open-nomad/scheduler/spread.go

242 lines
8.0 KiB
Go
Raw Normal View History

package scheduler
import (
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// ImplicitTarget is used to represent any remaining attribute values
// when target percentages don't add up to 100
ImplicitTarget = "*"
// evenSpreadBoost is a positive boost used when the job has
// even spread over an attribute. Any nodes whose attribute value is
// equal to the minimum count over all possible attributes gets boosted
evenSpreadBoost = 0.01
// evenSpreadPenality is a penalty used when the job has
// even spread over an attribute. Any nodes whose attribute value is
// greater than the minimum count over all possible attributes gets this penalty.
// This is to ensure that other nodes are preferred when one of the values
// has a larger number of allocations
evenSpreadPenalty = -0.5
)
// SpreadIterator is used to spread allocations across a specified attribute
// according to preset weights
type SpreadIterator struct {
2018-07-26 00:28:36 +00:00
ctx Context
source RankIterator
job *structs.Job
tg *structs.TaskGroup
jobSpreads []*structs.Spread
// tgSpreadInfo is a map per task group with precomputed
// values for desired counts and weight
tgSpreadInfo map[string]spreadAttributeMap
// sumSpreadWeights tracks the total weight across all spread
// stanzas
sumSpreadWeights int
hasSpread bool
// groupProperySets is a memoized map from task group to property sets.
// existing allocs are computed once, and allocs from the plan are updated
// when Reset is called
groupPropertySets map[string][]*propertySet
}
type spreadAttributeMap map[string]*spreadInfo
type spreadInfo struct {
weight int
desiredCounts map[string]float64
}
func NewSpreadIterator(ctx Context, source RankIterator) *SpreadIterator {
iter := &SpreadIterator{
ctx: ctx,
source: source,
groupPropertySets: make(map[string][]*propertySet),
tgSpreadInfo: make(map[string]spreadAttributeMap),
}
return iter
}
func (iter *SpreadIterator) Reset() {
iter.source.Reset()
for _, sets := range iter.groupPropertySets {
for _, ps := range sets {
ps.PopulateProposed()
}
}
}
func (iter *SpreadIterator) SetJob(job *structs.Job) {
iter.job = job
if job.Spreads != nil {
iter.jobSpreads = job.Spreads
}
}
func (iter *SpreadIterator) SetTaskGroup(tg *structs.TaskGroup) {
iter.tg = tg
// Build the property set at the taskgroup level
if _, ok := iter.groupPropertySets[tg.Name]; !ok {
// First add property sets that are at the job level for this task group
for _, spread := range iter.jobSpreads {
pset := NewPropertySet(iter.ctx, iter.job)
pset.SetTargetAttribute(spread.Attribute, tg.Name)
iter.groupPropertySets[tg.Name] = append(iter.groupPropertySets[tg.Name], pset)
}
// Include property sets at the task group level
for _, spread := range tg.Spreads {
pset := NewPropertySet(iter.ctx, iter.job)
pset.SetTargetAttribute(spread.Attribute, tg.Name)
iter.groupPropertySets[tg.Name] = append(iter.groupPropertySets[tg.Name], pset)
}
}
2018-07-26 00:28:36 +00:00
// Check if there are any spreads configured
iter.hasSpread = len(iter.groupPropertySets[tg.Name]) != 0
// Build tgSpreadInfo at the task group level
if _, ok := iter.tgSpreadInfo[tg.Name]; !ok {
iter.computeSpreadInfo(tg)
}
}
func (iter *SpreadIterator) hasSpreads() bool {
return iter.hasSpread
}
func (iter *SpreadIterator) Next() *RankedNode {
for {
option := iter.source.Next()
// Hot path if there is nothing to check
if option == nil || !iter.hasSpreads() {
return option
}
tgName := iter.tg.Name
propertySets := iter.groupPropertySets[tgName]
// Iterate over each spread attribute's property set and add a weighted score
totalSpreadScore := 0.0
for _, pset := range propertySets {
nValue, errorMsg, usedCount := pset.UsedCount(option.Node, tgName)
// Skip if there was errors in resolving this attribute to compute used counts
if errorMsg != "" {
