2015-08-12 00:57:23 +00:00
|
|
|
package scheduler
|
|
|
|
|
|
|
|
import (
|
2015-08-13 17:19:46 +00:00
|
|
|
"fmt"
|
2015-08-13 17:46:30 +00:00
|
|
|
"reflect"
|
2015-10-11 19:35:13 +00:00
|
|
|
"regexp"
|
2015-10-14 23:43:06 +00:00
|
|
|
"strconv"
|
2015-08-13 17:46:30 +00:00
|
|
|
"strings"
|
2015-08-12 00:57:23 +00:00
|
|
|
|
2015-10-11 19:12:39 +00:00
|
|
|
"github.com/hashicorp/go-version"
|
2015-08-12 00:57:23 +00:00
|
|
|
"github.com/hashicorp/nomad/nomad/structs"
|
|
|
|
)
|
|
|
|
|
|
|
|
// FeasibleIterator is used to iteratively yield nodes that
|
|
|
|
// match feasibility constraints. The iterators may manage
|
|
|
|
// some state for performance optimizations.
|
|
|
|
type FeasibleIterator interface {
|
|
|
|
// Next yields a feasible node or nil if exhausted
|
|
|
|
Next() *structs.Node
|
2015-08-13 22:01:02 +00:00
|
|
|
|
|
|
|
// Reset is invoked when an allocation has been placed
|
|
|
|
// to reset any stale state.
|
|
|
|
Reset()
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// StaticIterator is a FeasibleIterator which returns nodes
|
|
|
|
// in a static order. This is used at the base of the iterator
|
|
|
|
// chain only for testing due to deterministic behavior.
|
|
|
|
type StaticIterator struct {
|
|
|
|
ctx Context
|
|
|
|
nodes []*structs.Node
|
|
|
|
offset int
|
2015-08-13 22:01:02 +00:00
|
|
|
seen int
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// NewStaticIterator constructs a random iterator from a list of nodes
|
|
|
|
func NewStaticIterator(ctx Context, nodes []*structs.Node) *StaticIterator {
|
|
|
|
iter := &StaticIterator{
|
|
|
|
ctx: ctx,
|
|
|
|
nodes: nodes,
|
|
|
|
}
|
|
|
|
return iter
|
|
|
|
}
|
|
|
|
|
|
|
|
func (iter *StaticIterator) Next() *structs.Node {
|
|
|
|
// Check if exhausted
|
2015-08-13 22:01:02 +00:00
|
|
|
n := len(iter.nodes)
|
|
|
|
if iter.offset == n || iter.seen == n {
|
|
|
|
if iter.seen != n {
|
|
|
|
iter.offset = 0
|
|
|
|
} else {
|
|
|
|
return nil
|
|
|
|
}
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Return the next offset
|
|
|
|
offset := iter.offset
|
|
|
|
iter.offset += 1
|
2015-08-13 22:01:02 +00:00
|
|
|
iter.seen += 1
|
2015-08-14 04:46:33 +00:00
|
|
|
iter.ctx.Metrics().EvaluateNode()
|
2015-08-12 00:57:23 +00:00
|
|
|
return iter.nodes[offset]
|
|
|
|
}
|
|
|
|
|
2015-08-13 22:01:02 +00:00
|
|
|
func (iter *StaticIterator) Reset() {
|
|
|
|
iter.seen = 0
|
|
|
|
}
|
|
|
|
|
2015-09-07 18:26:16 +00:00
|
|
|
func (iter *StaticIterator) SetNodes(nodes []*structs.Node) {
|
|
|
|
iter.nodes = nodes
|
|
|
|
iter.offset = 0
|
|
|
|
iter.seen = 0
|
|
|
|
}
|
|
|
|
|
2015-08-12 00:57:23 +00:00
|
|
|
// NewRandomIterator constructs a static iterator from a list of nodes
|
2015-08-13 17:13:11 +00:00
|
|
|
// after applying the Fisher-Yates algorithm for a random shuffle. This
|
|
|
|
// is applied in-place
|
2015-08-12 00:57:23 +00:00
|
|
|
func NewRandomIterator(ctx Context, nodes []*structs.Node) *StaticIterator {
|
|
|
|
// shuffle with the Fisher-Yates algorithm
|
2015-09-07 18:23:38 +00:00
|
|
|
shuffleNodes(nodes)
|
2015-08-12 00:57:23 +00:00
|
|
|
|
|
|
|
// Create a static iterator
|
|
|
|
return NewStaticIterator(ctx, nodes)
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
// DriverIterator is a FeasibleIterator which returns nodes that
|
|
|
|
// have the drivers necessary to scheduler a task group.
