open-nomad/plugins/drivers/testutils/exec_testing.go

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

381 lines
9.5 KiB
Go
Raw Normal View History

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package testutils
import (
"context"
"fmt"
"io"
"os"
"reflect"
"regexp"
"runtime"
"strings"
"sync"
"testing"
"time"
client: enable support for cgroups v2 This PR introduces support for using Nomad on systems with cgroups v2 [1] enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems for Nomad users. Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer, but not so for managing cpuset cgroups. Before, Nomad has been making use of a feature in v1 where a PID could be a member of more than one cgroup. In v2 this is no longer possible, and so the logic around computing cpuset values must be modified. When Nomad detects v2, it manages cpuset values in-process, rather than making use of cgroup heirarchy inheritence via shared/reserved parents. Nomad will only activate the v2 logic when it detects cgroups2 is mounted at /sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2 mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to use the v1 logic, and should operate as before. Systems that do not support cgroups v2 are also not affected. When v2 is activated, Nomad will create a parent called nomad.slice (unless otherwise configured in Client conifg), and create cgroups for tasks using naming convention <allocID>-<task>.scope. These follow the naming convention set by systemd and also used by Docker when cgroups v2 is detected. Client nodes now export a new fingerprint attribute, unique.cgroups.version which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by Nomad. The new cpuset management strategy fixes #11705, where docker tasks that spawned processes on startup would "leak". In cgroups v2, the PIDs are started in the cgroup they will always live in, and thus the cause of the leak is eliminated. [1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html Closes #11289 Fixes #11705 #11773 #11933
2022-02-28 22:24:01 +00:00
"github.com/hashicorp/nomad/client/lib/cgutil"
"github.com/hashicorp/nomad/plugins/drivers"
dproto "github.com/hashicorp/nomad/plugins/drivers/proto"
client: enable support for cgroups v2 This PR introduces support for using Nomad on systems with cgroups v2 [1] enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems for Nomad users. Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer, but not so for managing cpuset cgroups. Before, Nomad has been making use of a feature in v1 where a PID could be a member of more than one cgroup. In v2 this is no longer possible, and so the logic around computing cpuset values must be modified. When Nomad detects v2, it manages cpuset values in-process, rather than making use of cgroup heirarchy inheritence via shared/reserved parents. Nomad will only activate the v2 logic when it detects cgroups2 is mounted at /sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2 mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to use the v1 logic, and should operate as before. Systems that do not support cgroups v2 are also not affected. When v2 is activated, Nomad will create a parent called nomad.slice (unless otherwise configured in Client conifg), and create cgroups for tasks using naming convention <allocID>-<task>.scope. These follow the naming convention set by systemd and also used by Docker when cgroups v2 is detected. Client nodes now export a new fingerprint attribute, unique.cgroups.version which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by Nomad. The new cpuset management strategy fixes #11705, where docker tasks that spawned processes on startup would "leak". In cgroups v2, the PIDs are started in the cgroup they will always live in, and thus the cause of the leak is eliminated. [1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html Closes #11289 Fixes #11705 #11773 #11933
2022-02-28 22:24:01 +00:00
"github.com/hashicorp/nomad/testutil"
