open-consul/agent/proxycfg/upstreams.go
Matt Keeler f3c80c4eef
Protobuf Refactoring for Multi-Module Cleanliness (#16302)
Protobuf Refactoring for Multi-Module Cleanliness

This commit includes the following:

Moves all packages that were within proto/ to proto/private
Rewrites imports to account for the packages being moved
Adds in buf.work.yaml to enable buf workspaces
Names the proto-public buf module so that we can override the Go package imports within proto/buf.yaml
Bumps the buf version dependency to 1.14.0 (I was trying out the version to see if it would get around an issue - it didn't but it also doesn't break things and it seemed best to keep up with the toolchain changes)

Why:

In the future we will need to consume other protobuf dependencies such as the Google HTTP annotations for openapi generation or grpc-gateway usage.
There were some recent changes to have our own ratelimiting annotations.
The two combined were not working when I was trying to use them together (attempting to rebase another branch)
Buf workspaces should be the solution to the problem
Buf workspaces means that each module will have generated Go code that embeds proto file names relative to the proto dir and not the top level repo root.
This resulted in proto file name conflicts in the Go global protobuf type registry.
The solution to that was to add in a private/ directory into the path within the proto/ directory.
That then required rewriting all the imports.

Is this safe?

AFAICT yes
The gRPC wire protocol doesn't seem to care about the proto file names (although the Go grpc code does tack on the proto file name as Metadata in the ServiceDesc)
Other than imports, there were no changes to any generated code as a result of this.
2023-02-17 16:14:46 -05:00