iter.ctx.Logger().Printf("[WARN] sched: error building spread attributes for task group %v:%v", tgName, errorMsg)
}
spreadAttributeMap := iter.tgSpreadInfo[tgName]
spreadDetails := spreadAttributeMap[pset.targetAttribute]
if len(spreadDetails.desiredCounts) == 0 {
// When desired counts map is empty the user didn't specify any targets
// Treat this as a special case
scoreBoost := evenSpreadScoreBoost(pset, option.Node)
totalSpreadScore += scoreBoost
} else {
// Get the desired count
desiredCount, ok := spreadDetails.desiredCounts[nValue]
if !ok {
// See if there is an implicit target
desiredCount, ok = spreadDetails.desiredCounts[ImplicitTarget]
if !ok {
// The desired count for this attribute is zero if it gets here
// don't boost the score
continue
}
}
if float64(usedCount) < desiredCount {
// Calculate the relative weight of this specific spread attribute
spreadWeight := float64(spreadDetails.weight) / float64(iter.sumSpreadWeights)
// Score Boost is proportional the difference between current and desired count
// It is multiplied with the spread weight to account for cases where the job has
// more than one spread attribute
scoreBoost := ((desiredCount - float64(usedCount)) / desiredCount) * spreadWeight
totalSpreadScore += scoreBoost
}
}
}
if totalSpreadScore != 0.0 {
option.Scores = append(option.Scores, totalSpreadScore)
iter.ctx.Metrics().ScoreNode(option.Node, "allocation-spread", totalSpreadScore)
}
return option
}
}
// evenSpreadScoreBoost is a scoring helper that calculates the score
// for the option when even spread is desired (all attribute values get equal preference)
func evenSpreadScoreBoost(pset *propertySet, option *structs.Node) float64 {
combinedUseMap := pset.GetCombinedUseMap()
if len(combinedUseMap) == 0 {
// Nothing placed yet, so return 0 as the score
return 0.0
}
// Get the nodes property value
nValue, ok := getProperty(option, pset.targetAttribute)
currentAttributeCount := uint64(0)
if ok {
currentAttributeCount = combinedUseMap[nValue]
}
minCount := uint64(0)
maxCount := uint64(0)
for _, value := range combinedUseMap {
if minCount == 0 || value < minCount {
minCount = value
}
if maxCount == 0 || value > maxCount {
maxCount = value
}
}
if currentAttributeCount < minCount {
// Small positive boost for attributes with min count
return evenSpreadBoost
} else if currentAttributeCount > minCount {
// Negative boost if attribute count is greater than minimum
// This is so that other nodes will get a preference over this one
return evenSpreadPenalty
} else {
// When min and max are same the current distribution is even
// so we penalize
if minCount == maxCount {
return evenSpreadPenalty
} else {
return evenSpreadBoost
}
}
}
// computeSpreadInfo computes and stores percentages and total values
// from all spreads that apply to a specific task group
func (iter *SpreadIterator) computeSpreadInfo(tg *structs.TaskGroup) {
spreadInfos := make(spreadAttributeMap, len(tg.Spreads))
totalCount := tg.Count
// Always combine any spread stanzas defined at the job level here
combinedSpreads := make([]*structs.Spread, 0, len(tg.Spreads)+len(iter.jobSpreads))
combinedSpreads = append(combinedSpreads, tg.Spreads...)
combinedSpreads = append(combinedSpreads, iter.jobSpreads...)
for _, spread := range combinedSpreads {
si := &spreadInfo{weight: spread.Weight, desiredCounts: make(map[string]float64)}
sumDesiredCounts := 0.0
for _, st := range spread.SpreadTarget {
desiredCount := (float64(st.Percent) / float64(100)) * float64(totalCount)
si.desiredCounts[st.Value] = desiredCount
sumDesiredCounts += desiredCount
}
// Account for remaining count only if there is any spread targets
if sumDesiredCounts > 0 && sumDesiredCounts < float64(totalCount) {
remainingCount := float64(totalCount) - sumDesiredCounts
si.desiredCounts[ImplicitTarget] = remainingCount
}
spreadInfos[spread.Attribute] = si
iter.sumSpreadWeights += spread.Weight
}
iter.tgSpreadInfo[tg.Name] = spreadInfos
}