"github.com/stretchr/testify/require"
)
func ExecTaskStreamingConformanceTests(t *testing.T, driver *DriverHarness, taskID string) {
t.Helper()
if runtime.GOOS == "windows" {
// tests assume unix-ism now
t.Skip("test assume unix tasks")
}
TestExecTaskStreamingBasicResponses(t, driver, taskID)
TestExecFSIsolation(t, driver, taskID)
}
var ExecTaskStreamingBasicCases = []struct {
Name string
Command string
Tty bool
Stdin string
Stdout interface{}
Stderr interface{}
ExitCode int
}{
{
Name: "notty: basic",
Command: "echo hello stdout; echo hello stderr >&2; exit 43",
Tty: false,
Stdout: "hello stdout\n",
Stderr: "hello stderr\n",
ExitCode: 43,
},
{
Name: "notty: streaming",
Command: "for n in 1 2 3; do echo $n; sleep 1; done",
Tty: false,
Stdout: "1\n2\n3\n",
ExitCode: 0,
},
{
Name: "notty: stty check",
Command: "stty size",
Tty: false,
Stderr: regexp.MustCompile("stty: .?standard input.?: Inappropriate ioctl for device\n"),
ExitCode: 1,
},
{
Name: "notty: stdin passing",
Command: "echo hello from command; head -n1",
Tty: false,
Stdin: "hello from stdin\n",
Stdout: "hello from command\nhello from stdin\n",
ExitCode: 0,
},
// TTY cases - difference is new lines add `\r` and child process waiting is different
{
Name: "tty: basic",
Command: "echo hello stdout; echo hello stderr >&2; exit 43",
Tty: true,
Stdout: "hello stdout\r\nhello stderr\r\n",
ExitCode: 43,
},
{
Name: "tty: streaming",
Command: "for n in 1 2 3; do echo $n; sleep 1; done",
Tty: true,
Stdout: "1\r\n2\r\n3\r\n",
ExitCode: 0,
},
{
Name: "tty: stty check",
Command: "sleep 1; stty size",
Tty: true,
Stdout: "100 100\r\n",
ExitCode: 0,
},
{
Name: "tty: stdin passing",
Command: "head -n1",
Tty: true,
Stdin: "hello from stdin\n",
// in tty mode, we emit line twice: once for tty echoing and one for the actual head output
Stdout: "hello from stdin\r\nhello from stdin\r\n",
ExitCode: 0,
},
{
Name: "tty: children processes",
Command: "(( sleep 3; echo from background ) & ); echo from main; exec sleep 1",
Tty: true,
// when using tty; wait for lead process only, like `docker exec -it`
Stdout: "from main\r\n",
ExitCode: 0,
},
}
func TestExecTaskStreamingBasicResponses(t *testing.T, driver *DriverHarness, taskID string) {
for _, c := range ExecTaskStreamingBasicCases {
t.Run("basic: "+c.Name, func(t *testing.T) {
result := execTask(t, driver, taskID, c.Command, c.Tty, c.Stdin)
require.Equal(t, c.ExitCode, result.exitCode)
switch s := c.Stdout.(type) {
case string:
require.Equal(t, s, result.stdout)
case *regexp.Regexp:
require.Regexp(t, s, result.stdout)
case nil:
require.Empty(t, result.stdout)
default:
require.Fail(t, "unexpected stdout type", "found %v (%v), but expected string or regexp", s, reflect.TypeOf(s))
}
switch s := c.Stderr.(type) {
case string:
require.Equal(t, s, result.stderr)
case *regexp.Regexp:
require.Regexp(t, s, result.stderr)
case nil:
require.Empty(t, result.stderr)
default:
require.Fail(t, "unexpected stderr type", "found %v (%v), but expected string or regexp", s, reflect.TypeOf(s))
}
})
}
}
// TestExecFSIsolation asserts that exec occurs inside chroot/isolation environment rather than
// on host
func TestExecFSIsolation(t *testing.T, driver *DriverHarness, taskID string) {
t.Run("isolation", func(t *testing.T) {
caps, err := driver.Capabilities()
require.NoError(t, err)
isolated := (caps.FSIsolation != drivers.FSIsolationNone)
text := "hello from the other side"
// write to a file and check it presence in host
w := execTask(t, driver, taskID,
fmt.Sprintf(`FILE=$(mktemp); echo "$FILE"; echo %q >> "${FILE}"`, text),
false, "")
require.Zero(t, w.exitCode)
tempfile := strings.TrimSpace(w.stdout)
if !isolated {
defer os.Remove(tempfile)
}
t.Logf("created file in task: %v", tempfile)
// read from host
b, err := os.ReadFile(tempfile)
if !isolated {
require.NoError(t, err)
require.Equal(t, text, strings.TrimSpace(string(b)))
} else {
require.Error(t, err)
require.True(t, os.IsNotExist(err))
}
// read should succeed from task again
r := execTask(t, driver, taskID,
fmt.Sprintf("cat %q", tempfile),