625 lines
20 KiB
Go

package proxycfg
import (
"context"
"fmt"
"strings"
"time"
"github.com/mitchellh/mapstructure"
"github.com/hashicorp/consul/acl"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/proto/private/pbpeering"
)
type handlerUpstreams struct {
handlerState
}
func (s *handlerUpstreams) handleUpdateUpstreams(ctx context.Context, u UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
upstreamsSnapshot, err := snap.ToConfigSnapshotUpstreams()
if err != nil {
return err
}
switch {
case u.CorrelationID == leafWatchID:
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
upstreamsSnapshot.Leaf = leaf
case u.CorrelationID == meshConfigEntryID:
resp, ok := u.Result.(*structs.ConfigEntryResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if resp.Entry != nil {
meshConf, ok := resp.Entry.(*structs.MeshConfigEntry)
if !ok {
return fmt.Errorf("invalid type for config entry: %T", resp.Entry)
}
upstreamsSnapshot.MeshConfig = meshConf
} else {
upstreamsSnapshot.MeshConfig = nil
}
upstreamsSnapshot.MeshConfigSet = true
case strings.HasPrefix(u.CorrelationID, "discovery-chain:"):
resp, ok := u.Result.(*structs.DiscoveryChainResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
uidString := strings.TrimPrefix(u.CorrelationID, "discovery-chain:")
uid := UpstreamIDFromString(uidString)
switch snap.Kind {
case structs.ServiceKindAPIGateway:
if !snap.APIGateway.UpstreamsSet.hasUpstream(uid) {
// Discovery chain is not associated with a known explicit or implicit upstream so it is purged/skipped.
// The associated watch was likely cancelled.
delete(upstreamsSnapshot.DiscoveryChain, uid)
s.logger.Trace("discovery-chain watch fired for unknown upstream", "upstream", uid)
return nil
}
case structs.ServiceKindIngressGateway:
if _, ok := snap.IngressGateway.UpstreamsSet[uid]; !ok {
// Discovery chain is not associated with a known explicit or implicit upstream so it is purged/skipped.
// The associated watch was likely cancelled.
delete(upstreamsSnapshot.DiscoveryChain, uid)
s.logger.Trace("discovery-chain watch fired for unknown upstream", "upstream", uid)
return nil
}
case structs.ServiceKindConnectProxy:
explicit := snap.ConnectProxy.UpstreamConfig[uid].HasLocalPortOrSocket()
implicit := snap.ConnectProxy.IsImplicitUpstream(uid)
if !implicit && !explicit {
// Discovery chain is not associated with a known explicit or implicit upstream so it is purged/skipped.
// The associated watch was likely cancelled.
delete(upstreamsSnapshot.DiscoveryChain, uid)
s.logger.Trace("discovery-chain watch fired for unknown upstream", "upstream", uid)
return nil
}
default:
return fmt.Errorf("discovery-chain watch fired for unsupported kind: %s", snap.Kind)
}
upstreamsSnapshot.DiscoveryChain[uid] = resp.Chain
if err := s.resetWatchesFromChain(ctx, uid, resp.Chain, upstreamsSnapshot); err != nil {
return err
}
case strings.HasPrefix(u.CorrelationID, upstreamPeerWatchIDPrefix):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
uidString := strings.TrimPrefix(u.CorrelationID, upstreamPeerWatchIDPrefix)
uid := UpstreamIDFromString(uidString)
s.setPeerEndpoints(upstreamsSnapshot, uid, resp.Nodes)
case strings.HasPrefix(u.CorrelationID, peerTrustBundleIDPrefix):
resp, ok := u.Result.(*pbpeering.TrustBundleReadResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
peer := strings.TrimPrefix(u.CorrelationID, peerTrustBundleIDPrefix)
if resp.Bundle != nil {
upstreamsSnapshot.UpstreamPeerTrustBundles.Set(peer, resp.Bundle)
}
case strings.HasPrefix(u.CorrelationID, "upstream-target:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "upstream-target:")
targetID, uidString, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
uid := UpstreamIDFromString(uidString)
if _, ok := upstreamsSnapshot.WatchedUpstreamEndpoints[uid]; !ok {
upstreamsSnapshot.WatchedUpstreamEndpoints[uid] = make(map[string]structs.CheckServiceNodes)
}
upstreamsSnapshot.WatchedUpstreamEndpoints[uid][targetID] = resp.Nodes
// Skip adding passthroughs unless it's a connect sidecar in tproxy mode.
if s.kind != structs.ServiceKindConnectProxy || s.proxyCfg.Mode != structs.ProxyModeTransparent {
return nil
}
// Clear out this target's existing passthrough upstreams and indices so that they can be repopulated below.
if _, ok := upstreamsSnapshot.PassthroughUpstreams[uid]; ok {
for addr := range upstreamsSnapshot.PassthroughUpstreams[uid][targetID] {
if indexed := upstreamsSnapshot.PassthroughIndices[addr]; indexed.targetID == targetID && indexed.upstreamID == uid {
delete(upstreamsSnapshot.PassthroughIndices, addr)
}
}
upstreamsSnapshot.PassthroughUpstreams[uid][targetID] = make(map[string]struct{})
}
passthroughs := make(map[string]struct{})
for _, node := range resp.Nodes {
dialedDirectly := node.Service.Proxy.TransparentProxy.DialedDirectly
// We must do a manual merge here on the DialedDirectly field, because the service-defaults
