open-nomad/scheduler/system_sched.go

275 lines
8.1 KiB
Go
Raw Normal View History

2015-10-14 23:43:06 +00:00
package scheduler
import (
"fmt"
"log"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxSystemScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for system
// jobs.
maxSystemScheduleAttempts = 5
2015-10-14 23:43:06 +00:00
// allocNodeTainted is the status used when stopping an alloc because it's
// node is tainted.
allocNodeTainted = "system alloc not needed as node is tainted"
)
// SystemScheduler is used for 'system' jobs. This scheduler is
// designed for services that should be run on every client.
type SystemScheduler struct {
logger *log.Logger
state State
planner Planner
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *SystemStack
nodes []*structs.Node
nodesByDC map[string]int
2015-10-14 23:43:06 +00:00
limitReached bool
nextEval *structs.Evaluation
}
// NewSystemScheduler is a factory function to instantiate a new system
// scheduler.
func NewSystemScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
return &SystemScheduler{
logger: logger,
state: state,
planner: planner,
}
}
// Process is used to handle a single evaluation.
func (s *SystemScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, s.nextEval, structs.EvalStatusFailed, desc)
2015-10-14 23:43:06 +00:00
}
// Retry up to the maxSystemScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
if err := retryMax(maxSystemScheduleAttempts, s.process, progress); err != nil {
2015-10-14 23:43:06 +00:00
if statusErr, ok := err.(*SetStatusError); ok {
return setStatus(s.logger, s.planner, s.eval, s.nextEval, statusErr.EvalStatus, err.Error())
2015-10-14 23:43:06 +00:00
}
return err
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, s.nextEval, structs.EvalStatusComplete, "")
2015-10-14 23:43:06 +00:00
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *SystemScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
s.job, err = s.state.JobByID(s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
// Get the ready nodes in the required datacenters
if s.job != nil {
2016-01-04 22:23:06 +00:00
s.nodes, s.nodesByDC, err = readyNodesInDCs(s.state, s.job.Datacenters)
2015-10-14 23:43:06 +00:00
if err != nil {
return false, fmt.Errorf("failed to get ready nodes: %v", err)
}
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewSystemStack(s.ctx)
2015-10-14 23:43:06 +00:00
if s.job != nil {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail
if s.plan.IsNoOp() {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
2015-10-14 23:43:06 +00:00
if err != nil {
return false, err
}
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *SystemScheduler) computeJobAllocs() error {
// Lookup the allocations by JobID
allocs, err := s.state.AllocsByJob(s.eval.JobID)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Filter out the allocations in a terminal state
allocs = structs.FilterTerminalAllocs(allocs)
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Diff the required and existing allocations
diff := diffSystemAllocs(s.job, s.nodes, tainted, allocs)
2015-10-14 23:43:06 +00:00
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded)
}
// Attempt to do the upgrades in place
diff.update = inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update)
2015-10-14 23:43:06 +00:00
// Check if a rolling upgrade strategy is being used
limit := len(diff.update)
if s.job != nil && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat non in-place updates as an eviction and new placement.
s.limitReached = evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit)
2015-10-14 23:43:06 +00:00
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
return nil
}
// Compute the placements
return s.computePlacements(diff.place)
}
// computePlacements computes placements for allocations
2015-10-16 18:43:09 +00:00
func (s *SystemScheduler) computePlacements(place []allocTuple) error {
2015-10-14 23:43:06 +00:00
nodeByID := make(map[string]*structs.Node, len(s.nodes))
for _, node := range s.nodes {
nodeByID[node.ID] = node
}
// Track the failed task groups so that we can coalesce
// the failures together to avoid creating many failed allocs.
failedTG := make(map[*structs.TaskGroup]*structs.Allocation)
nodes := make([]*structs.Node, 1)
for _, missing := range place {
node, ok := nodeByID[missing.Alloc.NodeID]
2015-10-14 23:43:06 +00:00
if !ok {
return fmt.Errorf("could not find node %q", missing.Alloc.NodeID)
2015-10-14 23:43:06 +00:00
}
// Update the set of placement nodes
2015-10-14 23:43:06 +00:00
nodes[0] = node
s.stack.SetNodes(nodes)
// Attempt to match the task group
2016-03-01 22:09:25 +00:00
option, _ := s.stack.Select(missing.TaskGroup)
2015-10-14 23:43:06 +00:00
if option == nil {
// Check if this task group has already failed
if alloc, ok := failedTG[missing.TaskGroup]; ok {
alloc.Metrics.CoalescedFailures += 1
continue
}
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: structs.GenerateUUID(),
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
TaskGroup: missing.TaskGroup.Name,
Metrics: s.ctx.Metrics(),
}
2016-01-04 22:23:06 +00:00
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = s.nodesByDC
2015-10-14 23:43:06 +00:00
// Set fields based on if we found an allocation option
if option != nil {
// Generate service IDs tasks in this allocation
// COMPAT - This is no longer required and would be removed in v0.4
alloc.PopulateServiceIDs(missing.TaskGroup)
2015-10-14 23:43:06 +00:00
alloc.NodeID = option.Node.ID
alloc.TaskResources = option.TaskResources
alloc.DesiredStatus = structs.AllocDesiredStatusRun
alloc.ClientStatus = structs.AllocClientStatusPending
s.plan.AppendAlloc(alloc)
} else {
alloc.DesiredStatus = structs.AllocDesiredStatusFailed
alloc.DesiredDescription = "failed to find a node for placement"
alloc.ClientStatus = structs.AllocClientStatusFailed
s.plan.AppendFailed(alloc)
failedTG[missing.TaskGroup] = alloc
}
}
return nil
}