false, "")
require.Zero(t, r.exitCode)
require.Equal(t, text, strings.TrimSpace(r.stdout))
// we always run in a cgroup - testing freezer cgroup
r = execTask(t, driver, taskID,
2020-12-09 19:05:18 +00:00
"cat /proc/self/cgroup",
false, "")
require.Zero(t, r.exitCode)
client: enable support for cgroups v2 This PR introduces support for using Nomad on systems with cgroups v2 [1] enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems for Nomad users. Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer, but not so for managing cpuset cgroups. Before, Nomad has been making use of a feature in v1 where a PID could be a member of more than one cgroup. In v2 this is no longer possible, and so the logic around computing cpuset values must be modified. When Nomad detects v2, it manages cpuset values in-process, rather than making use of cgroup heirarchy inheritence via shared/reserved parents. Nomad will only activate the v2 logic when it detects cgroups2 is mounted at /sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2 mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to use the v1 logic, and should operate as before. Systems that do not support cgroups v2 are also not affected. When v2 is activated, Nomad will create a parent called nomad.slice (unless otherwise configured in Client conifg), and create cgroups for tasks using naming convention <allocID>-<task>.scope. These follow the naming convention set by systemd and also used by Docker when cgroups v2 is detected. Client nodes now export a new fingerprint attribute, unique.cgroups.version which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by Nomad. The new cpuset management strategy fixes #11705, where docker tasks that spawned processes on startup would "leak". In cgroups v2, the PIDs are started in the cgroup they will always live in, and thus the cause of the leak is eliminated. [1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html Closes #11289 Fixes #11705 #11773 #11933
2022-02-28 22:24:01 +00:00
if !cgutil.UseV2 {
acceptable := []string{
":freezer:/nomad", ":freezer:/docker",
}
if testutil.IsCI() {
// github actions freezer cgroup
acceptable = append(acceptable, ":freezer:/actions_job")
}
client: enable support for cgroups v2 This PR introduces support for using Nomad on systems with cgroups v2 [1] enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems for Nomad users. Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer, but not so for managing cpuset cgroups. Before, Nomad has been making use of a feature in v1 where a PID could be a member of more than one cgroup. In v2 this is no longer possible, and so the logic around computing cpuset values must be modified. When Nomad detects v2, it manages cpuset values in-process, rather than making use of cgroup heirarchy inheritence via shared/reserved parents. Nomad will only activate the v2 logic when it detects cgroups2 is mounted at /sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2 mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to use the v1 logic, and should operate as before. Systems that do not support cgroups v2 are also not affected. When v2 is activated, Nomad will create a parent called nomad.slice (unless otherwise configured in Client conifg), and create cgroups for tasks using naming convention <allocID>-<task>.scope. These follow the naming convention set by systemd and also used by Docker when cgroups v2 is detected. Client nodes now export a new fingerprint attribute, unique.cgroups.version which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by Nomad. The new cpuset management strategy fixes #11705, where docker tasks that spawned processes on startup would "leak". In cgroups v2, the PIDs are started in the cgroup they will always live in, and thus the cause of the leak is eliminated. [1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html Closes #11289 Fixes #11705 #11773 #11933
2022-02-28 22:24:01 +00:00
ok := false
for _, freezerGroup := range acceptable {
