open-nomad/scheduler/testing.go

228 lines
5.3 KiB
Go
Raw Normal View History

2015-08-13 22:57:49 +00:00
package scheduler
import (
"fmt"
2015-08-13 22:57:49 +00:00
"log"
"os"
"sync"
2017-05-18 19:36:04 +00:00
"time"
2015-08-13 22:57:49 +00:00
2017-02-08 04:31:23 +00:00
memdb "github.com/hashicorp/go-memdb"
2015-08-13 22:57:49 +00:00
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/mitchellh/go-testing-interface"
2015-08-13 22:57:49 +00:00
)
// RejectPlan is used to always reject the entire plan and force a state refresh
type RejectPlan struct {
Harness *Harness
}
func (r *RejectPlan) SubmitPlan(*structs.Plan) (*structs.PlanResult, State, error) {
result := new(structs.PlanResult)
result.RefreshIndex = r.Harness.NextIndex()
return result, r.Harness.State, nil
}
func (r *RejectPlan) UpdateEval(eval *structs.Evaluation) error {
return nil
}
func (r *RejectPlan) CreateEval(*structs.Evaluation) error {
return nil
}
func (r *RejectPlan) ReblockEval(*structs.Evaluation) error {
return nil
}
2016-05-16 19:49:18 +00:00
// Harness is a lightweight testing harness for schedulers. It manages a state
// store copy and provides the planner interface. It can be extended for various
// testing uses or for invoking the scheduler without side effects.
2015-08-13 22:57:49 +00:00
type Harness struct {
State *state.StateStore
Planner Planner
planLock sync.Mutex
Plans []*structs.Plan
Evals []*structs.Evaluation
CreateEvals []*structs.Evaluation
ReblockEvals []*structs.Evaluation
2015-08-13 22:57:49 +00:00
nextIndex uint64
nextIndexLock sync.Mutex
}
// NewHarness is used to make a new testing harness
func NewHarness(t testing.T) *Harness {
2015-08-13 22:57:49 +00:00
state, err := state.NewStateStore(os.Stderr)
if err != nil {
t.Fatalf("err: %v", err)
}
h := &Harness{
State: state,
nextIndex: 1,
}
return h
}
// NewHarnessWithState creates a new harness with the given state for testing
// purposes.
func NewHarnessWithState(t testing.T, state *state.StateStore) *Harness {
return &Harness{
State: state,
nextIndex: 1,
}
}
2015-08-13 22:57:49 +00:00
// SubmitPlan is used to handle plan submission
func (h *Harness) SubmitPlan(plan *structs.Plan) (*structs.PlanResult, State, error) {
// Ensure sequential plan application
h.planLock.Lock()
defer h.planLock.Unlock()
// Store the plan
h.Plans = append(h.Plans, plan)
// Check for custom planner
if h.Planner != nil {
return h.Planner.SubmitPlan(plan)
}
// Get the index
index := h.NextIndex()
// Prepare the result
result := new(structs.PlanResult)
2015-08-26 00:06:06 +00:00
result.NodeUpdate = plan.NodeUpdate
2015-08-13 22:57:49 +00:00
result.NodeAllocation = plan.NodeAllocation
result.AllocIndex = index
// Flatten evicts and allocs
var allocs []*structs.Allocation
2015-08-26 00:06:06 +00:00
for _, updateList := range plan.NodeUpdate {
allocs = append(allocs, updateList...)
2015-08-13 22:57:49 +00:00
}
for _, allocList := range plan.NodeAllocation {
allocs = append(allocs, allocList...)
}
2017-05-18 19:36:04 +00:00
// Set the time the alloc was applied for the first time. This can be used
// to approximate the scheduling time.
now := time.Now().UTC().UnixNano()
for _, alloc := range allocs {
if alloc.CreateTime == 0 {
alloc.CreateTime = now
2016-02-21 19:32:56 +00:00
}
}
2017-05-18 19:36:04 +00:00
// Setup the update request
req := structs.ApplyPlanResultsRequest{
AllocUpdateRequest: structs.AllocUpdateRequest{
Job: plan.Job,
Alloc: allocs,
},
Deployment: plan.Deployment,
2017-05-18 19:36:04 +00:00
DeploymentUpdates: plan.DeploymentUpdates,
}
2015-08-13 22:57:49 +00:00
// Apply the full plan
2017-05-18 19:36:04 +00:00
err := h.State.UpsertPlanResults(index, &req)
2015-08-13 22:57:49 +00:00
return result, nil, err
}
2015-08-15 21:25:00 +00:00
func (h *Harness) UpdateEval(eval *structs.Evaluation) error {
// Ensure sequential plan application
h.planLock.Lock()
defer h.planLock.Unlock()
// Store the eval
2015-08-15 21:25:00 +00:00
h.Evals = append(h.Evals, eval)
// Check for custom planner
if h.Planner != nil {
return h.Planner.UpdateEval(eval)
}
2015-08-15 21:25:00 +00:00
return nil
}
func (h *Harness) CreateEval(eval *structs.Evaluation) error {
// Ensure sequential plan application
h.planLock.Lock()
defer h.planLock.Unlock()
// Store the eval
h.CreateEvals = append(h.CreateEvals, eval)
// Check for custom planner
if h.Planner != nil {
return h.Planner.CreateEval(eval)
}
return nil
}
func (h *Harness) ReblockEval(eval *structs.Evaluation) error {
// Ensure sequential plan application
h.planLock.Lock()
defer h.planLock.Unlock()
// Check that the evaluation was already blocked.
2017-02-08 04:31:23 +00:00
ws := memdb.NewWatchSet()
old, err := h.State.EvalByID(ws, eval.ID)
if err != nil {
return err
}
if old == nil {
return fmt.Errorf("evaluation does not exist to be reblocked")
}
if old.Status != structs.EvalStatusBlocked {
return fmt.Errorf("evaluation %q is not already in a blocked state", old.ID)
}
h.ReblockEvals = append(h.ReblockEvals, eval)
return nil
}
2015-08-13 22:57:49 +00:00
// NextIndex returns the next index
func (h *Harness) NextIndex() uint64 {
h.nextIndexLock.Lock()
defer h.nextIndexLock.Unlock()
idx := h.nextIndex
h.nextIndex += 1
return idx
}
// Snapshot is used to snapshot the current state
func (h *Harness) Snapshot() State {
snap, _ := h.State.Snapshot()
return snap
}
// Scheduler is used to return a new scheduler from
// a snapshot of current state using the harness for planning.
func (h *Harness) Scheduler(factory Factory) Scheduler {
logger := log.New(os.Stderr, "", log.LstdFlags)
return factory(logger, h.Snapshot(), h)
}
// Process is used to process an evaluation given a factory
// function to create the scheduler
func (h *Harness) Process(factory Factory, eval *structs.Evaluation) error {
sched := h.Scheduler(factory)
return sched.Process(eval)
}
func (h *Harness) AssertEvalStatus(t testing.T, state string) {
if len(h.Evals) != 1 {
t.Fatalf("bad: %#v", h.Evals)
}
update := h.Evals[0]
if update.Status != state {
t.Fatalf("bad: %#v", update)
}
}