the range
|
||||
}
|
||||
if length <= 1 {
|
||||
return fmt.Sprintf("%d", beginning)
|
||||
}
|
||||
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
|
||||
}
|
||||
|
||||
type ContextDiff UnifiedDiff
|
||||
|
||||
// Compare two sequences of lines; generate the delta as a context diff.
|
||||
//
|
||||
// Context diffs are a compact way of showing line changes and a few
|
||||
// lines of context. The number of context lines is set by diff.Context
|
||||
// which defaults to three.
|
||||
//
|
||||
// By default, the diff control lines (those with *** or ---) are
|
||||
// created with a trailing newline.
|
||||
//
|
||||
// For inputs that do not have trailing newlines, set the diff.Eol
|
||||
// argument to "" so that the output will be uniformly newline free.
|
||||
//
|
||||
// The context diff format normally has a header for filenames and
|
||||
// modification times. Any or all of these may be specified using
|
||||
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
|
||||
// The modification times are normally expressed in the ISO 8601 format.
|
||||
// If not specified, the strings default to blanks.
|
||||
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
|
||||
buf := bufio.NewWriter(writer)
|
||||
defer buf.Flush()
|
||||
var diffErr error
|
||||
wf := func(format string, args ...interface{}) {
|
||||
_, err := buf.WriteString(fmt.Sprintf(format, args...))
|
||||
if diffErr == nil && err != nil {
|
||||
diffErr = err
|
||||
}
|
||||
}
|
||||
ws := func(s string) {
|
||||
_, err := buf.WriteString(s)
|
||||
if diffErr == nil && err != nil {
|
||||
diffErr = err
|
||||
}
|
||||
}
|
||||
|
||||
if len(diff.Eol) == 0 {
|
||||
diff.Eol = "\n"
|
||||
}
|
||||
|
||||
prefix := map[byte]string{
|
||||
'i': "+ ",
|
||||
'd': "- ",
|
||||
'r': "! ",
|
||||
'e': " ",
|
||||
}
|
||||
|
||||
started := false
|
||||
m := NewMatcher(diff.A, diff.B)
|
||||
for _, g := range m.GetGroupedOpCodes(diff.Context) {
|
||||
if !started {
|
||||
started = true
|
||||
fromDate := ""
|
||||
if len(diff.FromDate) > 0 {
|
||||
fromDate = "\t" + diff.FromDate
|
||||
}
|
||||
toDate := ""
|
||||
if len(diff.ToDate) > 0 {
|
||||
toDate = "\t" + diff.ToDate
|
||||
}
|
||||
if diff.FromFile != "" || diff.ToFile != "" {
|
||||
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
|
||||
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
|
||||
}
|
||||
}
|
||||
|
||||
first, last := g[0], g[len(g)-1]
|
||||
ws("***************" + diff.Eol)
|
||||
|
||||
range1 := formatRangeContext(first.I1, last.I2)
|
||||
wf("*** %s ****%s", range1, diff.Eol)
|
||||
for _, c := range g {
|
||||
if c.Tag == 'r' || c.Tag == 'd' {
|
||||
for _, cc := range g {
|
||||
if cc.Tag == 'i' {
|
||||
continue
|
||||
}
|
||||
for _, line := range diff.A[cc.I1:cc.I2] {
|
||||
ws(prefix[cc.Tag] + line)
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
range2 := formatRangeContext(first.J1, last.J2)
|
||||
wf("--- %s ----%s", range2, diff.Eol)
|
||||
for _, c := range g {
|
||||
if c.Tag == 'r' || c.Tag == 'i' {
|
||||
for _, cc := range g {
|
||||
if cc.Tag == 'd' {
|
||||
continue
|
||||
}
|
||||
for _, line := range diff.B[cc.J1:cc.J2] {
|
||||
ws(prefix[cc.Tag] + line)
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
return diffErr
|
||||
}
|
||||
|
||||
// Like WriteContextDiff but returns the diff a string.
|
||||
func GetContextDiffString(diff ContextDiff) (string, error) {
|
||||
w := &bytes.Buffer{}
|
||||
err := WriteContextDiff(w, diff)
|
||||
return string(w.Bytes()), err
|
||||
}
|
||||
|
||||
// Split a string on "\n" while preserving them. The output can be used
|
||||
// as input for UnifiedDiff and ContextDiff structures.
|
||||
func SplitLines(s string) []string {
|
||||
lines := strings.SplitAfter(s, "\n")
|
||||
lines[len(lines)-1] += "\n"
|
||||
return lines
|
||||
}
|
|
@ -0,0 +1,23 @@
|
|||
objx - by Mat Ryer and Tyler Bunnell
|
||||
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2014 Stretchr, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
|
@ -0,0 +1,3 @@
|
|||
# objx
|
||||
|
||||
* Jump into the [API Documentation](http://godoc.org/github.com/stretchr/objx)
|
|
@ -0,0 +1,179 @@
|
|||
package objx
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"regexp"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// arrayAccesRegexString is the regex used to extract the array number
|
||||
// from the access path
|
||||
const arrayAccesRegexString = `^(.+)\[([0-9]+)\]$`
|
||||
|
||||
// arrayAccesRegex is the compiled arrayAccesRegexString
|
||||
var arrayAccesRegex = regexp.MustCompile(arrayAccesRegexString)
|
||||
|
||||
// Get gets the value using the specified selector and
|
||||
// returns it inside a new Obj object.
|
||||
//
|
||||
// If it cannot find the value, Get will return a nil
|
||||
// value inside an instance of Obj.
|
||||
//
|
||||
// Get can only operate directly on map[string]interface{} and []interface.
|
||||
//
|
||||
// Example
|
||||
//
|
||||
// To access the title of the third chapter of the second book, do:
|
||||
//
|
||||
// o.Get("books[1].chapters[2].title")
|
||||
func (m Map) Get(selector string) *Value {
|
||||
rawObj := access(m, selector, nil, false, false)
|
||||
return &Value{data: rawObj}
|
||||
}
|
||||
|
||||
// Set sets the value using the specified selector and
|
||||
// returns the object on which Set was called.
|
||||
//
|
||||
// Set can only operate directly on map[string]interface{} and []interface
|
||||
//
|
||||
// Example
|
||||
//
|
||||
// To set the title of the third chapter of the second book, do:
|
||||
//
|
||||
// o.Set("books[1].chapters[2].title","Time to Go")
|
||||
func (m Map) Set(selector string, value interface{}) Map {
|
||||
access(m, selector, value, true, false)
|
||||
return m
|
||||
}
|
||||
|
||||
// access accesses the object using the selector and performs the
|
||||
// appropriate action.
|
||||
func access(current, selector, value interface{}, isSet, panics bool) interface{} {
|
||||
|
||||
switch selector.(type) {
|
||||
case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64:
|
||||
|
||||
if array, ok := current.([]interface{}); ok {
|
||||
index := intFromInterface(selector)
|
||||
|
||||
if index >= len(array) {
|
||||
if panics {
|
||||
panic(fmt.Sprintf("objx: Index %d is out of range. Slice only contains %d items.", index, len(array)))
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
return array[index]
|
||||
}
|
||||
|
||||
return nil
|
||||
|
||||
case string:
|
||||
|
||||
selStr := selector.(string)
|
||||
selSegs := strings.SplitN(selStr, PathSeparator, 2)
|
||||
thisSel := selSegs[0]
|
||||
index := -1
|
||||
var err error
|
||||
|
||||
// https://github.com/stretchr/objx/issues/12
|
||||
if strings.Contains(thisSel, "[") {
|
||||
|
||||
arrayMatches := arrayAccesRegex.FindStringSubmatch(thisSel)
|
||||
|
||||
if len(arrayMatches) > 0 {
|
||||
|
||||
// Get the key into the map
|
||||
thisSel = arrayMatches[1]
|
||||
|
||||
// Get the index into the array at the key
|
||||
index, err = strconv.Atoi(arrayMatches[2])
|
||||
|
||||
if err != nil {
|
||||
// This should never happen. If it does, something has gone
|
||||
// seriously wrong. Panic.
|
||||
panic("objx: Array index is not an integer. Must use array[int].")
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if curMap, ok := current.(Map); ok {
|
||||
current = map[string]interface{}(curMap)
|
||||
}
|
||||
|
||||
// get the object in question
|
||||
switch current.(type) {
|
||||
case map[string]interface{}:
|
||||
curMSI := current.(map[string]interface{})
|
||||
if len(selSegs) <= 1 && isSet {
|
||||
curMSI[thisSel] = value
|
||||
return nil
|
||||
} else {
|
||||
current = curMSI[thisSel]
|
||||
}
|
||||
default:
|
||||
current = nil
|
||||
}
|
||||
|
||||
if current == nil && panics {
|
||||
panic(fmt.Sprintf("objx: '%v' invalid on object.", selector))
|
||||
}
|
||||
|
||||
// do we need to access the item of an array?
|
||||
if index > -1 {
|
||||
if array, ok := current.([]interface{}); ok {
|
||||
if index < len(array) {
|
||||
current = array[index]
|
||||
} else {
|
||||
if panics {
|
||||
panic(fmt.Sprintf("objx: Index %d is out of range. Slice only contains %d items.", index, len(array)))
|
||||
}
|
||||
current = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(selSegs) > 1 {
|
||||
current = access(current, selSegs[1], value, isSet, panics)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return current
|
||||
|
||||
}
|
||||
|
||||
// intFromInterface converts an interface object to the largest
|
||||
// representation of an unsigned integer using a type switch and
|
||||
// assertions
|
||||
func intFromInterface(selector interface{}) int {
|
||||
var value int
|
||||
switch selector.(type) {
|
||||
case int:
|
||||
value = selector.(int)
|
||||
case int8:
|
||||
value = int(selector.(int8))
|
||||
case int16:
|
||||
value = int(selector.(int16))
|
||||
case int32:
|
||||
value = int(selector.(int32))
|
||||
case int64:
|
||||
value = int(selector.(int64))
|
||||
case uint:
|
||||
value = int(selector.(uint))
|
||||
case uint8:
|
||||
value = int(selector.(uint8))
|
||||
case uint16:
|
||||
value = int(selector.(uint16))
|
||||
case uint32:
|
||||
value = int(selector.(uint32))
|
||||
case uint64:
|
||||
value = int(selector.(uint64))
|
||||
default:
|
||||
panic("objx: array access argument is not an integer type (this should never happen)")
|
||||
}
|
||||
|
||||
return value
|
||||
}
|
|
@ -0,0 +1,13 @@
|
|||
package objx
|
||||
|
||||
const (
|
||||
// PathSeparator is the character used to separate the elements
|
||||
// of the keypath.
|
||||
//
|
||||
// For example, `location.address.city`
|
||||
PathSeparator string = "."
|
||||
|
||||
// SignatureSeparator is the character that is used to
|
||||
// separate the Base64 string from the security signature.
|
||||
SignatureSeparator = "_"
|
||||
)
|
|
@ -0,0 +1,117 @@
|
|||
package objx
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"net/url"
|
||||
)
|
||||
|
||||
// JSON converts the contained object to a JSON string
|
||||
// representation
|
||||
func (m Map) JSON() (string, error) {
|
||||
|
||||
result, err := json.Marshal(m)
|
||||
|
||||
if err != nil {
|
||||
err = errors.New("objx: JSON encode failed with: " + err.Error())
|
||||
}
|
||||
|
||||
return string(result), err
|
||||
|
||||
}
|
||||
|
||||
// MustJSON converts the contained object to a JSON string
|
||||
// representation and panics if there is an error
|
||||
func (m Map) MustJSON() string {
|
||||
result, err := m.JSON()
|
||||
if err != nil {
|
||||
panic(err.Error())
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// Base64 converts the contained object to a Base64 string
|
||||
// representation of the JSON string representation
|
||||
func (m Map) Base64() (string, error) {
|
||||
|
||||
var buf bytes.Buffer
|
||||
|
||||
jsonData, err := m.JSON()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
encoder := base64.NewEncoder(base64.StdEncoding, &buf)
|
||||
encoder.Write([]byte(jsonData))
|
||||
encoder.Close()
|
||||
|
||||
return buf.String(), nil
|
||||
|
||||
}
|
||||
|
||||
// MustBase64 converts the contained object to a Base64 string
|
||||
// representation of the JSON string representation and panics
|
||||
// if there is an error
|
||||
func (m Map) MustBase64() string {
|
||||
result, err := m.Base64()
|
||||
if err != nil {
|
||||
panic(err.Error())
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// SignedBase64 converts the contained object to a Base64 string
|
||||
// representation of the JSON string representation and signs it
|
||||
// using the provided key.
