open-nomad/nomad/leader.go

269 lines
7.2 KiB
Go
Raw Normal View History

2015-06-01 15:49:10 +00:00
package nomad
import (
"fmt"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
"github.com/hashicorp/serf/serf"
)
2015-06-01 15:49:10 +00:00
// monitorLeadership is used to monitor if we acquire or lose our role
// as the leader in the Raft cluster. There is some work the leader is
// expected to do, so we must react to changes
func (s *Server) monitorLeadership() {
leaderCh := s.raft.LeaderCh()
var stopCh chan struct{}
for {
select {
case isLeader := <-leaderCh:
if isLeader {
stopCh = make(chan struct{})
go s.leaderLoop(stopCh)
s.logger.Printf("[INFO] nomad: cluster leadership acquired")
} else if stopCh != nil {
close(stopCh)
stopCh = nil
s.logger.Printf("[INFO] nomad: cluster leadership lost")
}
case <-s.shutdownCh:
return
}
}
}
// leaderLoop runs as long as we are the leader to run various
// maintence activities
func (s *Server) leaderLoop(stopCh chan struct{}) {
// Ensure we revoke leadership on stepdown
defer s.revokeLeadership()
2015-06-05 21:54:45 +00:00
var reconcileCh chan serf.Member
establishedLeader := false
2015-06-05 21:54:45 +00:00
RECONCILE:
// Setup a reconciliation timer
reconcileCh = nil
interval := time.After(s.config.ReconcileInterval)
// Apply a raft barrier to ensure our FSM is caught up
start := time.Now()
barrier := s.raft.Barrier(0)
if err := barrier.Error(); err != nil {
s.logger.Printf("[ERR] nomad: failed to wait for barrier: %v", err)
goto WAIT
}
metrics.MeasureSince([]string{"nomad", "leader", "barrier"}, start)
// Check if we need to handle initial leadership actions
if !establishedLeader {
2015-08-15 22:15:00 +00:00
if err := s.establishLeadership(stopCh); err != nil {
s.logger.Printf("[ERR] nomad: failed to establish leadership: %v",
err)
goto WAIT
}
establishedLeader = true
}
2015-06-05 21:54:45 +00:00
// Reconcile any missing data
if err := s.reconcile(); err != nil {
s.logger.Printf("[ERR] nomad: failed to reconcile: %v", err)
goto WAIT
}
// Initial reconcile worked, now we can process the channel
// updates
reconcileCh = s.reconcileCh
WAIT:
2015-06-01 15:49:10 +00:00
// Wait until leadership is lost
for {
select {
case <-stopCh:
return
case <-s.shutdownCh:
return
2015-06-05 21:54:45 +00:00
case <-interval:
goto RECONCILE
case member := <-reconcileCh:
s.reconcileMember(member)
}
}
}
// establishLeadership is invoked once we become leader and are able
// to invoke an initial barrier. The barrier is used to ensure any
// previously inflight transactions have been commited and that our
// state is up-to-date.
2015-08-15 22:15:00 +00:00
func (s *Server) establishLeadership(stopCh chan struct{}) error {
2015-07-27 22:11:42 +00:00
// Enable the plan queue, since we are now the leader
s.planQueue.SetEnabled(true)
// Start the plan evaluator
go s.planApply()
2015-07-27 22:11:42 +00:00
// Enable the eval broker, since we are now the leader
s.evalBroker.SetEnabled(true)
// Restore the eval broker state
if err := s.restoreEvalBroker(); err != nil {
return err
}
2015-08-15 22:15:00 +00:00
// Scheduler periodic jobs
go s.schedulePeriodic(stopCh)
return nil
}
2015-07-27 22:11:42 +00:00
// restoreEvalBroker is used to restore all pending evaluations
// into the eval broker. The broker is maintained only by the leader,
// so it must be restored anytime a leadership transition takes place.