|
|
|
|
type DriverIterator struct {
|
|
|
|
ctx Context
|
|
|
|
source FeasibleIterator
|
|
|
|
drivers map[string]struct{}
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
// NewDriverIterator creates a DriverIterator from a source and set of drivers
|
|
|
|
func NewDriverIterator(ctx Context, source FeasibleIterator, drivers map[string]struct{}) *DriverIterator {
|
|
|
|
iter := &DriverIterator{
|
|
|
|
ctx: ctx,
|
|
|
|
source: source,
|
|
|
|
drivers: drivers,
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
return iter
|
|
|
|
}
|
|
|
|
|
2015-08-13 20:52:20 +00:00
|
|
|
func (iter *DriverIterator) SetDrivers(d map[string]struct{}) {
|
|
|
|
iter.drivers = d
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
func (iter *DriverIterator) Next() *structs.Node {
|
2015-08-12 00:57:23 +00:00
|
|
|
for {
|
|
|
|
// Get the next option from the source
|
|
|
|
option := iter.source.Next()
|
|
|
|
if option == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use this node if possible
|
2015-08-13 17:19:46 +00:00
|
|
|
if iter.hasDrivers(option) {
|
2015-08-12 00:57:23 +00:00
|
|
|
return option
|
|
|
|
}
|
2015-08-14 04:46:33 +00:00
|
|
|
iter.ctx.Metrics().FilterNode(option, "missing drivers")
|
2015-08-12 00:57:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-13 22:01:02 +00:00
|
|
|
func (iter *DriverIterator) Reset() {
|
|
|
|
iter.source.Reset()
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
// hasDrivers is used to check if the node has all the appropriate
|
|
|
|
// drivers for this task group. Drivers are registered as node attribute
|
|
|
|
// like "driver.docker=1" with their corresponding version.
|
|
|
|
func (iter *DriverIterator) hasDrivers(option *structs.Node) bool {
|
|
|
|
for driver := range iter.drivers {
|
|
|
|
driverStr := fmt.Sprintf("driver.%s", driver)
|
2015-10-14 23:43:06 +00:00
|
|
|
value, ok := option.Attributes[driverStr]
|
2015-08-13 17:19:46 +00:00
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
2015-10-14 23:43:06 +00:00
|
|
|
|
|
|
|
enabled, err := strconv.ParseBool(value)
|
|
|
|
if err != nil {
|
|
|
|
iter.ctx.Logger().
|
|
|
|
Printf("[WARN] scheduler.DriverIterator: node %v has invalid driver setting %v: %v",
|
|
|
|
option.ID, driverStr, value)
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
if !enabled {
|
|
|
|
return false
|
|
|
|
}
|
2015-08-13 17:19:46 +00:00
|
|
|
}
|
2015-08-12 00:57:23 +00:00
|
|
|
return true
|
|
|
|
}
|
2015-08-12 01:27:54 +00:00
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
// ProposedAllocConstraintIterator is a FeasibleIterator which returns nodes that
|
2015-10-22 21:31:12 +00:00
|
|
|
// match constraints that are not static such as Node attributes but are
|
2015-10-26 21:12:54 +00:00
|
|
|
// effected by proposed alloc placements. Examples are distinct_hosts and
|
|
|
|
// tenancy constraints. This is used to filter on job and task group
|
|
|
|
// constraints.
|
|
|
|
type ProposedAllocConstraintIterator struct {
|
2015-10-22 21:31:12 +00:00
|
|
|
ctx Context
|
|
|
|
source FeasibleIterator
|
|
|
|
tg *structs.TaskGroup
|
|
|
|
job *structs.Job
|
|
|
|
|
2015-10-26 20:47:56 +00:00
|
|
|
// Store whether the Job or TaskGroup has a distinct_hosts constraints so
|
2015-10-23 00:40:41 +00:00
|
|
|
// they don't have to be calculated every time Next() is called.
|
|
|
|
tgDistinctHosts bool
|
|
|
|
jobDistinctHosts bool
|
2015-10-22 21:31:12 +00:00
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
// NewProposedAllocConstraintIterator creates a ProposedAllocConstraintIterator
|
|
|
|
// from a source.