|
||||
func (m Map) SignedBase64(key string) (string, error) {
|
||||
|
||||
base64, err := m.Base64()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
sig := HashWithKey(base64, key)
|
||||
|
||||
return base64 + SignatureSeparator + sig, nil
|
||||
|
||||
}
|
||||
|
||||
// MustSignedBase64 converts the contained object to a Base64 string
|
||||
// representation of the JSON string representation and signs it
|
||||
// using the provided key and panics if there is an error
|
||||
func (m Map) MustSignedBase64(key string) string {
|
||||
result, err := m.SignedBase64(key)
|
||||
if err != nil {
|
||||
panic(err.Error())
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
/*
|
||||
URL Query
|
||||
------------------------------------------------
|
||||
*/
|
||||
|
||||
// URLValues creates a url.Values object from an Obj. This
|
||||
// function requires that the wrapped object be a map[string]interface{}
|
||||
func (m Map) URLValues() url.Values {
|
||||
|
||||
vals := make(url.Values)
|
||||
|
||||
for k, v := range m {
|
||||
//TODO: can this be done without sprintf?
|
||||
vals.Set(k, fmt.Sprintf("%v", v))
|
||||
}
|
||||
|
||||
return vals
|
||||
}
|
||||
|
||||
// URLQuery gets an encoded URL query representing the given
|
||||
// Obj. This function requires that the wrapped object be a
|
||||
// map[string]interface{}
|
||||
func (m Map) URLQuery() (string, error) {
|
||||
return m.URLValues().Encode(), nil
|
||||
}
|
|
@ -0,0 +1,72 @@
|
|||
// objx - Go package for dealing with maps, slices, JSON and other data.
|
||||
//
|
||||
// Overview
|
||||
//
|
||||
// Objx provides the `objx.Map` type, which is a `map[string]interface{}` that exposes
|
||||
// a powerful `Get` method (among others) that allows you to easily and quickly get
|
||||
// access to data within the map, without having to worry too much about type assertions,
|
||||
// missing data, default values etc.
|
||||
//
|
||||
// Pattern
|
||||
//
|
||||
// Objx uses a preditable pattern to make access data from within `map[string]interface{}'s
|
||||
// easy.
|
||||
//
|
||||
// Call one of the `objx.` functions to create your `objx.Map` to get going:
|
||||
//
|
||||
// m, err := objx.FromJSON(json)
|
||||
//
|
||||
// NOTE: Any methods or functions with the `Must` prefix will panic if something goes wrong,
|
||||
// the rest will be optimistic and try to figure things out without panicking.
|
||||
//
|
||||
// Use `Get` to access the value you're interested in. You can use dot and array
|
||||
// notation too:
|
||||
//
|
||||
// m.Get("places[0].latlng")
|
||||
//
|
||||
// Once you have saught the `Value` you're interested in, you can use the `Is*` methods
|
||||
// to determine its type.
|
||||
//
|
||||
// if m.Get("code").IsStr() { /* ... */ }
|
||||
//
|
||||
// Or you can just assume the type, and use one of the strong type methods to
|
||||
// extract the real value:
|
||||
//
|
||||
// m.Get("code").Int()
|
||||
//
|
||||
// If there's no value there (or if it's the wrong type) then a default value
|
||||
// will be returned, or you can be explicit about the default value.
|
||||
//
|
||||
// Get("code").Int(-1)
|
||||
//
|
||||
// If you're dealing with a slice of data as a value, Objx provides many useful
|
||||
// methods for iterating, manipulating and selecting that data. You can find out more
|
||||
// by exploring the index below.
|
||||
//
|
||||
// Reading data
|
||||
//
|
||||
// A simple example of how to use Objx:
|
||||
//
|
||||
// // use MustFromJSON to make an objx.Map from some JSON
|
||||
// m := objx.MustFromJSON(`{"name": "Mat", "age": 30}`)
|
||||
//
|
||||
// // get the details
|
||||
// name := m.Get("name").Str()
|
||||
// age := m.Get("age").Int()
|
||||
//
|
||||
// // get their nickname (or use their name if they
|
||||
// // don't have one)
|
||||
// nickname := m.Get("nickname").Str(name)
|
||||
//
|
||||
// Ranging
|
||||
//
|
||||
// Since `objx.Map` is a `map[string]interface{}` you can treat it as such. For
|
||||
// example, to `range` the data, do what you would expect:
|
||||
//
|
||||
// m := objx.MustFromJSON(json)
|
||||
// for key, value := range m {
|
||||
//
|
||||
// /* ... do your magic ... */
|
||||
//
|
||||
// }
|
||||
package objx
|
|
@ -0,0 +1,222 @@
|
|||
package objx
|
||||
|
||||
import (
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"io/ioutil"
|
||||
"net/url"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// MSIConvertable is an interface that defines methods for converting your
|
||||
// custom types to a map[string]interface{} representation.
|
||||
type MSIConvertable interface {
|
||||
// MSI gets a map[string]interface{} (msi) representing the
|
||||
// object.
|
||||
MSI() map[string]interface{}
|
||||
}
|
||||
|
||||
// Map provides extended functionality for working with
|
||||
// untyped data, in particular map[string]interface (msi).
|
||||
type Map map[string]interface{}
|
||||
|
||||
// Value returns the internal value instance
|
||||
func (m Map) Value() *Value {
|
||||
return &Value{data: m}
|
||||
}
|
||||
|
||||
// Nil represents a nil Map.
|
||||
var Nil Map = New(nil)
|
||||
|
||||
// New creates a new Map containing the map[string]interface{} in the data argument.
|
||||
// If the data argument is not a map[string]interface, New attempts to call the
|
||||
// MSI() method on the MSIConvertable interface to create one.
|
||||
func New(data interface{}) Map {
|
||||
if _, ok := data.(map[string]interface{}); !ok {
|
||||
if converter, ok := data.(MSIConvertable); ok {
|
||||
data = converter.MSI()
|
||||
} else {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
return Map(data.(map[string]interface{}))
|
||||
}
|
||||
|
||||
// MSI creates a map[string]interface{} and puts it inside a new Map.
|
||||
//
|
||||
// The arguments follow a key, value pattern.
|
||||
//
|
||||
// Panics
|
||||
//
|
||||
// Panics if any key arugment is non-string or if there are an odd number of arguments.
|
||||
//
|
||||
// Example
|
||||
//
|
||||
// To easily create Maps:
|
||||
//
|
||||
// m := objx.MSI("name", "Mat", "age", 29, "subobj", objx.MSI("active", true))
|
||||
//
|
||||
// // creates an Map equivalent to
|
||||
// m := objx.New(map[string]interface{}{"name": "Mat", "age": 29, "subobj": map[string]interface{}{"active": true}})
|
||||
func MSI(keyAndValuePairs ...interface{}) Map {
|
||||
|
||||
newMap := make(map[string]interface{})
|
||||
keyAndValuePairsLen := len(keyAndValuePairs)
|
||||
|
||||
if keyAndValuePairsLen%2 != 0 {
|
||||
panic("objx: MSI must have an even number of arguments following the 'key, value' pattern.")
|
||||
}
|
||||
|
||||
for i := 0; i < keyAndValuePairsLen; i = i + 2 {
|
||||
|
||||
key := keyAndValuePairs[i]
|
||||
value := keyAndValuePairs[i+1]
|
||||
|
||||
// make sure the key is a string
|
||||
keyString, keyStringOK := key.(string)
|
||||
if !keyStringOK {
|
||||
panic("objx: MSI must follow 'string, interface{}' pattern. " + keyString + " is not a valid key.")
|
||||
}
|
||||
|
||||
newMap[keyString] = value
|
||||
|
||||
}
|
||||
|
||||
return New(newMap)
|
||||
}
|
||||
|
||||
// ****** Conversion Constructors
|
||||
|
||||
// MustFromJSON creates a new Map containing the data specified in the
|
||||
// jsonString.
|
||||
//
|
||||
// Panics if the JSON is invalid.
|
||||
func MustFromJSON(jsonString string) Map {
|
||||
o, err := FromJSON(jsonString)
|
||||
|
||||
if err != nil {
|
||||
panic("objx: MustFromJSON failed with error: " + err.Error())
|
||||
}
|
||||
|
||||
return o
|
||||
}
|
||||
|
||||
// FromJSON creates a new Map containing the data specified in the
|
||||
// jsonString.
|
||||
//
|
||||
// Returns an error if the JSON is invalid.
|
||||
func FromJSON(jsonString string) (Map, error) {
|
||||
|
||||
var data interface{}
|
||||
err := json.Unmarshal([]byte(jsonString), &data)
|
||||
|
||||
if err != nil {
|
||||
return Nil, err
|
||||
}
|
||||
|
||||
return New(data), nil
|
||||
|
||||
}
|
||||
|
||||
// FromBase64 creates a new Obj containing the data specified
|
||||
// in the Base64 string.
|
||||
//
|
||||
// The string is an encoded JSON string returned by Base64
|
||||
func FromBase64(base64String string) (Map, error) {
|
||||
|
||||
decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(base64String))
|
||||
|
||||
decoded, err := ioutil.ReadAll(decoder)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return FromJSON(string(decoded))
|
||||
}
|
||||
|
||||
// MustFromBase64 creates a new Obj containing the data specified
|
||||
// in the Base64 string and panics if there is an error.
|
||||
//
|
||||
// The string is an encoded JSON string returned by Base64
|
||||
func MustFromBase64(base64String string) Map {
|
||||
|
||||
result, err := FromBase64(base64String)
|
||||
|
||||
if err != nil {
|
||||
panic("objx: MustFromBase64 failed with error: " + err.Error())
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
// FromSignedBase64 creates a new Obj containing the data specified
|
||||
// in the Base64 string.
|
||||
//
|
||||
// The string is an encoded JSON string returned by SignedBase64
|
||||
func FromSignedBase64(base64String, key string) (Map, error) {
|
||||
parts := strings.Split(base64String, SignatureSeparator)
|
||||
if len(parts) != 2 {
|
||||
return nil, errors.New("objx: Signed base64 string is malformed.")
|
||||
}
|
||||
|
||||
sig := HashWithKey(parts[0], key)
|
||||
if parts[1] != sig {
|
||||
return nil, errors.New("objx: Signature for base64 data does not match.")
|
||||
}
|
||||
|
||||
return FromBase64(parts[0])
|
||||
}
|
||||
|
||||
// MustFromSignedBase64 creates a new Obj containing the data specified
|
||||
// in the Base64 string and panics if there is an error.
|
||||
//
|
||||
// The string is an encoded JSON string returned by Base64
|
||||
func MustFromSignedBase64(base64String, key string) Map {
|
||||
|
||||
result, err := FromSignedBase64(base64String, key)
|
||||
|
||||
if err != nil {
|
||||
panic("objx: MustFromSignedBase64 failed with error: " + err.Error())
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
// FromURLQuery generates a new Obj by parsing the specified
|
||||
// query.
|
||||
//
|
||||
// For queries with multiple values, the first value is selected.
|
||||
func FromURLQuery(query string) (Map, error) {
|
||||
|
||||
vals, err := url.ParseQuery(query)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
m := make(map[string]interface{})
|
||||
for k, vals := range vals {
|
||||
m[k] = vals[0]
|
||||
}
|
||||
|
||||
return New(m), nil
|
||||
}
|
||||
|
||||
// MustFromURLQuery generates a new Obj by parsing the specified
|
||||
// query.
|
||||
//
|
||||
// For queries with multiple values, the first value is selected.
|
||||
//
|
||||
// Panics if it encounters an error
|
||||
func MustFromURLQuery(query string) Map {
|
||||
|
||||
o, err := FromURLQuery(query)
|
||||
|
||||
if err != nil {
|
||||
panic("objx: MustFromURLQuery failed with error: " + err.Error())
|
||||
}
|
||||
|
||||
return o
|
||||
|
||||
}
|
|
@ -0,0 +1,81 @@
|
|||
package objx
|
||||
|
||||
// Exclude returns a new Map with the keys in the specified []string
|
||||
// excluded.