func (s *Server) restoreEvalBroker() error {
// Get an iterator over every evaluation
iter, err := s.fsm.State().Evals()
if err != nil {
return fmt.Errorf("failed to get evaluations: %v", err)
}
for {
raw := iter.Next()
if raw == nil {
break
}
eval := raw.(*structs.Evaluation)
2015-08-06 18:28:55 +00:00
if !eval.ShouldEnqueue() {
continue
}
if err := s.evalBroker.Enqueue(eval); err != nil {
return fmt.Errorf("failed to enqueue evaluation %s: %v", eval.ID, err)
}
}
return nil
}
2015-08-15 22:15:00 +00:00
// schedulePeriodic is used to do periodic job dispatch while we are leader
func (s *Server) schedulePeriodic(stopCh chan struct{}) {
evalGC := time.NewTicker(s.config.EvalGCInterval)
defer evalGC.Stop()
for {
select {
case <-evalGC.C:
s.dispatchCoreJob(structs.CoreJobEvalGC)
case <-stopCh:
return
}
}
}
// dispatchCoreJob is used to create an evaluation for a core job
func (s *Server) dispatchCoreJob(job string) {
eval := &structs.Evaluation{
ID: generateUUID(),
Priority: structs.CoreJobPriority,
Type: structs.JobTypeCore,
TriggeredBy: structs.EvalTriggerScheduled,
JobID: job,
Status: structs.EvalStatusPending,
ModifyIndex: s.raft.AppliedIndex(),
}
s.evalBroker.Enqueue(eval)
}
// revokeLeadership is invoked once we step down as leader.
// This is used to cleanup any state that may be specific to a leader.
func (s *Server) revokeLeadership() error {
2015-07-27 22:11:42 +00:00
// Disable the plan queue, since we are no longer leader
s.planQueue.SetEnabled(false)
// Disable the eval broker, since it is only useful as a leader
s.evalBroker.SetEnabled(false)
return nil
}
2015-06-05 21:54:45 +00:00
// reconcile is used to reconcile the differences between Serf
// membership and what is reflected in our strongly consistent store.
func (s *Server) reconcile() error {
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcile"}, time.Now())
members := s.serf.Members()
for _, member := range members {
if err := s.reconcileMember(member); err != nil {
return err
}
}
return nil
}
// reconcileMember is used to do an async reconcile of a single serf member
func (s *Server) reconcileMember(member serf.Member) error {
// Check if this is a member we should handle
valid, parts := isNomadServer(member)
if !valid || parts.Region != s.config.Region {
return nil
}
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcileMember"}, time.Now())
// Do not reconcile ourself
if member.Name == fmt.Sprintf("%s.%s", s.config.NodeName, s.config.Region) {
return nil
}
var err error
switch member.Status {
case serf.StatusAlive:
err = s.addRaftPeer(member, parts)
case serf.StatusLeft, StatusReap:
err = s.removeRaftPeer(member, parts)
}
if err != nil {
s.logger.Printf("[ERR] nomad: failed to reconcile member: %v: %v",
member, err)
return err
}
return nil
}
// addRaftPeer is used to add a new Raft peer when a Nomad server joins
func (s *Server) addRaftPeer(m serf.Member, parts *serverParts) error {
// Check for possibility of multiple bootstrap nodes
if parts.Bootstrap {
members := s.serf.Members()
for _, member := range members {
valid, p := isNomadServer(member)
if valid && member.Name != m.Name && p.Bootstrap {
s.logger.Printf("[ERR] nomad: '%v' and '%v' are both in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.", m.Name, member.Name)
return nil
}
2015-06-01 15:49:10 +00:00
}
}
// Attempt to add as a peer
future := s.raft.AddPeer(parts.Addr.String())
if err := future.Error(); err != nil && err != raft.ErrKnownPeer {
s.logger.Printf("[ERR] nomad: failed to add raft peer: %v", err)
return err
2015-06-05 21:54:45 +00:00
} else if err == nil {
s.logger.Printf("[INFO] nomad: added raft peer: %v", parts)
}
return nil
}
// removeRaftPeer is used to remove a Raft peer when a Nomad server leaves
// or is reaped
func (s *Server) removeRaftPeer(m serf.Member, parts *serverParts) error {
// Attempt to remove as peer
future := s.raft.RemovePeer(parts.Addr.String())
if err := future.Error(); err != nil && err != raft.ErrUnknownPeer {
s.logger.Printf("[ERR] nomad: failed to remove raft peer '%v': %v",
parts, err)
return err
} else if err == nil {
s.logger.Printf("[INFO] nomad: removed server '%s' as peer", m.Name)
}
return nil
2015-06-01 15:49:10 +00:00
}