|
|
|
|
func NewProposedAllocConstraintIterator(ctx Context, source FeasibleIterator) *ProposedAllocConstraintIterator {
|
|
|
|
iter := &ProposedAllocConstraintIterator{
|
2015-10-22 21:31:12 +00:00
|
|
|
ctx: ctx,
|
|
|
|
source: source,
|
|
|
|
}
|
|
|
|
return iter
|
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) SetTaskGroup(tg *structs.TaskGroup) {
|
2015-10-22 21:31:12 +00:00
|
|
|
iter.tg = tg
|
2015-10-23 00:40:41 +00:00
|
|
|
iter.tgDistinctHosts = iter.hasDistinctHostsConstraint(tg.Constraints)
|
2015-10-22 21:31:12 +00:00
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) SetJob(job *structs.Job) {
|
2015-10-22 21:31:12 +00:00
|
|
|
iter.job = job
|
2015-10-23 00:40:41 +00:00
|
|
|
iter.jobDistinctHosts = iter.hasDistinctHostsConstraint(job.Constraints)
|
2015-10-22 21:31:12 +00:00
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) hasDistinctHostsConstraint(constraints []*structs.Constraint) bool {
|
2015-10-22 21:31:12 +00:00
|
|
|
for _, con := range constraints {
|
2015-10-26 20:47:56 +00:00
|
|
|
if con.Operand == structs.ConstraintDistinctHosts {
|
2015-10-22 21:31:12 +00:00
|
|
|
return true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) Next() *structs.Node {
|
2015-10-22 21:31:12 +00:00
|
|
|
for {
|
|
|
|
// Get the next option from the source
|
|
|
|
option := iter.source.Next()
|
|
|
|
|
2015-10-26 20:47:56 +00:00
|
|
|
// Hot-path if the option is nil or there are no distinct_hosts constraints.
|
2015-10-26 21:12:54 +00:00
|
|
|
if option == nil || !(iter.jobDistinctHosts || iter.tgDistinctHosts) {
|
2015-10-22 21:31:12 +00:00
|
|
|
return option
|
|
|
|
}
|
|
|
|
|
2015-10-26 21:01:32 +00:00
|
|
|
if !iter.satisfiesDistinctHosts(option) {
|
2015-10-26 20:47:56 +00:00
|
|
|
iter.ctx.Metrics().FilterNode(option, structs.ConstraintDistinctHosts)
|
2015-10-22 21:31:12 +00:00
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
return option
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-26 20:47:56 +00:00
|
|
|
// satisfiesDistinctHosts checks if the node satisfies a distinct_hosts
|
2015-10-23 00:40:41 +00:00
|
|
|
// constraint either specified at the job level or the TaskGroup level.
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) satisfiesDistinctHosts(option *structs.Node) bool {
|
2015-10-26 21:01:32 +00:00
|
|
|
// Check if there is no constraint set.
|
|
|
|
if !(iter.jobDistinctHosts || iter.tgDistinctHosts) {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
2015-10-22 21:31:12 +00:00
|
|
|
// Get the proposed allocations
|
|
|
|
proposed, err := iter.ctx.ProposedAllocs(option.ID)
|
|
|
|
if err != nil {
|
|
|
|
iter.ctx.Logger().Printf(
|
2015-10-23 16:56:48 +00:00
|
|
|
"[ERR] scheduler.dynamic-constraint: failed to get proposed allocations: %v", err)
|
2015-10-22 21:31:12 +00:00
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Skip the node if the task group has already been allocated on it.
|
|
|
|
for _, alloc := range proposed {
|
2015-10-26 20:47:56 +00:00
|
|
|
// If the job has a distinct_hosts constraint we only need an alloc
|
2015-10-23 00:40:41 +00:00
|
|
|
// collision on the JobID but if the constraint is on the TaskGroup then
|
|
|
|
// we need both a job and TaskGroup collision.
|
2015-10-26 21:01:32 +00:00
|
|
|
jobCollision := alloc.JobID == iter.job.ID
|
|
|
|
taskCollision := alloc.TaskGroup == iter.tg.Name
|
|
|
|
if iter.jobDistinctHosts && jobCollision || jobCollision && taskCollision {
|
2015-10-22 21:31:12 +00:00
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
2015-10-26 21:12:54 +00:00
|
|
|
func (iter *ProposedAllocConstraintIterator) Reset() {
|
2015-10-22 21:31:12 +00:00
|
|
|
iter.source.Reset()
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
// ConstraintIterator is a FeasibleIterator which returns nodes
|
|
|
|
// that match a given set of constraints. This is used to filter
|
|
|
|
// on job, task group, and task constraints.