|
||||
func (d Map) Exclude(exclude []string) Map {
|
||||
|
||||
excluded := make(Map)
|
||||
for k, v := range d {
|
||||
var shouldInclude bool = true
|
||||
for _, toExclude := range exclude {
|
||||
if k == toExclude {
|
||||
shouldInclude = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if shouldInclude {
|
||||
excluded[k] = v
|
||||
}
|
||||
}
|
||||
|
||||
return excluded
|
||||
}
|
||||
|
||||
// Copy creates a shallow copy of the Obj.
|
||||
func (m Map) Copy() Map {
|
||||
copied := make(map[string]interface{})
|
||||
for k, v := range m {
|
||||
copied[k] = v
|
||||
}
|
||||
return New(copied)
|
||||
}
|
||||
|
||||
// Merge blends the specified map with a copy of this map and returns the result.
|
||||
//
|
||||
// Keys that appear in both will be selected from the specified map.
|
||||
// This method requires that the wrapped object be a map[string]interface{}
|
||||
func (m Map) Merge(merge Map) Map {
|
||||
return m.Copy().MergeHere(merge)
|
||||
}
|
||||
|
||||
// Merge blends the specified map with this map and returns the current map.
|
||||
//
|
||||
// Keys that appear in both will be selected from the specified map. The original map
|
||||
// will be modified. This method requires that
|
||||
// the wrapped object be a map[string]interface{}
|
||||
func (m Map) MergeHere(merge Map) Map {
|
||||
|
||||
for k, v := range merge {
|
||||
m[k] = v
|
||||
}
|
||||
|
||||
return m
|
||||
|
||||
}
|
||||
|
||||
// Transform builds a new Obj giving the transformer a chance
|
||||
// to change the keys and values as it goes. This method requires that
|
||||
// the wrapped object be a map[string]interface{}
|
||||
func (m Map) Transform(transformer func(key string, value interface{}) (string, interface{})) Map {
|
||||
newMap := make(map[string]interface{})
|
||||
for k, v := range m {
|
||||
modifiedKey, modifiedVal := transformer(k, v)
|
||||
newMap[modifiedKey] = modifiedVal
|
||||
}
|
||||
return New(newMap)
|
||||
}
|
||||
|
||||
// TransformKeys builds a new map using the specified key mapping.
|
||||
//
|
||||
// Unspecified keys will be unaltered.
|
||||
// This method requires that the wrapped object be a map[string]interface{}
|
||||
func (m Map) TransformKeys(mapping map[string]string) Map {
|
||||
return m.Transform(func(key string, value interface{}) (string, interface{}) {
|
||||
|
||||
if newKey, ok := mapping[key]; ok {
|
||||
return newKey, value
|
||||
}
|
||||
|
||||
return key, value
|
||||
})
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
package objx
|
||||
|
||||
import (
|
||||
"crypto/sha1"
|
||||
"encoding/hex"
|
||||
)
|
||||
|
||||
// HashWithKey hashes the specified string using the security
|
||||
// key.
|
||||
func HashWithKey(data, key string) string {
|
||||
hash := sha1.New()
|
||||
hash.Write([]byte(data + ":" + key))
|
||||
return hex.EncodeToString(hash.Sum(nil))
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
package objx
|
||||
|
||||
// Has gets whether there is something at the specified selector
|
||||
// or not.
|
||||
//
|
||||
// If m is nil, Has will always return false.
|
||||
func (m Map) Has(selector string) bool {
|
||||
if m == nil {
|
||||
return false
|
||||
}
|
||||
return !m.Get(selector).IsNil()
|
||||
}
|
||||
|
||||
// IsNil gets whether the data is nil or not.
|
||||
func (v *Value) IsNil() bool {
|
||||
return v == nil || v.data == nil
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,56 @@
|
|||
package objx
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
// Value provides methods for extracting interface{} data in various
|
||||
// types.
|
||||
type Value struct {
|
||||
// data contains the raw data being managed by this Value
|
||||
data interface{}
|
||||
}
|
||||
|
||||
// Data returns the raw data contained by this Value
|
||||
func (v *Value) Data() interface{} {
|
||||
return v.data
|
||||
}
|
||||
|
||||
// String returns the value always as a string
|
||||
func (v *Value) String() string {
|
||||
switch {
|
||||
case v.IsStr():
|
||||
return v.Str()
|
||||
case v.IsBool():
|
||||
return strconv.FormatBool(v.Bool())
|
||||
case v.IsFloat32():
|
||||
return strconv.FormatFloat(float64(v.Float32()), 'f', -1, 32)
|
||||
case v.IsFloat64():
|
||||
return strconv.FormatFloat(v.Float64(), 'f', -1, 64)
|
||||
case v.IsInt():
|
||||
return strconv.FormatInt(int64(v.Int()), 10)
|
||||
case v.IsInt():
|
||||
return strconv.FormatInt(int64(v.Int()), 10)
|
||||
case v.IsInt8():
|
||||
return strconv.FormatInt(int64(v.Int8()), 10)
|
||||
case v.IsInt16():
|
||||
return strconv.FormatInt(int64(v.Int16()), 10)
|
||||
case v.IsInt32():
|
||||
return strconv.FormatInt(int64(v.Int32()), 10)
|
||||
case v.IsInt64():
|
||||
return strconv.FormatInt(v.Int64(), 10)
|
||||
case v.IsUint():
|
||||
return strconv.FormatUint(uint64(v.Uint()), 10)
|
||||
case v.IsUint8():
|
||||
return strconv.FormatUint(uint64(v.Uint8()), 10)
|
||||
case v.IsUint16():
|
||||
return strconv.FormatUint(uint64(v.Uint16()), 10)
|
||||
case v.IsUint32():
|
||||
return strconv.FormatUint(uint64(v.Uint32()), 10)
|
||||
case v.IsUint64():
|
||||
return strconv.FormatUint(v.Uint64(), 10)
|
||||
}
|
||||
|
||||
return fmt.Sprintf("%#v", v.Data())
|
||||
}
|
|
@ -0,0 +1,22 @@
|
|||
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell
|
||||
|
||||
Please consider promoting this project if you find it useful.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person
|
||||
obtaining a copy of this software and associated documentation
|
||||
files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of the Software,
|
||||
and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
||||
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
|
||||
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
|
||||
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
@ -0,0 +1,379 @@
|
|||
/*
|
||||
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
|
||||
* THIS FILE MUST NOT BE EDITED BY HAND
|
||||
*/
|
||||
|
||||
package assert
|
||||
|
||||
import (
|
||||
http "net/http"
|
||||
url "net/url"
|
||||
time "time"
|
||||
)
|
||||
|
||||
// Conditionf uses a Comparison to assert a complex condition.
|
||||
func Conditionf(t TestingT, comp Comparison, msg string, args ...interface{}) bool {
|
||||
return Condition(t, comp, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Containsf asserts that the specified string, list(array, slice...) or map contains the
|
||||
// specified substring or element.
|
||||
//
|
||||
// assert.Containsf(t, "Hello World", "World", "error message %s", "formatted")
|
||||
// assert.Containsf(t, ["Hello", "World"], "World", "error message %s", "formatted")
|
||||
// assert.Containsf(t, {"Hello": "World"}, "Hello", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Containsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
|
||||
return Contains(t, s, contains, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// assert.Emptyf(t, obj, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Emptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
|
||||
return Empty(t, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Equalf asserts that two objects are equal.
|
||||
//
|
||||
// assert.Equalf(t, 123, 123, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses). Function equality
|
||||
// cannot be determined and will always fail.
|
||||
func Equalf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return Equal(t, expected, actual, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// EqualErrorf asserts that a function returned an error (i.e. not `nil`)
|
||||
// and that it is equal to the provided error.
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// assert.EqualErrorf(t, err, expectedErrorString, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func EqualErrorf(t TestingT, theError error, errString string, msg string, args ...interface{}) bool {
|
||||
return EqualError(t, theError, errString, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// EqualValuesf asserts that two objects are equal or convertable to the same types
|
||||
// and equal.
|
||||
//
|
||||
// assert.EqualValuesf(t, uint32(123, "error message %s", "formatted"), int32(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func EqualValuesf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return EqualValues(t, expected, actual, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Errorf asserts that a function returned an error (i.e. not `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if assert.Errorf(t, err, "error message %s", "formatted") {
|
||||
// assert.Equal(t, expectedErrorf, err)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Errorf(t TestingT, err error, msg string, args ...interface{}) bool {
|
||||
return Error(t, err, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Exactlyf asserts that two objects are equal is value and type.
|
||||
//
|
||||
// assert.Exactlyf(t, int32(123, "error message %s", "formatted"), int64(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Exactlyf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return Exactly(t, expected, actual, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Failf reports a failure through
|
||||
func Failf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
|
||||
return Fail(t, failureMessage, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// FailNowf fails test
|
||||
func FailNowf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
|
||||
return FailNow(t, failureMessage, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Falsef asserts that the specified value is false.
|
||||
//
|
||||
// assert.Falsef(t, myBool, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Falsef(t TestingT, value bool, msg string, args ...interface{}) bool {
|
||||
return False(t, value, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// HTTPBodyContainsf asserts that a specified handler returns a
|
||||
// body that contains a string.
|
||||
//
|
||||
// assert.HTTPBodyContainsf(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPBodyContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyContains(t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPBodyNotContainsf asserts that a specified handler returns a
|
||||
// body that does not contain a string.
|
||||
//
|
||||
// assert.HTTPBodyNotContainsf(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPBodyNotContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyNotContains(t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPErrorf asserts that a specified handler returns an error status code.
|
||||
//
|
||||
// assert.HTTPErrorf(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
|
||||
func HTTPErrorf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPError(t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
|
||||
//
|
||||
// assert.HTTPRedirectf(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
|
||||
func HTTPRedirectf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPRedirect(t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPSuccessf asserts that a specified handler returns a success status code.
|
||||
//
|
||||
// assert.HTTPSuccessf(t, myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPSuccessf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPSuccess(t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// Implementsf asserts that an object is implemented by the specified interface.
|
||||
//
|
||||
// assert.Implementsf(t, (*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
|
||||
func Implementsf(t TestingT, interfaceObject interface{}, object interface{}, msg string, args ...interface{}) bool {
|
||||
return Implements(t, interfaceObject, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// InDeltaf asserts that the two numerals are within delta of each other.
|
||||
//
|
||||
// assert.InDeltaf(t, math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func InDeltaf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
|
||||
return InDelta(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// InDeltaSlicef is the same as InDelta, except it compares two slices.
|
||||
func InDeltaSlicef(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
|
||||
return InDeltaSlice(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func InEpsilonf(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
|
||||
return InEpsilon(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
|
||||
func InEpsilonSlicef(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
|
||||
return InEpsilonSlice(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// IsTypef asserts that the specified objects are of the same type.
|
||||
func IsTypef(t TestingT, expectedType interface{}, object interface{}, msg string, args ...interface{}) bool {
|
||||
return IsType(t, expectedType, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// JSONEqf asserts that two JSON strings are equivalent.
|
||||
//
|
||||
// assert.JSONEqf(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func JSONEqf(t TestingT, expected string, actual string, msg string, args ...interface{}) bool {
|
||||
return JSONEq(t, expected, actual, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Lenf asserts that the specified object has specific length.
|
||||
// Lenf also fails if the object has a type that len() not accept.
|
||||
//
|
||||
// assert.Lenf(t, mySlice, 3, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Lenf(t TestingT, object interface{}, length int, msg string, args ...interface{}) bool {
|
||||
return Len(t, object, length, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Nilf asserts that the specified object is nil.
|
||||
//
|
||||
// assert.Nilf(t, err, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Nilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
|
||||
return Nil(t, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NoErrorf asserts that a function returned no error (i.e. `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if assert.NoErrorf(t, err, "error message %s", "formatted") {
|
||||
// assert.Equal(t, expectedObj, actualObj)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NoErrorf(t TestingT, err error, msg string, args ...interface{}) bool {
|
||||
return NoError(t, err, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the
|
||||
// specified substring or element.
