open-nomad/client/dynamicplugins/registry_test.go

245 lines
5.7 KiB
Go
Raw Normal View History

CSI Plugin Registration (#6555) This changeset implements the initial registration and fingerprinting of CSI Plugins as part of #5378. At a high level, it introduces the following: * A `csi_plugin` stanza as part of a Nomad task configuration, to allow a task to expose that it is a plugin. * A new task runner hook: `csi_plugin_supervisor`. This hook does two things. When the `csi_plugin` stanza is detected, it will automatically configure the plugin task to receive bidirectional mounts to the CSI intermediary directory. At runtime, it will then perform an initial heartbeat of the plugin and handle submitting it to the new `dynamicplugins.Registry` for further use by the client, and then run a lightweight heartbeat loop that will emit task events when health changes. * The `dynamicplugins.Registry` for handling plugins that run as Nomad tasks, in contrast to the existing catalog that requires `go-plugin` type plugins and to know the plugin configuration in advance. * The `csimanager` which fingerprints CSI plugins, in a similar way to `drivermanager` and `devicemanager`. It currently only fingerprints the NodeID from the plugin, and assumes that all plugins are monolithic. Missing features * We do not use the live updates of the `dynamicplugin` registry in the `csimanager` yet. * We do not deregister the plugins from the client when they shutdown yet, they just become indefinitely marked as unhealthy. This is deliberate until we figure out how we should manage deploying new versions of plugins/transitioning them.
2019-10-22 13:20:26 +00:00
package dynamicplugins
import (
"context"
"sync"
CSI Plugin Registration (#6555) This changeset implements the initial registration and fingerprinting of CSI Plugins as part of #5378. At a high level, it introduces the following: * A `csi_plugin` stanza as part of a Nomad task configuration, to allow a task to expose that it is a plugin. * A new task runner hook: `csi_plugin_supervisor`. This hook does two things. When the `csi_plugin` stanza is detected, it will automatically configure the plugin task to receive bidirectional mounts to the CSI intermediary directory. At runtime, it will then perform an initial heartbeat of the plugin and handle submitting it to the new `dynamicplugins.Registry` for further use by the client, and then run a lightweight heartbeat loop that will emit task events when health changes. * The `dynamicplugins.Registry` for handling plugins that run as Nomad tasks, in contrast to the existing catalog that requires `go-plugin` type plugins and to know the plugin configuration in advance. * The `csimanager` which fingerprints CSI plugins, in a similar way to `drivermanager` and `devicemanager`. It currently only fingerprints the NodeID from the plugin, and assumes that all plugins are monolithic. Missing features * We do not use the live updates of the `dynamicplugin` registry in the `csimanager` yet. * We do not deregister the plugins from the client when they shutdown yet, they just become indefinitely marked as unhealthy. This is deliberate until we figure out how we should manage deploying new versions of plugins/transitioning them.
2019-10-22 13:20:26 +00:00
"testing"
"time"
"github.com/stretchr/testify/require"
)
func TestPluginEventBroadcaster_SendsMessagesToAllClients(t *testing.T) {
t.Parallel()
b := newPluginEventBroadcaster()
defer close(b.stopCh)
var rcv1, rcv2 bool
ch1 := b.subscribe()
ch2 := b.subscribe()
listenFunc := func(ch chan *PluginUpdateEvent, updateBool *bool) {
select {
case <-ch:
*updateBool = true
}
}
go listenFunc(ch1, &rcv1)
go listenFunc(ch2, &rcv2)
b.broadcast(&PluginUpdateEvent{})
require.Eventually(t, func() bool {
return rcv1 == true && rcv2 == true
}, 1*time.Second, 200*time.Millisecond)
}
func TestPluginEventBroadcaster_UnsubscribeWorks(t *testing.T) {
t.Parallel()
b := newPluginEventBroadcaster()
defer close(b.stopCh)
var rcv1 bool
ch1 := b.subscribe()
listenFunc := func(ch chan *PluginUpdateEvent, updateBool *bool) {
select {
case e := <-ch:
if e == nil {