if strings.Contains(r.stdout, freezerGroup) {
ok = true
break
}
}
if !ok {
require.Fail(t, "unexpected freezer cgroup", "expected freezer to be /nomad/ or /docker/, but found:\n%s", r.stdout)
}
} else {
info, _ := driver.PluginInfo()
if info.Name == "docker" {
// Note: docker on cgroups v2 now returns nothing
// root@97b4d3d33035:/# cat /proc/self/cgroup
// 0::/
t.Skip("/proc/self/cgroup not useful in docker cgroups.v2")
}
// e.g. 0::/testing.slice/5bdbd6c2-8aba-3ab2-728b-0ff3a81727a9.sleep.scope
require.True(t, strings.HasSuffix(strings.TrimSpace(r.stdout), ".scope"), "actual stdout %q", r.stdout)
}
})
}
func ExecTask(t *testing.T, driver *DriverHarness, taskID string, cmd string, tty bool, stdin string) (exitCode int, stdout, stderr string) {
r := execTask(t, driver, taskID, cmd, tty, stdin)
return r.exitCode, r.stdout, r.stderr
}
func execTask(t *testing.T, driver *DriverHarness, taskID string, cmd string, tty bool, stdin string) execResult {
stream := newTestExecStream(t, tty, stdin)
ctx, cancelFn := context.WithTimeout(context.Background(), 30*time.Second)
defer cancelFn()
command := []string{"/bin/sh", "-c", cmd}
isRaw := false
exitCode := -2
if raw, ok := driver.impl.(drivers.ExecTaskStreamingRawDriver); ok {
isRaw = true
err := raw.ExecTaskStreamingRaw(ctx, taskID,
command, tty, stream)
require.NoError(t, err)
} else if d, ok := driver.impl.(drivers.ExecTaskStreamingDriver); ok {
execOpts, errCh := drivers.StreamToExecOptions(ctx, command, tty, stream)
r, err := d.ExecTaskStreaming(ctx, taskID, execOpts)
require.NoError(t, err)
select {
case err := <-errCh:
require.NoError(t, err)
default:
// all good
}
exitCode = r.ExitCode
} else {
require.Fail(t, "driver does not support exec")
}
result := stream.currentResult()
require.NoError(t, result.err)
if !isRaw {
result.exitCode = exitCode
}
return result
}
type execResult struct {
exitCode int
stdout string
stderr string
err error
}
func newTestExecStream(t *testing.T, tty bool, stdin string) *testExecStream {
return &testExecStream{
t: t,
input: newInputStream(tty, stdin),
result: &execResult{exitCode: -2},
}
}
func newInputStream(tty bool, stdin string) []*drivers.ExecTaskStreamingRequestMsg {
input := []*drivers.ExecTaskStreamingRequestMsg{}
if tty {
// emit two resize to ensure we honor latest
input = append(input, &drivers.ExecTaskStreamingRequestMsg{
TtySize: &dproto.ExecTaskStreamingRequest_TerminalSize{
Height: 50,
Width: 40,
}})
input = append(input, &drivers.ExecTaskStreamingRequestMsg{
TtySize: &dproto.ExecTaskStreamingRequest_TerminalSize{
Height: 100,
Width: 100,
}})
}
input = append(input, &drivers.ExecTaskStreamingRequestMsg{
Stdin: &dproto.ExecTaskStreamingIOOperation{
Data: []byte(stdin),
},
})
if !tty {
// don't close stream in interactive session and risk closing tty prematurely
input = append(input, &drivers.ExecTaskStreamingRequestMsg{
Stdin: &dproto.ExecTaskStreamingIOOperation{
Close: true,
},
})
}
return input
}
var _ drivers.ExecTaskStream = (*testExecStream)(nil)
type testExecStream struct {
t *testing.T
// input
input []*drivers.ExecTaskStreamingRequestMsg
recvCalled int
// result so far
resultLock sync.Mutex
result *execResult
}
func (s *testExecStream) currentResult() execResult {
s.resultLock.Lock()
defer s.resultLock.Unlock()
// make a copy
return *s.result
}
func (s *testExecStream) Recv() (*drivers.ExecTaskStreamingRequestMsg, error) {
if s.recvCalled >= len(s.input) {
return nil, io.EOF
}
i := s.input[s.recvCalled]
s.recvCalled++
return i, nil
}
func (s *testExecStream) Send(m *drivers.ExecTaskStreamingResponseMsg) error {
s.resultLock.Lock()
defer s.resultLock.Unlock()
switch {
case m.Stdout != nil && m.Stdout.Data != nil:
s.t.Logf("received stdout: %s", string(m.Stdout.Data))
s.result.stdout += string(m.Stdout.Data)
case m.Stderr != nil && m.Stderr.Data != nil:
s.t.Logf("received stderr: %s", string(m.Stderr.Data))
s.result.stderr += string(m.Stderr.Data)
case m.Exited && m.Result != nil:
s.result.exitCode = int(m.Result.ExitCode)
}
return nil
}