|
||||
//
|
||||
// assert.NotContainsf(t, "Hello World", "Earth", "error message %s", "formatted")
|
||||
// assert.NotContainsf(t, ["Hello", "World"], "Earth", "error message %s", "formatted")
|
||||
// assert.NotContainsf(t, {"Hello": "World"}, "Earth", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotContainsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
|
||||
return NotContains(t, s, contains, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotEmptyf asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// if assert.NotEmptyf(t, obj, "error message %s", "formatted") {
|
||||
// assert.Equal(t, "two", obj[1])
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotEmptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
|
||||
return NotEmpty(t, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotEqualf asserts that the specified values are NOT equal.
|
||||
//
|
||||
// assert.NotEqualf(t, obj1, obj2, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses).
|
||||
func NotEqualf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return NotEqual(t, expected, actual, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotNilf asserts that the specified object is not nil.
|
||||
//
|
||||
// assert.NotNilf(t, err, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotNilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
|
||||
return NotNil(t, object, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
|
||||
//
|
||||
// assert.NotPanicsf(t, func(){ RemainCalm() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotPanicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return NotPanics(t, f, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotRegexpf asserts that a specified regexp does not match a string.
|
||||
//
|
||||
// assert.NotRegexpf(t, regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
|
||||
// assert.NotRegexpf(t, "^start", "it's not starting", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotRegexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
|
||||
return NotRegexp(t, rx, str, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotSubsetf asserts that the specified list(array, slice...) contains not all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// assert.NotSubsetf(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func NotSubsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
|
||||
return NotSubset(t, list, subset, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// NotZerof asserts that i is not the zero value for its type and returns the truth.
|
||||
func NotZerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
|
||||
return NotZero(t, i, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
|
||||
//
|
||||
// assert.Panicsf(t, func(){ GoCrazy() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Panicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return Panics(t, f, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// PanicsWithValuef asserts that the code inside the specified PanicTestFunc panics, and that
|
||||
// the recovered panic value equals the expected panic value.
|
||||
//
|
||||
// assert.PanicsWithValuef(t, "crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func PanicsWithValuef(t TestingT, expected interface{}, f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return PanicsWithValue(t, expected, f, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Regexpf asserts that a specified regexp matches a string.
|
||||
//
|
||||
// assert.Regexpf(t, regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
|
||||
// assert.Regexpf(t, "start...$", "it's not starting", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Regexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
|
||||
return Regexp(t, rx, str, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Subsetf asserts that the specified list(array, slice...) contains all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// assert.Subsetf(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Subsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
|
||||
return Subset(t, list, subset, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Truef asserts that the specified value is true.
|
||||
//
|
||||
// assert.Truef(t, myBool, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func Truef(t TestingT, value bool, msg string, args ...interface{}) bool {
|
||||
return True(t, value, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// WithinDurationf asserts that the two times are within duration delta of each other.
|
||||
//
|
||||
// assert.WithinDurationf(t, time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func WithinDurationf(t TestingT, expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool {
|
||||
return WithinDuration(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
|
||||
}
|
||||
|
||||
// Zerof asserts that i is the zero value for its type and returns the truth.
|
||||
func Zerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
|
||||
return Zero(t, i, append([]interface{}{msg}, args...)...)
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
{{.CommentFormat}}
|
||||
func {{.DocInfo.Name}}f(t TestingT, {{.ParamsFormat}}) bool {
|
||||
return {{.DocInfo.Name}}(t, {{.ForwardedParamsFormat}})
|
||||
}
|
|
@ -0,0 +1,746 @@
|
|||
/*
|
||||
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
|
||||
* THIS FILE MUST NOT BE EDITED BY HAND
|
||||
*/
|
||||
|
||||
package assert
|
||||
|
||||
import (
|
||||
http "net/http"
|
||||
url "net/url"
|
||||
time "time"
|
||||
)
|
||||
|
||||
// Condition uses a Comparison to assert a complex condition.
|
||||
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool {
|
||||
return Condition(a.t, comp, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Conditionf uses a Comparison to assert a complex condition.
|
||||
func (a *Assertions) Conditionf(comp Comparison, msg string, args ...interface{}) bool {
|
||||
return Conditionf(a.t, comp, msg, args...)
|
||||
}
|
||||
|
||||
// Contains asserts that the specified string, list(array, slice...) or map contains the
|
||||
// specified substring or element.
|
||||
//
|
||||
// a.Contains("Hello World", "World")
|
||||
// a.Contains(["Hello", "World"], "World")
|
||||
// a.Contains({"Hello": "World"}, "Hello")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Contains(a.t, s, contains, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Containsf asserts that the specified string, list(array, slice...) or map contains the
|
||||
// specified substring or element.
|
||||
//
|
||||
// a.Containsf("Hello World", "World", "error message %s", "formatted")
|
||||
// a.Containsf(["Hello", "World"], "World", "error message %s", "formatted")
|
||||
// a.Containsf({"Hello": "World"}, "Hello", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Containsf(s interface{}, contains interface{}, msg string, args ...interface{}) bool {
|
||||
return Containsf(a.t, s, contains, msg, args...)
|
||||
}
|
||||
|
||||
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// a.Empty(obj)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Empty(a.t, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// a.Emptyf(obj, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Emptyf(object interface{}, msg string, args ...interface{}) bool {
|
||||
return Emptyf(a.t, object, msg, args...)
|
||||
}
|
||||
|
||||
// Equal asserts that two objects are equal.
|
||||
//
|
||||
// a.Equal(123, 123)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses). Function equality
|
||||
// cannot be determined and will always fail.
|
||||
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Equal(a.t, expected, actual, msgAndArgs...)
|
||||
}
|
||||
|
||||
// EqualError asserts that a function returned an error (i.e. not `nil`)
|
||||
// and that it is equal to the provided error.
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// a.EqualError(err, expectedErrorString)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool {
|
||||
return EqualError(a.t, theError, errString, msgAndArgs...)
|
||||
}
|
||||
|
||||
// EqualErrorf asserts that a function returned an error (i.e. not `nil`)
|
||||
// and that it is equal to the provided error.
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// a.EqualErrorf(err, expectedErrorString, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) EqualErrorf(theError error, errString string, msg string, args ...interface{}) bool {
|
||||
return EqualErrorf(a.t, theError, errString, msg, args...)
|
||||
}
|
||||
|
||||
// EqualValues asserts that two objects are equal or convertable to the same types
|
||||
// and equal.
|
||||
//
|
||||
// a.EqualValues(uint32(123), int32(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
|
||||
return EqualValues(a.t, expected, actual, msgAndArgs...)
|
||||
}
|
||||
|
||||
// EqualValuesf asserts that two objects are equal or convertable to the same types
|
||||
// and equal.
|
||||
//
|
||||
// a.EqualValuesf(uint32(123, "error message %s", "formatted"), int32(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) EqualValuesf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return EqualValuesf(a.t, expected, actual, msg, args...)
|
||||
}
|
||||
|
||||
// Equalf asserts that two objects are equal.
|
||||
//
|
||||
// a.Equalf(123, 123, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses). Function equality
|
||||
// cannot be determined and will always fail.
|
||||
func (a *Assertions) Equalf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return Equalf(a.t, expected, actual, msg, args...)
|
||||
}
|
||||
|
||||
// Error asserts that a function returned an error (i.e. not `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if a.Error(err) {
|
||||
// assert.Equal(t, expectedError, err)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool {
|
||||
return Error(a.t, err, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Errorf asserts that a function returned an error (i.e. not `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if a.Errorf(err, "error message %s", "formatted") {
|
||||
// assert.Equal(t, expectedErrorf, err)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Errorf(err error, msg string, args ...interface{}) bool {
|
||||
return Errorf(a.t, err, msg, args...)
|
||||
}
|
||||
|
||||
// Exactly asserts that two objects are equal is value and type.
|
||||
//
|
||||
// a.Exactly(int32(123), int64(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Exactly(a.t, expected, actual, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Exactlyf asserts that two objects are equal is value and type.
|
||||
//
|
||||
// a.Exactlyf(int32(123, "error message %s", "formatted"), int64(123))
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Exactlyf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return Exactlyf(a.t, expected, actual, msg, args...)
|
||||
}
|
||||
|
||||
// Fail reports a failure through
|
||||
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool {
|
||||
return Fail(a.t, failureMessage, msgAndArgs...)
|
||||
}
|
||||
|
||||
// FailNow fails test
|
||||
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool {
|
||||
return FailNow(a.t, failureMessage, msgAndArgs...)
|
||||
}
|
||||
|
||||
// FailNowf fails test
|
||||
func (a *Assertions) FailNowf(failureMessage string, msg string, args ...interface{}) bool {
|
||||
return FailNowf(a.t, failureMessage, msg, args...)
|
||||
}
|
||||
|
||||
// Failf reports a failure through
|
||||
func (a *Assertions) Failf(failureMessage string, msg string, args ...interface{}) bool {
|
||||
return Failf(a.t, failureMessage, msg, args...)
|
||||
}
|
||||
|
||||
// False asserts that the specified value is false.
|
||||
//
|
||||
// a.False(myBool)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool {
|
||||
return False(a.t, value, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Falsef asserts that the specified value is false.
|
||||
//
|
||||
// a.Falsef(myBool, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Falsef(value bool, msg string, args ...interface{}) bool {
|
||||
return Falsef(a.t, value, msg, args...)
|
||||
}
|
||||
|
||||
// HTTPBodyContains asserts that a specified handler returns a
|
||||
// body that contains a string.
|
||||
//
|
||||
// a.HTTPBodyContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyContains(a.t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPBodyContainsf asserts that a specified handler returns a
|
||||
// body that contains a string.
|
||||
//
|
||||
// a.HTTPBodyContainsf(myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPBodyContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyContainsf(a.t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPBodyNotContains asserts that a specified handler returns a
|
||||
// body that does not contain a string.
|
||||
//
|
||||
// a.HTTPBodyNotContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyNotContains(a.t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPBodyNotContainsf asserts that a specified handler returns a
|
||||
// body that does not contain a string.
|
||||
//
|
||||
// a.HTTPBodyNotContainsf(myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPBodyNotContainsf(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
|
||||
return HTTPBodyNotContainsf(a.t, handler, method, url, values, str)
|
||||
}
|
||||
|
||||
// HTTPError asserts that a specified handler returns an error status code.
|
||||
//
|
||||
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPError(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPErrorf asserts that a specified handler returns an error status code.
|
||||
//
|
||||
// a.HTTPErrorf(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
|
||||
func (a *Assertions) HTTPErrorf(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPErrorf(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPRedirect asserts that a specified handler returns a redirect status code.
|
||||
//
|
||||
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPRedirect(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
|
||||
//
|
||||
// a.HTTPRedirectf(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
|
||||
func (a *Assertions) HTTPRedirectf(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPRedirectf(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPSuccess asserts that a specified handler returns a success status code.
|
||||
//
|
||||
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPSuccess(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// HTTPSuccessf asserts that a specified handler returns a success status code.
|
||||
//
|
||||
// a.HTTPSuccessf(myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) HTTPSuccessf(handler http.HandlerFunc, method string, url string, values url.Values) bool {
|
||||
return HTTPSuccessf(a.t, handler, method, url, values)
|
||||
}
|
||||
|
||||
// Implements asserts that an object is implemented by the specified interface.
|
||||
//
|
||||
// a.Implements((*MyInterface)(nil), new(MyObject))
|
||||
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Implements(a.t, interfaceObject, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Implementsf asserts that an object is implemented by the specified interface.
|
||||
//
|
||||
// a.Implementsf((*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
|
||||
func (a *Assertions) Implementsf(interfaceObject interface{}, object interface{}, msg string, args ...interface{}) bool {
|
||||
return Implementsf(a.t, interfaceObject, object, msg, args...)
|
||||
}
|
||||
|
||||
// InDelta asserts that the two numerals are within delta of each other.
|
||||
//
|
||||
// a.InDelta(math.Pi, (22 / 7.0), 0.01)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
|
||||
return InDelta(a.t, expected, actual, delta, msgAndArgs...)
|
||||
}
|
||||
|
||||
// InDeltaSlice is the same as InDelta, except it compares two slices.
|
||||
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
|
||||
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...)
|
||||
}
|
||||
|
||||
// InDeltaSlicef is the same as InDelta, except it compares two slices.
|
||||
func (a *Assertions) InDeltaSlicef(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
|
||||
return InDeltaSlicef(a.t, expected, actual, delta, msg, args...)
|
||||
}
|
||||
|
||||
// InDeltaf asserts that the two numerals are within delta of each other.