*updateBool = true
}
}
}
go listenFunc(ch1, &rcv1)
b.unsubscribe(ch1)
b.broadcast(&PluginUpdateEvent{})
require.Eventually(t, func() bool {
return rcv1 == true
}, 1*time.Second, 200*time.Millisecond)
}
func TestDynamicRegistry_RegisterPlugin_SendsUpdateEvents(t *testing.T) {
t.Parallel()
r := NewRegistry(nil, nil)
CSI Plugin Registration (#6555) This changeset implements the initial registration and fingerprinting of CSI Plugins as part of #5378. At a high level, it introduces the following: * A `csi_plugin` stanza as part of a Nomad task configuration, to allow a task to expose that it is a plugin. * A new task runner hook: `csi_plugin_supervisor`. This hook does two things. When the `csi_plugin` stanza is detected, it will automatically configure the plugin task to receive bidirectional mounts to the CSI intermediary directory. At runtime, it will then perform an initial heartbeat of the plugin and handle submitting it to the new `dynamicplugins.Registry` for further use by the client, and then run a lightweight heartbeat loop that will emit task events when health changes. * The `dynamicplugins.Registry` for handling plugins that run as Nomad tasks, in contrast to the existing catalog that requires `go-plugin` type plugins and to know the plugin configuration in advance. * The `csimanager` which fingerprints CSI plugins, in a similar way to `drivermanager` and `devicemanager`. It currently only fingerprints the NodeID from the plugin, and assumes that all plugins are monolithic. Missing features * We do not use the live updates of the `dynamicplugin` registry in the `csimanager` yet. * We do not deregister the plugins from the client when they shutdown yet, they just become indefinitely marked as unhealthy. This is deliberate until we figure out how we should manage deploying new versions of plugins/transitioning them.
2019-10-22 13:20:26 +00:00
ctx, cancelFn := context.WithCancel(context.Background())
defer cancelFn()
ch := r.PluginsUpdatedCh(ctx, "csi")
receivedRegistrationEvent := false
listenFunc := func(ch <-chan *PluginUpdateEvent, updateBool *bool) {
select {
case e := <-ch:
if e == nil {
return
}
if e.EventType == EventTypeRegistered {
*updateBool = true
}
}
}
go listenFunc(ch, &receivedRegistrationEvent)
err := r.RegisterPlugin(&PluginInfo{
Type: "csi",
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
require.Eventually(t, func() bool {
return receivedRegistrationEvent == true
}, 1*time.Second, 200*time.Millisecond)
}
func TestDynamicRegistry_DeregisterPlugin_SendsUpdateEvents(t *testing.T) {
t.Parallel()
r := NewRegistry(nil, nil)
CSI Plugin Registration (#6555) This changeset implements the initial registration and fingerprinting of CSI Plugins as part of #5378. At a high level, it introduces the following: * A `csi_plugin` stanza as part of a Nomad task configuration, to allow a task to expose that it is a plugin. * A new task runner hook: `csi_plugin_supervisor`. This hook does two things. When the `csi_plugin` stanza is detected, it will automatically configure the plugin task to receive bidirectional mounts to the CSI intermediary directory. At runtime, it will then perform an initial heartbeat of the plugin and handle submitting it to the new `dynamicplugins.Registry` for further use by the client, and then run a lightweight heartbeat loop that will emit task events when health changes. * The `dynamicplugins.Registry` for handling plugins that run as Nomad tasks, in contrast to the existing catalog that requires `go-plugin` type plugins and to know the plugin configuration in advance. * The `csimanager` which fingerprints CSI plugins, in a similar way to `drivermanager` and `devicemanager`. It currently only fingerprints the NodeID from the plugin, and assumes that all plugins are monolithic. Missing features * We do not use the live updates of the `dynamicplugin` registry in the `csimanager` yet. * We do not deregister the plugins from the client when they shutdown yet, they just become indefinitely marked as unhealthy. This is deliberate until we figure out how we should manage deploying new versions of plugins/transitioning them.