|
|
|
|
type ConstraintIterator struct {
|
|
|
|
ctx Context
|
|
|
|
source FeasibleIterator
|
|
|
|
constraints []*structs.Constraint
|
2015-08-12 01:27:54 +00:00
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
// NewConstraintIterator creates a ConstraintIterator from a source and set of constraints
|
|
|
|
func NewConstraintIterator(ctx Context, source FeasibleIterator, constraints []*structs.Constraint) *ConstraintIterator {
|
|
|
|
iter := &ConstraintIterator{
|
|
|
|
ctx: ctx,
|
|
|
|
source: source,
|
|
|
|
constraints: constraints,
|
2015-08-12 01:27:54 +00:00
|
|
|
}
|
|
|
|
return iter
|
|
|
|
}
|
|
|
|
|
2015-08-13 20:52:20 +00:00
|
|
|
func (iter *ConstraintIterator) SetConstraints(c []*structs.Constraint) {
|
|
|
|
iter.constraints = c
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
func (iter *ConstraintIterator) Next() *structs.Node {
|
2015-08-12 01:27:54 +00:00
|
|
|
for {
|
|
|
|
// Get the next option from the source
|
|
|
|
option := iter.source.Next()
|
|
|
|
if option == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Use this node if possible
|
2015-08-13 17:19:46 +00:00
|
|
|
if iter.meetsConstraints(option) {
|
2015-08-12 01:27:54 +00:00
|
|
|
return option
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-13 22:01:02 +00:00
|
|
|
func (iter *ConstraintIterator) Reset() {
|
|
|
|
iter.source.Reset()
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:19:46 +00:00
|
|
|
func (iter *ConstraintIterator) meetsConstraints(option *structs.Node) bool {
|
2015-08-13 17:46:30 +00:00
|
|
|
for _, constraint := range iter.constraints {
|
|
|
|
if !iter.meetsConstraint(constraint, option) {
|
2015-08-14 04:46:33 +00:00
|
|
|
iter.ctx.Metrics().FilterNode(option, constraint.String())
|
2015-08-13 17:46:30 +00:00
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
2015-08-12 01:27:54 +00:00
|
|
|
return true
|
|
|
|
}
|
2015-08-13 17:46:30 +00:00
|
|
|
|
|
|
|
func (iter *ConstraintIterator) meetsConstraint(constraint *structs.Constraint, option *structs.Node) bool {
|
|
|
|
// Resolve the targets
|
|
|
|
lVal, ok := resolveConstraintTarget(constraint.LTarget, option)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
rVal, ok := resolveConstraintTarget(constraint.RTarget, option)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if satisfied
|
2015-10-13 03:15:07 +00:00
|
|
|
return checkConstraint(iter.ctx, constraint.Operand, lVal, rVal)
|
2015-08-13 17:46:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// resolveConstraintTarget is used to resolve the LTarget and RTarget of a Constraint
|
|
|
|
func resolveConstraintTarget(target string, node *structs.Node) (interface{}, bool) {
|
|
|
|
// If no prefix, this must be a literal value
|
|
|
|
if !strings.HasPrefix(target, "$") {
|
|
|
|
return target, true
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle the interpolations
|
|
|
|
switch {
|
|
|
|
case "$node.id" == target:
|
|
|
|
return node.ID, true
|
|
|
|
|
|
|
|
case "$node.datacenter" == target:
|
|
|
|
return node.Datacenter, true
|
|
|
|
|
|
|
|
case "$node.name" == target:
|
|
|
|
return node.Name, true
|
|
|
|
|
2015-12-22 01:15:34 +00:00
|
|
|
case "$node.class" == target:
|
|
|
|
return node.NodeClass, true
|
|
|
|
|
2015-08-13 17:46:30 +00:00
|
|
|
case strings.HasPrefix(target, "$attr."):
|
|
|
|
attr := strings.TrimPrefix(target, "$attr.")
|
|
|
|
val, ok := node.Attributes[attr]
|
|
|
|
return val, ok
|
|
|
|
|
|
|
|
case strings.HasPrefix(target, "$meta."):
|
|
|
|
meta := strings.TrimPrefix(target, "$meta.")
|
|
|
|
val, ok := node.Meta[meta]
|
|
|
|
return val, ok
|
|
|
|
|
|
|
|
default:
|
|
|
|
return nil, false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// checkConstraint checks if a constraint is satisfied
|
2015-10-13 03:15:07 +00:00
|
|
|
func checkConstraint(ctx Context, operand string, lVal, rVal interface{}) bool {
|
2015-10-22 21:31:12 +00:00
|
|
|
// Check for constraints not handled by this iterator.