|
||||
//
|
||||
// a.InDeltaf(math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) InDeltaf(expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
|
||||
return InDeltaf(a.t, expected, actual, delta, msg, args...)
|
||||
}
|
||||
|
||||
// InEpsilon asserts that expected and actual have a relative error less than epsilon
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
|
||||
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
|
||||
}
|
||||
|
||||
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
|
||||
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
|
||||
return InEpsilonSlice(a.t, expected, actual, epsilon, msgAndArgs...)
|
||||
}
|
||||
|
||||
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
|
||||
func (a *Assertions) InEpsilonSlicef(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
|
||||
return InEpsilonSlicef(a.t, expected, actual, epsilon, msg, args...)
|
||||
}
|
||||
|
||||
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) InEpsilonf(expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
|
||||
return InEpsilonf(a.t, expected, actual, epsilon, msg, args...)
|
||||
}
|
||||
|
||||
// IsType asserts that the specified objects are of the same type.
|
||||
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return IsType(a.t, expectedType, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// IsTypef asserts that the specified objects are of the same type.
|
||||
func (a *Assertions) IsTypef(expectedType interface{}, object interface{}, msg string, args ...interface{}) bool {
|
||||
return IsTypef(a.t, expectedType, object, msg, args...)
|
||||
}
|
||||
|
||||
// JSONEq asserts that two JSON strings are equivalent.
|
||||
//
|
||||
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool {
|
||||
return JSONEq(a.t, expected, actual, msgAndArgs...)
|
||||
}
|
||||
|
||||
// JSONEqf asserts that two JSON strings are equivalent.
|
||||
//
|
||||
// a.JSONEqf(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) JSONEqf(expected string, actual string, msg string, args ...interface{}) bool {
|
||||
return JSONEqf(a.t, expected, actual, msg, args...)
|
||||
}
|
||||
|
||||
// Len asserts that the specified object has specific length.
|
||||
// Len also fails if the object has a type that len() not accept.
|
||||
//
|
||||
// a.Len(mySlice, 3)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool {
|
||||
return Len(a.t, object, length, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Lenf asserts that the specified object has specific length.
|
||||
// Lenf also fails if the object has a type that len() not accept.
|
||||
//
|
||||
// a.Lenf(mySlice, 3, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Lenf(object interface{}, length int, msg string, args ...interface{}) bool {
|
||||
return Lenf(a.t, object, length, msg, args...)
|
||||
}
|
||||
|
||||
// Nil asserts that the specified object is nil.
|
||||
//
|
||||
// a.Nil(err)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Nil(a.t, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Nilf asserts that the specified object is nil.
|
||||
//
|
||||
// a.Nilf(err, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Nilf(object interface{}, msg string, args ...interface{}) bool {
|
||||
return Nilf(a.t, object, msg, args...)
|
||||
}
|
||||
|
||||
// NoError asserts that a function returned no error (i.e. `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if a.NoError(err) {
|
||||
// assert.Equal(t, expectedObj, actualObj)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool {
|
||||
return NoError(a.t, err, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NoErrorf asserts that a function returned no error (i.e. `nil`).
|
||||
//
|
||||
// actualObj, err := SomeFunction()
|
||||
// if a.NoErrorf(err, "error message %s", "formatted") {
|
||||
// assert.Equal(t, expectedObj, actualObj)
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NoErrorf(err error, msg string, args ...interface{}) bool {
|
||||
return NoErrorf(a.t, err, msg, args...)
|
||||
}
|
||||
|
||||
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
|
||||
// specified substring or element.
|
||||
//
|
||||
// a.NotContains("Hello World", "Earth")
|
||||
// a.NotContains(["Hello", "World"], "Earth")
|
||||
// a.NotContains({"Hello": "World"}, "Earth")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotContains(a.t, s, contains, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the
|
||||
// specified substring or element.
|
||||
//
|
||||
// a.NotContainsf("Hello World", "Earth", "error message %s", "formatted")
|
||||
// a.NotContainsf(["Hello", "World"], "Earth", "error message %s", "formatted")
|
||||
// a.NotContainsf({"Hello": "World"}, "Earth", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotContainsf(s interface{}, contains interface{}, msg string, args ...interface{}) bool {
|
||||
return NotContainsf(a.t, s, contains, msg, args...)
|
||||
}
|
||||
|
||||
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// if a.NotEmpty(obj) {
|
||||
// assert.Equal(t, "two", obj[1])
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotEmpty(a.t, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotEmptyf asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
|
||||
// a slice or a channel with len == 0.
|
||||
//
|
||||
// if a.NotEmptyf(obj, "error message %s", "formatted") {
|
||||
// assert.Equal(t, "two", obj[1])
|
||||
// }
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotEmptyf(object interface{}, msg string, args ...interface{}) bool {
|
||||
return NotEmptyf(a.t, object, msg, args...)
|
||||
}
|
||||
|
||||
// NotEqual asserts that the specified values are NOT equal.
|
||||
//
|
||||
// a.NotEqual(obj1, obj2)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses).
|
||||
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotEqual(a.t, expected, actual, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotEqualf asserts that the specified values are NOT equal.
|
||||
//
|
||||
// a.NotEqualf(obj1, obj2, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
//
|
||||
// Pointer variable equality is determined based on the equality of the
|
||||
// referenced values (as opposed to the memory addresses).
|
||||
func (a *Assertions) NotEqualf(expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
|
||||
return NotEqualf(a.t, expected, actual, msg, args...)
|
||||
}
|
||||
|
||||
// NotNil asserts that the specified object is not nil.
|
||||
//
|
||||
// a.NotNil(err)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotNil(a.t, object, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotNilf asserts that the specified object is not nil.
|
||||
//
|
||||
// a.NotNilf(err, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotNilf(object interface{}, msg string, args ...interface{}) bool {
|
||||
return NotNilf(a.t, object, msg, args...)
|
||||
}
|
||||
|
||||
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
|
||||
//
|
||||
// a.NotPanics(func(){ RemainCalm() })
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
|
||||
return NotPanics(a.t, f, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
|
||||
//
|
||||
// a.NotPanicsf(func(){ RemainCalm() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotPanicsf(f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return NotPanicsf(a.t, f, msg, args...)
|
||||
}
|
||||
|
||||
// NotRegexp asserts that a specified regexp does not match a string.
|
||||
//
|
||||
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting")
|
||||
// a.NotRegexp("^start", "it's not starting")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotRegexp(a.t, rx, str, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotRegexpf asserts that a specified regexp does not match a string.
|
||||
//
|
||||
// a.NotRegexpf(regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
|
||||
// a.NotRegexpf("^start", "it's not starting", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotRegexpf(rx interface{}, str interface{}, msg string, args ...interface{}) bool {
|
||||
return NotRegexpf(a.t, rx, str, msg, args...)
|
||||
}
|
||||
|
||||
// NotSubset asserts that the specified list(array, slice...) contains not all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// a.NotSubset([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotSubset(list interface{}, subset interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotSubset(a.t, list, subset, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotSubsetf asserts that the specified list(array, slice...) contains not all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// a.NotSubsetf([1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) NotSubsetf(list interface{}, subset interface{}, msg string, args ...interface{}) bool {
|
||||
return NotSubsetf(a.t, list, subset, msg, args...)
|
||||
}
|
||||
|
||||
// NotZero asserts that i is not the zero value for its type and returns the truth.
|
||||
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool {
|
||||
return NotZero(a.t, i, msgAndArgs...)
|
||||
}
|
||||
|
||||
// NotZerof asserts that i is not the zero value for its type and returns the truth.
|
||||
func (a *Assertions) NotZerof(i interface{}, msg string, args ...interface{}) bool {
|
||||
return NotZerof(a.t, i, msg, args...)
|
||||
}
|
||||
|
||||
// Panics asserts that the code inside the specified PanicTestFunc panics.
|
||||
//
|
||||
// a.Panics(func(){ GoCrazy() })
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
|
||||
return Panics(a.t, f, msgAndArgs...)
|
||||
}
|
||||
|
||||
// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
|
||||
// the recovered panic value equals the expected panic value.
|
||||
//
|
||||
// a.PanicsWithValue("crazy error", func(){ GoCrazy() })
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) PanicsWithValue(expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
|
||||
return PanicsWithValue(a.t, expected, f, msgAndArgs...)
|
||||
}
|
||||
|
||||
// PanicsWithValuef asserts that the code inside the specified PanicTestFunc panics, and that
|
||||
// the recovered panic value equals the expected panic value.
|
||||
//
|
||||
// a.PanicsWithValuef("crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) PanicsWithValuef(expected interface{}, f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return PanicsWithValuef(a.t, expected, f, msg, args...)
|
||||
}
|
||||
|
||||
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
|
||||
//
|
||||
// a.Panicsf(func(){ GoCrazy() }, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Panicsf(f PanicTestFunc, msg string, args ...interface{}) bool {
|
||||
return Panicsf(a.t, f, msg, args...)
|
||||
}
|
||||
|
||||
// Regexp asserts that a specified regexp matches a string.
|
||||
//
|
||||
// a.Regexp(regexp.MustCompile("start"), "it's starting")
|
||||
// a.Regexp("start...$", "it's not starting")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Regexp(a.t, rx, str, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Regexpf asserts that a specified regexp matches a string.
|
||||
//
|
||||
// a.Regexpf(regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
|
||||
// a.Regexpf("start...$", "it's not starting", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Regexpf(rx interface{}, str interface{}, msg string, args ...interface{}) bool {
|
||||
return Regexpf(a.t, rx, str, msg, args...)
|
||||
}
|
||||
|
||||
// Subset asserts that the specified list(array, slice...) contains all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// a.Subset([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Subset(list interface{}, subset interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Subset(a.t, list, subset, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Subsetf asserts that the specified list(array, slice...) contains all
|
||||
// elements given in the specified subset(array, slice...).
|
||||
//
|
||||
// a.Subsetf([1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Subsetf(list interface{}, subset interface{}, msg string, args ...interface{}) bool {
|
||||
return Subsetf(a.t, list, subset, msg, args...)
|
||||
}
|
||||
|
||||
// True asserts that the specified value is true.
|
||||
//
|
||||
// a.True(myBool)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool {
|
||||
return True(a.t, value, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Truef asserts that the specified value is true.
|
||||
//
|
||||
// a.Truef(myBool, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) Truef(value bool, msg string, args ...interface{}) bool {
|
||||
return Truef(a.t, value, msg, args...)
|
||||
}
|
||||
|
||||
// WithinDuration asserts that the two times are within duration delta of each other.
|
||||
//
|
||||
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
|
||||
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
|
||||
}
|
||||
|
||||
// WithinDurationf asserts that the two times are within duration delta of each other.
|
||||
//
|
||||
// a.WithinDurationf(time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func (a *Assertions) WithinDurationf(expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool {
|
||||
return WithinDurationf(a.t, expected, actual, delta, msg, args...)
|
||||
}
|
||||
|
||||
// Zero asserts that i is the zero value for its type and returns the truth.
|
||||
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool {
|
||||
return Zero(a.t, i, msgAndArgs...)
|
||||
}
|
||||
|
||||
// Zerof asserts that i is the zero value for its type and returns the truth.
|
||||
func (a *Assertions) Zerof(i interface{}, msg string, args ...interface{}) bool {
|
||||
return Zerof(a.t, i, msg, args...)
|
||||
}
|
4
vendor/github.com/stretchr/testify/assert/assertion_forward.go.tmpl
generated
vendored
Normal file
4
vendor/github.com/stretchr/testify/assert/assertion_forward.go.tmpl
generated
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
{{.CommentWithoutT "a"}}
|
||||
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool {
|
||||
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}})
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,45 @@
|
|||
// Package assert provides a set of comprehensive testing tools for use with the normal Go testing system.
|
||||
//
|
||||
// Example Usage
|
||||
//
|
||||
// The following is a complete example using assert in a standard test function:
|
||||
// import (
|
||||
// "testing"
|
||||
// "github.com/stretchr/testify/assert"
|
||||
// )
|
||||
//
|
||||
// func TestSomething(t *testing.T) {
|
||||
//
|
||||
// var a string = "Hello"
|
||||
// var b string = "Hello"
|
||||
//
|
||||
// assert.Equal(t, a, b, "The two words should be the same.")