2019-10-22 13:20:26 +00:00
ctx, cancelFn := context.WithCancel(context.Background())
defer cancelFn()
ch := r.PluginsUpdatedCh(ctx, "csi")
receivedDeregistrationEvent := false
listenFunc := func(ch <-chan *PluginUpdateEvent, updateBool *bool) {
for {
select {
case e := <-ch:
if e == nil {
return
}
if e.EventType == EventTypeDeregistered {
*updateBool = true
}
}
}
}
go listenFunc(ch, &receivedDeregistrationEvent)
err := r.RegisterPlugin(&PluginInfo{
Type: "csi",
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
err = r.DeregisterPlugin("csi", "my-plugin")
require.NoError(t, err)
require.Eventually(t, func() bool {
return receivedDeregistrationEvent == true
}, 1*time.Second, 200*time.Millisecond)
}
func TestDynamicRegistry_DispensePlugin_Works(t *testing.T) {
dispenseFn := func(i *PluginInfo) (interface{}, error) {
return struct{}{}, nil
}
registry := NewRegistry(nil, map[string]PluginDispenser{"csi": dispenseFn})
CSI Plugin Registration (#6555) This changeset implements the initial registration and fingerprinting of CSI Plugins as part of #5378. At a high level, it introduces the following: * A `csi_plugin` stanza as part of a Nomad task configuration, to allow a task to expose that it is a plugin. * A new task runner hook: `csi_plugin_supervisor`. This hook does two things. When the `csi_plugin` stanza is detected, it will automatically configure the plugin task to receive bidirectional mounts to the CSI intermediary directory. At runtime, it will then perform an initial heartbeat of the plugin and handle submitting it to the new `dynamicplugins.Registry` for further use by the client, and then run a lightweight heartbeat loop that will emit task events when health changes. * The `dynamicplugins.Registry` for handling plugins that run as Nomad tasks, in contrast to the existing catalog that requires `go-plugin` type plugins and to know the plugin configuration in advance. * The `csimanager` which fingerprints CSI plugins, in a similar way to `drivermanager` and `devicemanager`. It currently only fingerprints the NodeID from the plugin, and assumes that all plugins are monolithic. Missing features * We do not use the live updates of the `dynamicplugin` registry in the `csimanager` yet. * We do not deregister the plugins from the client when they shutdown yet, they just become indefinitely marked as unhealthy. This is deliberate until we figure out how we should manage deploying new versions of plugins/transitioning them.
2019-10-22 13:20:26 +00:00
err := registry.RegisterPlugin(&PluginInfo{
Type: "csi",
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
result, err := registry.DispensePlugin("unknown-type", "unknown-name")
require.Nil(t, result)
require.EqualError(t, err, "no plugin dispenser found for type: unknown-type")
result, err = registry.DispensePlugin("csi", "unknown-name")
require.Nil(t, result)
require.EqualError(t, err, "plugin unknown-name for type csi not found")
result, err = registry.DispensePlugin("csi", "my-plugin")
require.NotNil(t, result)
require.NoError(t, err)
}
func TestDynamicRegistry_IsolatePluginTypes(t *testing.T) {
t.Parallel()
r := NewRegistry(nil, nil)
err := r.RegisterPlugin(&PluginInfo{
Type: PluginTypeCSIController,
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
err = r.RegisterPlugin(&PluginInfo{
Type: PluginTypeCSINode,
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
err = r.DeregisterPlugin(PluginTypeCSIController, "my-plugin")
require.NoError(t, err)
require.Equal(t, len(r.ListPlugins(PluginTypeCSINode)), 1)
require.Equal(t, len(r.ListPlugins(PluginTypeCSIController)), 0)
}
func TestDynamicRegistry_StateStore(t *testing.T) {
t.Parallel()
dispenseFn := func(i *PluginInfo) (interface{}, error) {
return i, nil
}
memdb := &MemDB{}
oldR := NewRegistry(memdb, map[string]PluginDispenser{"csi": dispenseFn})
err := oldR.RegisterPlugin(&PluginInfo{
Type: "csi",
Name: "my-plugin",
ConnectionInfo: &PluginConnectionInfo{},
})
require.NoError(t, err)
result, err := oldR.DispensePlugin("csi", "my-plugin")
require.NotNil(t, result)
require.NoError(t, err)
// recreate the registry from the state store and query again
newR := NewRegistry(memdb, map[string]PluginDispenser{"csi": dispenseFn})
result, err = newR.DispensePlugin("csi", "my-plugin")
require.NotNil(t, result)
require.NoError(t, err)
}
// MemDB implements a StateDB that stores data in memory and should only be
// used for testing. All methods are safe for concurrent use. This is a
// partial implementation of the MemDB in the client/state package, copied
// here to avoid circular dependencies.
type MemDB struct {
dynamicManagerPs *RegistryState
mu sync.RWMutex
}
func (m *MemDB) GetDynamicPluginRegistryState() (*RegistryState, error) {
m.mu.Lock()
defer m.mu.Unlock()
return m.dynamicManagerPs, nil
}
func (m *MemDB) PutDynamicPluginRegistryState(ps *RegistryState) error {
m.mu.Lock()
defer m.mu.Unlock()
m.dynamicManagerPs = ps
return nil
}