// and proxy-defaults are not automatically merged into the CheckServiceNodes when in
// agentless mode (because the streaming backend doesn't yet support the MergeCentralConfig field).
if chain := snap.ConnectProxy.DiscoveryChain[uid]; chain != nil {
if target := chain.Targets[targetID]; target != nil {
dialedDirectly = dialedDirectly || target.TransparentProxy.DialedDirectly
}
}
// Skip adding a passthrough for the upstream node if not DialedDirectly.
if !dialedDirectly {
continue
}
// Make sure to use an external address when crossing partition or DC boundaries.
isRemote := !snap.Locality.Matches(node.Node.Datacenter, node.Node.PartitionOrDefault())
// If node is peered it must be remote
if node.Node.PeerOrEmpty() != "" {
isRemote = true
}
csnIdx, addr, _ := node.BestAddress(isRemote)
existing := upstreamsSnapshot.PassthroughIndices[addr]
if existing.idx > csnIdx {
// The last known instance with this address had a higher index so it takes precedence.
continue
}
// The current instance has a higher Raft index so we ensure the passthrough address is only
// associated with this upstream target. Older associations are cleaned up as needed.
delete(upstreamsSnapshot.PassthroughUpstreams[existing.upstreamID][existing.targetID], addr)
if len(upstreamsSnapshot.PassthroughUpstreams[existing.upstreamID][existing.targetID]) == 0 {
delete(upstreamsSnapshot.PassthroughUpstreams[existing.upstreamID], existing.targetID)
}
if len(upstreamsSnapshot.PassthroughUpstreams[existing.upstreamID]) == 0 {
delete(upstreamsSnapshot.PassthroughUpstreams, existing.upstreamID)
}
upstreamsSnapshot.PassthroughIndices[addr] = indexedTarget{idx: csnIdx, upstreamID: uid, targetID: targetID}
passthroughs[addr] = struct{}{}
}
// Always clear out the existing target passthroughs list so that clusters are cleaned up
// correctly if no entries are populated.
upstreamsSnapshot.PassthroughUpstreams[uid] = make(map[string]map[string]struct{})
if len(passthroughs) > 0 {
// Add the passthroughs to the target if any were found.
upstreamsSnapshot.PassthroughUpstreams[uid][targetID] = passthroughs
}
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
key, uidString, ok := strings.Cut(correlationID, ":")
if ok {
// correlationID formatted with an upstreamID
uid := UpstreamIDFromString(uidString)
if _, ok = upstreamsSnapshot.WatchedGatewayEndpoints[uid]; !ok {
upstreamsSnapshot.WatchedGatewayEndpoints[uid] = make(map[string]structs.CheckServiceNodes)
}
upstreamsSnapshot.WatchedGatewayEndpoints[uid][key] = resp.Nodes
} else {
// event was for local gateways only
upstreamsSnapshot.WatchedLocalGWEndpoints.Set(key, resp.Nodes)
}
default:
return fmt.Errorf("unknown correlation ID: %s", u.CorrelationID)
}
return nil
}
func removeColonPrefix(s string) (string, string, bool) {
idx := strings.Index(s, ":")
if idx == -1 {
return "", "", false
}
return s[0:idx], s[idx+1:], true
}
func (s *handlerUpstreams) setPeerEndpoints(upstreamsSnapshot *ConfigSnapshotUpstreams, uid UpstreamID, nodes structs.CheckServiceNodes) {
filteredNodes := hostnameEndpoints(
s.logger,
GatewayKey{ /*empty so it never matches*/ },
nodes,
)
if len(filteredNodes) > 0 {
if set := upstreamsSnapshot.PeerUpstreamEndpoints.Set(uid, filteredNodes); set {
upstreamsSnapshot.PeerUpstreamEndpointsUseHostnames[uid] = struct{}{}
}
} else {
if set := upstreamsSnapshot.PeerUpstreamEndpoints.Set(uid, nodes); set {
delete(upstreamsSnapshot.PeerUpstreamEndpointsUseHostnames, uid)
}
}
}
func (s *handlerUpstreams) resetWatchesFromChain(
ctx context.Context,
uid UpstreamID,
chain *structs.CompiledDiscoveryChain,
snap *ConfigSnapshotUpstreams,
) error {
s.logger.Trace("resetting watches for discovery chain", "id", uid)
if chain == nil {
return fmt.Errorf("not possible to arrive here with no discovery chain")
}
// Initialize relevant sub maps.
if _, ok := snap.WatchedUpstreams[uid]; !ok {
snap.WatchedUpstreams[uid] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedUpstreamEndpoints[uid]; !ok {
snap.WatchedUpstreamEndpoints[uid] = make(map[string]structs.CheckServiceNodes)
}
if _, ok := snap.WatchedGateways[uid]; !ok {
snap.WatchedGateways[uid] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedGatewayEndpoints[uid]; !ok {
snap.WatchedGatewayEndpoints[uid] = make(map[string]structs.CheckServiceNodes)
}
// We could invalidate this selectively based on a hash of the relevant
// resolver information, but for now just reset anything about this
// upstream when the chain changes in any way.
//
// TODO(rb): content hash based add/remove
for targetID, cancelFn := range snap.WatchedUpstreams[uid] {
s.logger.Trace("stopping watch of target",
"upstream", uid,
"chain", chain.ServiceName,
"target", targetID,
)
delete(snap.WatchedUpstreams[uid], targetID)
delete(snap.WatchedUpstreamEndpoints[uid], targetID)
cancelFn()
targetUID := NewUpstreamIDFromTargetID(targetID)
if targetUID.Peer != "" {
snap.PeerUpstreamEndpoints.CancelWatch(targetUID)