|
||||
//
|
||||
// }
|
||||
//
|
||||
// if you assert many times, use the format below:
|
||||
//
|
||||
// import (
|
||||
// "testing"
|
||||
// "github.com/stretchr/testify/assert"
|
||||
// )
|
||||
//
|
||||
// func TestSomething(t *testing.T) {
|
||||
// assert := assert.New(t)
|
||||
//
|
||||
// var a string = "Hello"
|
||||
// var b string = "Hello"
|
||||
//
|
||||
// assert.Equal(a, b, "The two words should be the same.")
|
||||
// }
|
||||
//
|
||||
// Assertions
|
||||
//
|
||||
// Assertions allow you to easily write test code, and are global funcs in the `assert` package.
|
||||
// All assertion functions take, as the first argument, the `*testing.T` object provided by the
|
||||
// testing framework. This allows the assertion funcs to write the failings and other details to
|
||||
// the correct place.
|
||||
//
|
||||
// Every assertion function also takes an optional string message as the final argument,
|
||||
// allowing custom error messages to be appended to the message the assertion method outputs.
|
||||
package assert
|
|
@ -0,0 +1,10 @@
|
|||
package assert
|
||||
|
||||
import (
|
||||
"errors"
|
||||
)
|
||||
|
||||
// AnError is an error instance useful for testing. If the code does not care
|
||||
// about error specifics, and only needs to return the error for example, this
|
||||
// error should be used to make the test code more readable.
|
||||
var AnError = errors.New("assert.AnError general error for testing")
|
|
@ -0,0 +1,16 @@
|
|||
package assert
|
||||
|
||||
// Assertions provides assertion methods around the
|
||||
// TestingT interface.
|
||||
type Assertions struct {
|
||||
t TestingT
|
||||
}
|
||||
|
||||
// New makes a new Assertions object for the specified TestingT.
|
||||
func New(t TestingT) *Assertions {
|
||||
return &Assertions{
|
||||
t: t,
|
||||
}
|
||||
}
|
||||
|
||||
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl -include-format-funcs
|
|
@ -0,0 +1,127 @@
|
|||
package assert
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"net/url"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// httpCode is a helper that returns HTTP code of the response. It returns -1 and
|
||||
// an error if building a new request fails.
|
||||
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) (int, error) {
|
||||
w := httptest.NewRecorder()
|
||||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
|
||||
if err != nil {
|
||||
return -1, err
|
||||
}
|
||||
handler(w, req)
|
||||
return w.Code, nil
|
||||
}
|
||||
|
||||
// HTTPSuccess asserts that a specified handler returns a success status code.
|
||||
//
|
||||
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil)
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
|
||||
code, err := httpCode(handler, method, url, values)
|
||||
if err != nil {
|
||||
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
|
||||
return false
|
||||
}
|
||||
|
||||
isSuccessCode := code >= http.StatusOK && code <= http.StatusPartialContent
|
||||
if !isSuccessCode {
|
||||
Fail(t, fmt.Sprintf("Expected HTTP success status code for %q but received %d", url+"?"+values.Encode(), code))
|
||||
}
|
||||
|
||||
return isSuccessCode
|
||||
}
|
||||
|
||||
// HTTPRedirect asserts that a specified handler returns a redirect status code.
|
||||
//
|
||||
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
|
||||
code, err := httpCode(handler, method, url, values)
|
||||
if err != nil {
|
||||
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
|
||||
return false
|
||||
}
|
||||
|
||||
isRedirectCode := code >= http.StatusMultipleChoices && code <= http.StatusTemporaryRedirect
|
||||
if !isRedirectCode {
|
||||
Fail(t, fmt.Sprintf("Expected HTTP redirect status code for %q but received %d", url+"?"+values.Encode(), code))
|
||||
}
|
||||
|
||||
return isRedirectCode
|
||||
}
|
||||
|
||||
// HTTPError asserts that a specified handler returns an error status code.
|
||||
//
|
||||
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
|
||||
code, err := httpCode(handler, method, url, values)
|
||||
if err != nil {
|
||||
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
|
||||
return false
|
||||
}
|
||||
|
||||
isErrorCode := code >= http.StatusBadRequest
|
||||
if !isErrorCode {
|
||||
Fail(t, fmt.Sprintf("Expected HTTP error status code for %q but received %d", url+"?"+values.Encode(), code))
|
||||
}
|
||||
|
||||
return isErrorCode
|
||||
}
|
||||
|
||||
// HTTPBody is a helper that returns HTTP body of the response. It returns
|
||||
// empty string if building a new request fails.
|
||||
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string {
|
||||
w := httptest.NewRecorder()
|
||||
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
handler(w, req)
|
||||
return w.Body.String()
|
||||
}
|
||||
|
||||
// HTTPBodyContains asserts that a specified handler returns a
|
||||
// body that contains a string.
|
||||
//
|
||||
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
|
||||
body := HTTPBody(handler, method, url, values)
|
||||
|
||||
contains := strings.Contains(body, fmt.Sprint(str))
|
||||
if !contains {
|
||||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body))
|
||||
}
|
||||
|
||||
return contains
|
||||
}
|
||||
|
||||
// HTTPBodyNotContains asserts that a specified handler returns a
|
||||
// body that does not contain a string.
|
||||
//
|
||||
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
|
||||
//
|
||||
// Returns whether the assertion was successful (true) or not (false).
|
||||
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
|
||||
body := HTTPBody(handler, method, url, values)
|
||||
|
||||
contains := strings.Contains(body, fmt.Sprint(str))
|
||||
if contains {
|
||||
Fail(t, fmt.Sprintf("Expected response body for \"%s\" to NOT contain \"%s\" but found \"%s\"", url+"?"+values.Encode(), str, body))
|
||||
}
|
||||
|
||||
return !contains
|
||||
}
|
|
@ -0,0 +1,44 @@
|
|||
// Package mock provides a system by which it is possible to mock your objects
|
||||
// and verify calls are happening as expected.
|
||||
//
|
||||
// Example Usage
|
||||
//
|
||||
// The mock package provides an object, Mock, that tracks activity on another object. It is usually
|
||||
// embedded into a test object as shown below:
|
||||
//
|
||||
// type MyTestObject struct {
|
||||
// // add a Mock object instance
|
||||
// mock.Mock
|
||||
//
|
||||
// // other fields go here as normal
|
||||
// }
|
||||
//
|
||||
// When implementing the methods of an interface, you wire your functions up
|
||||
// to call the Mock.Called(args...) method, and return the appropriate values.
|
||||
//
|
||||
// For example, to mock a method that saves the name and age of a person and returns
|
||||
// the year of their birth or an error, you might write this:
|
||||
//
|
||||
// func (o *MyTestObject) SavePersonDetails(firstname, lastname string, age int) (int, error) {
|
||||
// args := o.Called(firstname, lastname, age)
|
||||
// return args.Int(0), args.Error(1)
|
||||
// }
|
||||
//
|
||||
// The Int, Error and Bool methods are examples of strongly typed getters that take the argument
|
||||
// index position. Given this argument list:
|
||||
//
|
||||
// (12, true, "Something")
|
||||
//
|
||||
// You could read them out strongly typed like this:
|
||||
//
|
||||
// args.Int(0)
|
||||
// args.Bool(1)
|
||||
// args.String(2)
|
||||
//
|
||||
// For objects of your own type, use the generic Arguments.Get(index) method and make a type assertion:
|
||||
//
|
||||
// return args.Get(0).(*MyObject), args.Get(1).(*AnotherObjectOfMine)
|
||||
//
|
||||
// This may cause a panic if the object you are getting is nil (the type assertion will fail), in those
|
||||
// cases you should check for nil first.
|
||||
package mock
|
|
@ -0,0 +1,776 @@
|
|||
package mock
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/davecgh/go-spew/spew"
|
||||
"github.com/pmezard/go-difflib/difflib"
|
||||
"github.com/stretchr/objx"
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// TestingT is an interface wrapper around *testing.T
|
||||
type TestingT interface {
|
||||
Logf(format string, args ...interface{})
|
||||
Errorf(format string, args ...interface{})
|
||||
FailNow()
|
||||
}
|
||||
|
||||
/*
|
||||
Call
|
||||
*/
|
||||
|
||||
// Call represents a method call and is used for setting expectations,
|
||||
// as well as recording activity.
|
||||
type Call struct {
|
||||
Parent *Mock
|
||||
|
||||
// The name of the method that was or will be called.
|
||||
Method string
|
||||
|
||||
// Holds the arguments of the method.
|
||||
Arguments Arguments
|
||||
|
||||
// Holds the arguments that should be returned when
|
||||
// this method is called.
|
||||
ReturnArguments Arguments
|
||||
|
||||
// The number of times to return the return arguments when setting
|
||||
// expectations. 0 means to always return the value.
|
||||
Repeatability int
|
||||
|
||||
// Amount of times this call has been called
|
||||
totalCalls int
|
||||
|
||||
// Holds a channel that will be used to block the Return until it either
|
||||
// receives a message or is closed. nil means it returns immediately.
|
||||
WaitFor <-chan time.Time
|
||||
|
||||
// Holds a handler used to manipulate arguments content that are passed by
|
||||
// reference. It's useful when mocking methods such as unmarshalers or
|
||||
// decoders.
|
||||
RunFn func(Arguments)
|
||||
}
|
||||
|
||||
func newCall(parent *Mock, methodName string, methodArguments ...interface{}) *Call {
|
||||
return &Call{
|
||||
Parent: parent,
|
||||
Method: methodName,
|
||||
Arguments: methodArguments,
|
||||
ReturnArguments: make([]interface{}, 0),
|
||||
Repeatability: 0,
|
||||
WaitFor: nil,
|
||||
RunFn: nil,
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Call) lock() {
|
||||
c.Parent.mutex.Lock()
|
||||
}
|
||||
|
||||
func (c *Call) unlock() {
|
||||
c.Parent.mutex.Unlock()
|
||||
}
|
||||
|
||||
// Return specifies the return arguments for the expectation.
|
||||
//
|
||||
// Mock.On("DoSomething").Return(errors.New("failed"))
|
||||
func (c *Call) Return(returnArguments ...interface{}) *Call {
|
||||
c.lock()
|
||||
defer c.unlock()
|
||||
|
||||
c.ReturnArguments = returnArguments
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
// Once indicates that that the mock should only return the value once.
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Once()
|
||||
func (c *Call) Once() *Call {
|
||||
return c.Times(1)
|
||||
}
|
||||
|
||||
// Twice indicates that that the mock should only return the value twice.
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Twice()
|
||||
func (c *Call) Twice() *Call {
|
||||
return c.Times(2)
|
||||
}
|
||||
|
||||
// Times indicates that that the mock should only return the indicated number
|
||||
// of times.
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Times(5)
|
||||
func (c *Call) Times(i int) *Call {
|
||||
c.lock()
|
||||
defer c.unlock()
|
||||
c.Repeatability = i
|
||||
return c
|
||||
}
|
||||
|
||||
// WaitUntil sets the channel that will block the mock's return until its closed
|
||||
// or a message is received.