|
|
|
|
switch operand {
|
2015-10-26 20:47:56 +00:00
|
|
|
case structs.ConstraintDistinctHosts:
|
2015-10-22 21:31:12 +00:00
|
|
|
return true
|
|
|
|
default:
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
2015-08-13 17:46:30 +00:00
|
|
|
switch operand {
|
|
|
|
case "=", "==", "is":
|
|
|
|
return reflect.DeepEqual(lVal, rVal)
|
|
|
|
case "!=", "not":
|
|
|
|
return !reflect.DeepEqual(lVal, rVal)
|
|
|
|
case "<", "<=", ">", ">=":
|
2015-10-11 19:57:06 +00:00
|
|
|
return checkLexicalOrder(operand, lVal, rVal)
|
2015-10-26 20:47:56 +00:00
|
|
|
case structs.ConstraintVersion:
|
2015-10-13 03:15:07 +00:00
|
|
|
return checkVersionConstraint(ctx, lVal, rVal)
|
2015-10-26 20:47:56 +00:00
|
|
|
case structs.ConstraintRegex:
|
2015-10-13 03:15:07 +00:00
|
|
|
return checkRegexpConstraint(ctx, lVal, rVal)
|
2015-08-13 17:46:30 +00:00
|
|
|
default:
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
2015-10-11 19:12:39 +00:00
|
|
|
|
2015-10-11 19:57:06 +00:00
|
|
|
// checkLexicalOrder is used to check for lexical ordering
|
|
|
|
func checkLexicalOrder(op string, lVal, rVal interface{}) bool {
|
|
|
|
// Ensure the values are strings
|
|
|
|
lStr, ok := lVal.(string)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
rStr, ok := rVal.(string)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
switch op {
|
|
|
|
case "<":
|
|
|
|
return lStr < rStr
|
|
|
|
case "<=":
|
|
|
|
return lStr <= rStr
|
|
|
|
case ">":
|
|
|
|
return lStr > rStr
|
|
|
|
case ">=":
|
|
|
|
return lStr >= rStr
|
|
|
|
default:
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-11 19:12:39 +00:00
|
|
|
// checkVersionConstraint is used to compare a version on the
|
|
|
|
// left hand side with a set of constraints on the right hand side
|
2015-10-13 03:15:07 +00:00
|
|
|
func checkVersionConstraint(ctx Context, lVal, rVal interface{}) bool {
|
2015-10-11 19:12:39 +00:00
|
|
|
// Parse the version
|
|
|
|
var versionStr string
|
|
|
|
switch v := lVal.(type) {
|
|
|
|
case string:
|
|
|
|
versionStr = v
|
|
|
|
case int:
|
|
|
|
versionStr = fmt.Sprintf("%d", v)
|
|
|
|
default:
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parse the verison
|
|
|
|
vers, err := version.NewVersion(versionStr)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Constraint must be a string
|
|
|
|
constraintStr, ok := rVal.(string)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
2015-10-13 03:15:07 +00:00
|
|
|
// Check the cache for a match
|
|
|
|
cache := ctx.ConstraintCache()
|
|
|
|
constraints := cache[constraintStr]
|
|
|
|
|
2015-10-11 19:12:39 +00:00
|
|
|
// Parse the constraints
|
2015-10-13 03:15:07 +00:00
|
|
|
if constraints == nil {
|
|
|
|
constraints, err = version.NewConstraint(constraintStr)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
cache[constraintStr] = constraints
|
2015-10-11 19:12:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Check the constraints against the version
|
|
|
|
return constraints.Check(vers)
|
|
|
|
}
|
2015-10-11 19:35:13 +00:00
|
|
|
|
|
|
|
// checkRegexpConstraint is used to compare a value on the
|
|
|
|
// left hand side with a regexp on the right hand side
|
2015-10-13 03:15:07 +00:00
|
|
|
func checkRegexpConstraint(ctx Context, lVal, rVal interface{}) bool {
|
2015-10-11 19:35:13 +00:00
|
|
|
// Ensure left-hand is string
|
|
|
|
lStr, ok := lVal.(string)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Regexp must be a string
|
|
|
|
regexpStr, ok := rVal.(string)
|
|
|
|
if !ok {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
2015-10-13 03:15:07 +00:00
|
|
|
// Check the cache
|
|
|
|
cache := ctx.RegexpCache()
|
|
|
|
re := cache[regexpStr]
|
|
|
|
|
2015-10-11 19:35:13 +00:00
|
|
|
// Parse the regexp
|
2015-10-13 03:15:07 +00:00
|
|
|
if re == nil {
|
|
|
|
var err error
|
|
|
|
re, err = regexp.Compile(regexpStr)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
cache[regexpStr] = re
|
2015-10-11 19:35:13 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Look for a match
|
|
|
|
return re.MatchString(lStr)
|
|
|
|
}
|