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2).WaitUntil(time.After(time.Second))
|
||||
func (c *Call) WaitUntil(w <-chan time.Time) *Call {
|
||||
c.lock()
|
||||
defer c.unlock()
|
||||
c.WaitFor = w
|
||||
return c
|
||||
}
|
||||
|
||||
// After sets how long to block until the call returns
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2).After(time.Second)
|
||||
func (c *Call) After(d time.Duration) *Call {
|
||||
return c.WaitUntil(time.After(d))
|
||||
}
|
||||
|
||||
// Run sets a handler to be called before returning. It can be used when
|
||||
// mocking a method such as unmarshalers that takes a pointer to a struct and
|
||||
// sets properties in such struct
|
||||
//
|
||||
// Mock.On("Unmarshal", AnythingOfType("*map[string]interface{}").Return().Run(func(args Arguments) {
|
||||
// arg := args.Get(0).(*map[string]interface{})
|
||||
// arg["foo"] = "bar"
|
||||
// })
|
||||
func (c *Call) Run(fn func(args Arguments)) *Call {
|
||||
c.lock()
|
||||
defer c.unlock()
|
||||
c.RunFn = fn
|
||||
return c
|
||||
}
|
||||
|
||||
// On chains a new expectation description onto the mocked interface. This
|
||||
// allows syntax like.
|
||||
//
|
||||
// Mock.
|
||||
// On("MyMethod", 1).Return(nil).
|
||||
// On("MyOtherMethod", 'a', 'b', 'c').Return(errors.New("Some Error"))
|
||||
func (c *Call) On(methodName string, arguments ...interface{}) *Call {
|
||||
return c.Parent.On(methodName, arguments...)
|
||||
}
|
||||
|
||||
// Mock is the workhorse used to track activity on another object.
|
||||
// For an example of its usage, refer to the "Example Usage" section at the top
|
||||
// of this document.
|
||||
type Mock struct {
|
||||
// Represents the calls that are expected of
|
||||
// an object.
|
||||
ExpectedCalls []*Call
|
||||
|
||||
// Holds the calls that were made to this mocked object.
|
||||
Calls []Call
|
||||
|
||||
// TestData holds any data that might be useful for testing. Testify ignores
|
||||
// this data completely allowing you to do whatever you like with it.
|
||||
testData objx.Map
|
||||
|
||||
mutex sync.Mutex
|
||||
}
|
||||
|
||||
// TestData holds any data that might be useful for testing. Testify ignores
|
||||
// this data completely allowing you to do whatever you like with it.
|
||||
func (m *Mock) TestData() objx.Map {
|
||||
|
||||
if m.testData == nil {
|
||||
m.testData = make(objx.Map)
|
||||
}
|
||||
|
||||
return m.testData
|
||||
}
|
||||
|
||||
/*
|
||||
Setting expectations
|
||||
*/
|
||||
|
||||
// On starts a description of an expectation of the specified method
|
||||
// being called.
|
||||
//
|
||||
// Mock.On("MyMethod", arg1, arg2)
|
||||
func (m *Mock) On(methodName string, arguments ...interface{}) *Call {
|
||||
for _, arg := range arguments {
|
||||
if v := reflect.ValueOf(arg); v.Kind() == reflect.Func {
|
||||
panic(fmt.Sprintf("cannot use Func in expectations. Use mock.AnythingOfType(\"%T\")", arg))
|
||||
}
|
||||
}
|
||||
|
||||
m.mutex.Lock()
|
||||
defer m.mutex.Unlock()
|
||||
c := newCall(m, methodName, arguments...)
|
||||
m.ExpectedCalls = append(m.ExpectedCalls, c)
|
||||
return c
|
||||
}
|
||||
|
||||
// /*
|
||||
// Recording and responding to activity
|
||||
// */
|
||||
|
||||
func (m *Mock) findExpectedCall(method string, arguments ...interface{}) (int, *Call) {
|
||||
for i, call := range m.ExpectedCalls {
|
||||
if call.Method == method && call.Repeatability > -1 {
|
||||
|
||||
_, diffCount := call.Arguments.Diff(arguments)
|
||||
if diffCount == 0 {
|
||||
return i, call
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
return -1, nil
|
||||
}
|
||||
|
||||
func (m *Mock) findClosestCall(method string, arguments ...interface{}) (bool, *Call) {
|
||||
diffCount := 0
|
||||
var closestCall *Call
|
||||
|
||||
for _, call := range m.expectedCalls() {
|
||||
if call.Method == method {
|
||||
|
||||
_, tempDiffCount := call.Arguments.Diff(arguments)
|
||||
if tempDiffCount < diffCount || diffCount == 0 {
|
||||
diffCount = tempDiffCount
|
||||
closestCall = call
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if closestCall == nil {
|
||||
return false, nil
|
||||
}
|
||||
|
||||
return true, closestCall
|
||||
}
|
||||
|
||||
func callString(method string, arguments Arguments, includeArgumentValues bool) string {
|
||||
|
||||
var argValsString string
|
||||
if includeArgumentValues {
|
||||
var argVals []string
|
||||
for argIndex, arg := range arguments {
|
||||
argVals = append(argVals, fmt.Sprintf("%d: %#v", argIndex, arg))
|
||||
}
|
||||
argValsString = fmt.Sprintf("\n\t\t%s", strings.Join(argVals, "\n\t\t"))
|
||||
}
|
||||
|
||||
return fmt.Sprintf("%s(%s)%s", method, arguments.String(), argValsString)
|
||||
}
|
||||
|
||||
// Called tells the mock object that a method has been called, and gets an array
|
||||
// of arguments to return. Panics if the call is unexpected (i.e. not preceded by
|
||||
// appropriate .On .Return() calls)
|
||||
// If Call.WaitFor is set, blocks until the channel is closed or receives a message.
|
||||
func (m *Mock) Called(arguments ...interface{}) Arguments {
|
||||
// get the calling function's name
|
||||
pc, _, _, ok := runtime.Caller(1)
|
||||
if !ok {
|
||||
panic("Couldn't get the caller information")
|
||||
}
|
||||
functionPath := runtime.FuncForPC(pc).Name()
|
||||
//Next four lines are required to use GCCGO function naming conventions.
|
||||
//For Ex: github_com_docker_libkv_store_mock.WatchTree.pN39_github_com_docker_libkv_store_mock.Mock
|
||||
//uses interface information unlike golang github.com/docker/libkv/store/mock.(*Mock).WatchTree
|
||||
//With GCCGO we need to remove interface information starting from pN<dd>.
|
||||
re := regexp.MustCompile("\\.pN\\d+_")
|
||||
if re.MatchString(functionPath) {
|
||||
functionPath = re.Split(functionPath, -1)[0]
|
||||
}
|
||||
parts := strings.Split(functionPath, ".")
|
||||
functionName := parts[len(parts)-1]
|
||||
return m.MethodCalled(functionName, arguments...)
|
||||
}
|
||||
|
||||
// MethodCalled tells the mock object that the given method has been called, and gets
|
||||
// an array of arguments to return. Panics if the call is unexpected (i.e. not preceded
|
||||
// by appropriate .On .Return() calls)
|
||||
// If Call.WaitFor is set, blocks until the channel is closed or receives a message.
|
||||
func (m *Mock) MethodCalled(methodName string, arguments ...interface{}) Arguments {
|
||||
m.mutex.Lock()
|
||||
found, call := m.findExpectedCall(methodName, arguments...)
|
||||
|
||||
if found < 0 {
|
||||
// we have to fail here - because we don't know what to do
|
||||
// as the return arguments. This is because:
|
||||
//
|
||||
// a) this is a totally unexpected call to this method,
|
||||
// b) the arguments are not what was expected, or
|
||||
// c) the developer has forgotten to add an accompanying On...Return pair.
|
||||
|
||||
closestFound, closestCall := m.findClosestCall(methodName, arguments...)
|
||||
m.mutex.Unlock()
|
||||
|
||||
if closestFound {
|
||||
panic(fmt.Sprintf("\n\nmock: Unexpected Method Call\n-----------------------------\n\n%s\n\nThe closest call I have is: \n\n%s\n\n%s\n", callString(methodName, arguments, true), callString(methodName, closestCall.Arguments, true), diffArguments(arguments, closestCall.Arguments)))
|
||||
} else {
|
||||
panic(fmt.Sprintf("\nassert: mock: I don't know what to return because the method call was unexpected.\n\tEither do Mock.On(\"%s\").Return(...) first, or remove the %s() call.\n\tThis method was unexpected:\n\t\t%s\n\tat: %s", methodName, methodName, callString(methodName, arguments, true), assert.CallerInfo()))
|
||||
}
|
||||
}
|
||||
|
||||
switch {
|
||||
case call.Repeatability == 1:
|
||||
call.Repeatability = -1
|
||||
call.totalCalls++
|
||||
|
||||
case call.Repeatability > 1:
|
||||
call.Repeatability--
|
||||
call.totalCalls++
|
||||
|
||||
case call.Repeatability == 0:
|
||||
call.totalCalls++
|
||||
}
|
||||
|
||||
// add the call
|
||||
m.Calls = append(m.Calls, *newCall(m, methodName, arguments...))
|
||||
m.mutex.Unlock()
|
||||
|
||||
// block if specified
|
||||
if call.WaitFor != nil {
|
||||
<-call.WaitFor
|
||||
}
|
||||
|
||||
if call.RunFn != nil {
|
||||
call.RunFn(arguments)
|
||||
}
|
||||
|
||||
return call.ReturnArguments
|
||||
}
|
||||
|
||||
/*
|
||||
Assertions
|
||||
*/
|
||||
|
||||
type assertExpectationser interface {
|
||||
AssertExpectations(TestingT) bool
|
||||
}
|
||||
|
||||
// AssertExpectationsForObjects asserts that everything specified with On and Return
|
||||
// of the specified objects was in fact called as expected.
|
||||
//
|
||||
// Calls may have occurred in any order.
|
||||
func AssertExpectationsForObjects(t TestingT, testObjects ...interface{}) bool {
|
||||
for _, obj := range testObjects {
|
||||
if m, ok := obj.(Mock); ok {
|
||||
t.Logf("Deprecated mock.AssertExpectationsForObjects(myMock.Mock) use mock.AssertExpectationsForObjects(myMock)")
|
||||
obj = &m
|
||||
}
|
||||
m := obj.(assertExpectationser)
|
||||
if !m.AssertExpectations(t) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// AssertExpectations asserts that everything specified with On and Return was
|
||||
// in fact called as expected. Calls may have occurred in any order.
|
||||
func (m *Mock) AssertExpectations(t TestingT) bool {
|
||||
m.mutex.Lock()
|
||||
defer m.mutex.Unlock()
|
||||
var somethingMissing bool
|
||||
var failedExpectations int
|
||||
|
||||
// iterate through each expectation
|
||||
expectedCalls := m.expectedCalls()
|
||||
for _, expectedCall := range expectedCalls {
|
||||
if !m.methodWasCalled(expectedCall.Method, expectedCall.Arguments) && expectedCall.totalCalls == 0 {
|
||||
somethingMissing = true
|
||||
failedExpectations++
|
||||
t.Logf("\u274C\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
|
||||
} else {
|
||||
if expectedCall.Repeatability > 0 {
|
||||
somethingMissing = true
|
||||
failedExpectations++
|
||||
} else {
|
||||
t.Logf("\u2705\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if somethingMissing {
|
||||
t.Errorf("FAIL: %d out of %d expectation(s) were met.\n\tThe code you are testing needs to make %d more call(s).\n\tat: %s", len(expectedCalls)-failedExpectations, len(expectedCalls), failedExpectations, assert.CallerInfo())
|
||||
}
|
||||
|
||||
return !somethingMissing
|
||||
}
|
||||
|
||||
// AssertNumberOfCalls asserts that the method was called expectedCalls times.
|
||||
func (m *Mock) AssertNumberOfCalls(t TestingT, methodName string, expectedCalls int) bool {
|
||||
m.mutex.Lock()
|
||||
defer m.mutex.Unlock()
|
||||
var actualCalls int
|
||||
for _, call := range m.calls() {
|
||||
if call.Method == methodName {
|
||||
actualCalls++
|
||||
}
|
||||
}
|
||||
return assert.Equal(t, expectedCalls, actualCalls, fmt.Sprintf("Expected number of calls (%d) does not match the actual number of calls (%d).", expectedCalls, actualCalls))
|
||||
}
|
||||
|
||||
// AssertCalled asserts that the method was called.
|
||||
// It can produce a false result when an argument is a pointer type and the underlying value changed after calling the mocked method.
|
||||
func (m *Mock) AssertCalled(t TestingT, methodName string, arguments ...interface{}) bool {
|
||||
m.mutex.Lock()
|
||||
defer m.mutex.Unlock()
|
||||
if !assert.True(t, m.methodWasCalled(methodName, arguments), fmt.Sprintf("The \"%s\" method should have been called with %d argument(s), but was not.", methodName, len(arguments))) {
|
||||
t.Logf("%v", m.expectedCalls())
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// AssertNotCalled asserts that the method was not called.
|
||||
// It can produce a false result when an argument is a pointer type and the underlying value changed after calling the mocked method.
|
||||
func (m *Mock) AssertNotCalled(t TestingT, methodName string, arguments ...interface{}) bool {
|
||||
m.mutex.Lock()
|
||||
defer m.mutex.Unlock()
|
||||
if !assert.False(t, m.methodWasCalled(methodName, arguments), fmt.Sprintf("The \"%s\" method was called with %d argument(s), but should NOT have been.", methodName, len(arguments))) {
|
||||
t.Logf("%v", m.expectedCalls())
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (m *Mock) methodWasCalled(methodName string, expected []interface{}) bool {
|
||||
for _, call := range m.calls() {
|
||||
if call.Method == methodName {
|
||||
|
||||
_, differences := Arguments(expected).Diff(call.Arguments)
|
||||
|
||||
if differences == 0 {
|
||||
// found the expected call
|
||||
return true
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
// we didn't find the expected call
|
||||
return false
|
||||
}
|
||||
|
||||
func (m *Mock) expectedCalls() []*Call {
|
||||
return append([]*Call{}, m.ExpectedCalls...)
|
||||
}
|
||||
|
||||
func (m *Mock) calls() []Call {
|
||||
return append([]Call{}, m.Calls...)
|
||||
}
|
||||
|
||||
/*
|
||||
Arguments
|
||||
*/
|
||||
|
||||
// Arguments holds an array of method arguments or return values.
|
||||
type Arguments []interface{}
|
||||
|
||||
const (
|
||||
// Anything is used in Diff and Assert when the argument being tested
|
||||
// shouldn't be taken into consideration.
|
||||
Anything string = "mock.Anything"
|
||||
)
|
||||
|
||||
// AnythingOfTypeArgument is a string that contains the type of an argument
|
||||
// for use when type checking. Used in Diff and Assert.
|
||||
type AnythingOfTypeArgument string
|
||||
|
||||
// AnythingOfType returns an AnythingOfTypeArgument object containing the
|
||||
// name of the type to check for. Used in Diff and Assert.
|
||||
//
|
||||
// For example:
|
||||
// Assert(t, AnythingOfType("string"), AnythingOfType("int"))
|
||||
func AnythingOfType(t string) AnythingOfTypeArgument {
|
||||
return AnythingOfTypeArgument(t)
|
||||
}
|
||||
|
||||
// argumentMatcher performs custom argument matching, returning whether or
|
||||
// not the argument is matched by the expectation fixture function.
|
||||
type argumentMatcher struct {
|
||||
// fn is a function which accepts one argument, and returns a bool.
|
||||
fn reflect.Value
|
||||
}
|
||||
|
||||
func (f argumentMatcher) Matches(argument interface{}) bool {
|
||||
expectType := f.fn.Type().In(0)
|
||||
|
||||
if reflect.TypeOf(argument).AssignableTo(expectType) {
|
||||
result := f.fn.Call([]reflect.Value{reflect.ValueOf(argument)})
|
||||
return result[0].Bool()
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func (f argumentMatcher) String() string {
|
||||
return fmt.Sprintf("func(%s) bool", f.fn.Type().In(0).Name())
|
||||
}
|
||||
|
||||
// MatchedBy can be used to match a mock call based on only certain properties
|
||||
// from a complex struct or some calculation. It takes a function that will be
|
||||
// evaluated with the called argument and will return true when there's a match
|
||||
// and false otherwise.
|
||||
//
|
||||
// Example:
|
||||
// m.On("Do", MatchedBy(func(req *http.Request) bool { return req.Host == "example.com" }))
|
||||
//
|
||||
// |fn|, must be a function accepting a single argument (of the expected type)
|
||||
// which returns a bool. If |fn| doesn't match the required signature,
|
||||
// MatchedBy() panics.
|
||||
func MatchedBy(fn interface{}) argumentMatcher {
|
||||
fnType := reflect.TypeOf(fn)
|
||||
|
||||
if fnType.Kind() != reflect.Func {
|
||||
panic(fmt.Sprintf("assert: arguments: %s is not a func", fn))
|
||||
}
|
||||
if fnType.NumIn() != 1 {
|
||||
panic(fmt.Sprintf("assert: arguments: %s does not take exactly one argument", fn))
|
||||
}
|
||||
if fnType.NumOut() != 1 || fnType.Out(0).Kind() != reflect.Bool {
|
||||
panic(fmt.Sprintf("assert: arguments: %s does not return a bool", fn))
|
||||
}
|
||||
|
||||
return argumentMatcher{fn: reflect.ValueOf(fn)}
|
||||
}
|
||||
|
||||
// Get Returns the argument at the specified index.
|
||||
func (args Arguments) Get(index int) interface{} {
|
||||
if index+1 > len(args) {
|
||||
panic(fmt.Sprintf("assert: arguments: Cannot call Get(%d) because there are %d argument(s).", index, len(args)))
|
||||
}
|
||||
return args[index]
|
||||
}
|
||||
|
||||
// Is gets whether the objects match the arguments specified.
|
||||
func (args Arguments) Is(objects ...interface{}) bool {
|
||||
for i, obj := range args {
|
||||
if obj != objects[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Diff gets a string describing the differences between the arguments
|
||||
// and the specified objects.
|
||||
//
|
||||
// Returns the diff string and number of differences found.
|
||||
func (args Arguments) Diff(objects []interface{}) (string, int) {
|
||||
|
||||
var output = "\n"
|
||||
var differences int
|
||||
|
||||
var maxArgCount = len(args)
|
||||
if len(objects) > maxArgCount {
|
||||
maxArgCount = len(objects)
|
||||
}
|
||||
|
||||
for i := 0; i < maxArgCount; i++ {
|
||||
var actual, expected interface{}
|
||||
|
||||
if len(objects) <= i {
|
||||
actual = "(Missing)"
|
||||
} else {
|
||||
actual = objects[i]
|
||||
}
|
||||
|
||||
if len(args) <= i {
|
||||
expected = "(Missing)"
|
||||
} else {
|
||||
expected = args[i]
|
||||
}
|
||||
|
||||
if matcher, ok := expected.(argumentMatcher); ok {
|
||||
if matcher.Matches(actual) {
|
||||
output = fmt.Sprintf("%s\t%d: \u2705 %s matched by %s\n", output, i, actual, matcher)
|
||||
} else {
|
||||
differences++
|
||||
output = fmt.Sprintf("%s\t%d: \u2705 %s not matched by %s\n", output, i, actual, matcher)
|
||||
}
|
||||
} else if reflect.TypeOf(expected) == reflect.TypeOf((*AnythingOfTypeArgument)(nil)).Elem() {
|
||||
|
||||
// type checking
|
||||
if reflect.TypeOf(actual).Name() != string(expected.(AnythingOfTypeArgument)) && reflect.TypeOf(actual).String() != string(expected.(AnythingOfTypeArgument)) {
|
||||
// not match
|
||||
differences++
|
||||
output = fmt.Sprintf("%s\t%d: \u274C type %s != type %s - %s\n", output, i, expected, reflect.TypeOf(actual).Name(), actual)
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
// normal checking
|
||||
|
||||
if assert.ObjectsAreEqual(expected, Anything) || assert.ObjectsAreEqual(actual, Anything) || assert.ObjectsAreEqual(actual, expected) {
|
||||
// match
|
||||
output = fmt.Sprintf("%s\t%d: \u2705 %s == %s\n", output, i, actual, expected)
|
||||
} else {
|
||||
// not match
|
||||
differences++
|
||||
output = fmt.Sprintf("%s\t%d: \u274C %s != %s\n", output, i, actual, expected)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if differences == 0 {
|
||||
return "No differences.", differences
|
||||
}
|
||||
|
||||
return output, differences
|
||||
|
||||
}
|
||||
|
||||
// Assert compares the arguments with the specified objects and fails if
|
||||
// they do not exactly match.
|
||||
func (args Arguments) Assert(t TestingT, objects ...interface{}) bool {
|
||||
|
||||
// get the differences
|
||||
diff, diffCount := args.Diff(objects)
|
||||
|
||||
if diffCount == 0 {
|
||||
return true
|
||||
}
|
||||
|
||||
// there are differences... report them...
|
||||
t.Logf(diff)
|
||||
t.Errorf("%sArguments do not match.", assert.CallerInfo())
|
||||
|
||||
return false
|
||||
|
||||
}
|
||||
|
||||
// String gets the argument at the specified index. Panics if there is no argument, or
|
||||
// if the argument is of the wrong type.
|
||||
//
|
||||
// If no index is provided, String() returns a complete string representation
|
||||
// of the arguments.
|
||||
func (args Arguments) String(indexOrNil ...int) string {
|
||||
|
||||
if len(indexOrNil) == 0 {
|
||||
// normal String() method - return a string representation of the args
|
||||
var argsStr []string
|
||||
for _, arg := range args {
|
||||
argsStr = append(argsStr, fmt.Sprintf("%s", reflect.TypeOf(arg)))
|
||||
}
|
||||
return strings.Join(argsStr, ",")
|
||||
} else if len(indexOrNil) == 1 {
|
||||
// Index has been specified - get the argument at that index
|
||||
var index = indexOrNil[0]
|
||||
var s string
|
||||
var ok bool
|
||||
if s, ok = args.Get(index).(string); !ok {
|
||||
panic(fmt.Sprintf("assert: arguments: String(%d) failed because object wasn't correct type: %s", index, args.Get(index)))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
panic(fmt.Sprintf("assert: arguments: Wrong number of arguments passed to String. Must be 0 or 1, not %d", len(indexOrNil)))
|
||||
|
||||
}
|
||||
|
||||
// Int gets the argument at the specified index. Panics if there is no argument, or
|
||||
// if the argument is of the wrong type.
|
||||
func (args Arguments) Int(index int) int {
|
||||
var s int
|
||||
var ok bool
|
||||
if s, ok = args.Get(index).(int); !ok {
|
||||
panic(fmt.Sprintf("assert: arguments: Int(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// Error gets the argument at the specified index. Panics if there is no argument, or
|
||||
// if the argument is of the wrong type.
|
||||
func (args Arguments) Error(index int) error {
|
||||
obj := args.Get(index)
|
||||
var s error
|
||||
var ok bool
|
||||
if obj == nil {
|
||||
return nil
|
||||
}
|
||||
if s, ok = obj.(error); !ok {
|
||||
panic(fmt.Sprintf("assert: arguments: Error(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// Bool gets the argument at the specified index. Panics if there is no argument, or
|
||||
// if the argument is of the wrong type.
|
||||
func (args Arguments) Bool(index int) bool {
|
||||
var s bool
|
||||
var ok bool
|
||||
if s, ok = args.Get(index).(bool); !ok {
|
||||
panic(fmt.Sprintf("assert: arguments: Bool(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
|
||||
t := reflect.TypeOf(v)
|
||||
k := t.Kind()
|
||||
|
||||
if k == reflect.Ptr {
|
||||
t = t.Elem()
|
||||
k = t.Kind()
|
||||
}
|
||||
return t, k
|
||||
}
|
||||
|
||||
func diffArguments(expected Arguments, actual Arguments) string {
|
||||
if len(expected) != len(actual) {
|
||||
return fmt.Sprintf("Provided %v arguments, mocked for %v arguments", len(expected), len(actual))
|
||||
}
|
||||
|
||||
for x := range expected {
|
||||
if diffString := diff(expected[x], actual[x]); diffString != "" {
|
||||
return fmt.Sprintf("Difference found in argument %v:\n\n%s", x, diffString)
|
||||
}
|
||||
}
|
||||
|
||||
return ""
|
||||
}
|
||||
|
||||
// diff returns a diff of both values as long as both are of the same type and
|
||||
// are a struct, map, slice or array. Otherwise it returns an empty string.
|
||||
func diff(expected interface{}, actual interface{}) string {
|
||||
if expected == nil || actual == nil {
|
||||
return ""
|
||||
}
|
||||
|
||||
et, ek := typeAndKind(expected)
|
||||
at, _ := typeAndKind(actual)
|
||||
|
||||
if et != at {
|
||||
return ""
|
||||
}
|
||||
|
||||
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array {
|
||||
return ""
|
||||
}
|
||||
|
||||
e := spewConfig.Sdump(expected)
|
||||
a := spewConfig.Sdump(actual)
|
||||
|
||||
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
|
||||
A: difflib.SplitLines(e),
|
||||
B: difflib.SplitLines(a),
|
||||
FromFile: "Expected",
|
||||
FromDate: "",
|
||||
ToFile: "Actual",
|
||||
ToDate: "",
|
||||
Context: 1,
|
||||
})
|
||||
|
||||
return diff
|
||||
}
|
||||
|
||||
var spewConfig = spew.ConfigState{
|
||||
Indent: " ",
|
||||
DisablePointerAddresses: true,
|
||||
DisableCapacities: true,
|
||||
SortKeys: true,
|
||||
}
|
Loading…
Reference in New Issue