snap.UpstreamPeerTrustBundles.CancelWatch(targetUID.Peer)
}
}
var (
watchedChainEndpoints bool
needGateways = make(map[string]struct{})
)
chainID := chain.ID()
for _, target := range chain.Targets {
if target.ID == chainID {
watchedChainEndpoints = true
}
opts := targetWatchOpts{upstreamID: uid}
opts.fromChainTarget(chain, target)
err := s.watchUpstreamTarget(ctx, snap, opts)
if err != nil {
return fmt.Errorf("failed to watch target %q for upstream %q", target.ID, uid)
}
// We'll get endpoints from the gateway query, but the health still has
// to come from the backing service query.
var gk GatewayKey
switch target.MeshGateway.Mode {
case structs.MeshGatewayModeRemote:
gk = GatewayKey{
Partition: target.Partition,
Datacenter: target.Datacenter,
}
case structs.MeshGatewayModeLocal:
gk = GatewayKey{
Partition: s.proxyID.PartitionOrDefault(),
Datacenter: s.source.Datacenter,
}
}
if s.source.Datacenter != target.Datacenter || s.proxyID.PartitionOrDefault() != target.Partition {
needGateways[gk.String()] = struct{}{}
}
// Register a local gateway watch if any targets are pointing to a peer and require a mode of local.
if target.Peer != "" && target.MeshGateway.Mode == structs.MeshGatewayModeLocal {
s.setupWatchForLocalGWEndpoints(ctx, snap)
}
}
// If the discovery chain's targets do not lead to watching all endpoints
// for the upstream, then create a separate watch for those too.
// This is needed in transparent mode because if there is some service A that
// redirects to service B, the dialing proxy needs to associate A's virtual IP
// with A's discovery chain.
//
// Outside of transparent mode we only watch the chain target, B,
// since A is a virtual service and traffic will not be sent to it.
if !watchedChainEndpoints && s.proxyCfg.Mode == structs.ProxyModeTransparent {
chainEntMeta := acl.NewEnterpriseMetaWithPartition(chain.Partition, chain.Namespace)
opts := targetWatchOpts{
upstreamID: uid,
chainID: chainID,
service: chain.ServiceName,
filter: "",
datacenter: chain.Datacenter,
entMeta: &chainEntMeta,
}
err := s.watchUpstreamTarget(ctx, snap, opts)
if err != nil {
return fmt.Errorf("failed to watch target %q for upstream %q", chainID, uid)
}
}
for key := range needGateways {
if _, ok := snap.WatchedGateways[uid][key]; ok {
continue
}
gwKey := gatewayKeyFromString(key)
s.logger.Trace("initializing watch of mesh gateway",
"upstream", uid,
"chain", chain.ServiceName,
"datacenter", gwKey.Datacenter,
"partition", gwKey.Partition,
)
ctx, cancel := context.WithCancel(ctx)
opts := gatewayWatchOpts{
internalServiceDump: s.dataSources.InternalServiceDump,
notifyCh: s.ch,
source: *s.source,
token: s.token,
key: gwKey,
upstreamID: uid,
}
err := watchMeshGateway(ctx, opts)
if err != nil {
cancel()
return err
}
snap.WatchedGateways[uid][key] = cancel
}
for key, cancelFn := range snap.WatchedGateways[uid] {
if _, ok := needGateways[key]; ok {
continue
}
gwKey := gatewayKeyFromString(key)
s.logger.Trace("stopping watch of mesh gateway",
"upstream", uid,
"chain", chain.ServiceName,
"datacenter", gwKey.Datacenter,
"partition", gwKey.Partition,
)
delete(snap.WatchedGateways[uid], key)
delete(snap.WatchedGatewayEndpoints[uid], key)
cancelFn()
}
return nil
}
type targetWatchOpts struct {
upstreamID UpstreamID
chainID string
service string
filter string
datacenter string
peer string
entMeta *acl.EnterpriseMeta
}
func (o *targetWatchOpts) fromChainTarget(c *structs.CompiledDiscoveryChain, t *structs.DiscoveryTarget) {
o.chainID = t.ID
o.service = t.Service
o.filter = t.Subset.Filter
o.datacenter = t.Datacenter
o.peer = t.Peer
o.entMeta = t.GetEnterpriseMetadata()
// The peer-targets in a discovery chain intentionally clear out
// the partition field, since we don't know the remote service's partition.
// Therefore, we must query with the chain's local partition / DC, or else
// the services will not be found.
//
// Note that the namespace is not swapped out, because it should
// always match the value in the remote datacenter (and shouldn't
// have been changed anywhere).
if o.peer != "" {
o.datacenter = ""
// Clone the enterprise meta so it's not modified when we swap the partition.
var em acl.EnterpriseMeta
em.Merge(o.entMeta)
em.OverridePartition(c.Partition)
o.entMeta = &em
}
}
func (s *handlerUpstreams) watchUpstreamTarget(ctx context.Context, snap *ConfigSnapshotUpstreams, opts targetWatchOpts) error {
s.logger.Trace("initializing watch of target",
"upstream", opts.upstreamID,
"chain", opts.service,
"target", opts.chainID,
)
uid := opts.upstreamID
correlationID := "upstream-target:" + opts.chainID + ":" + uid.String()
if opts.peer != "" {
uid = NewUpstreamIDFromTargetID(opts.chainID)
correlationID = upstreamPeerWatchIDPrefix + uid.String()
}
// Perform this merge so that a nil EntMeta isn't possible.
var entMeta acl.EnterpriseMeta
entMeta.Merge(opts.entMeta)
ctx, cancel := context.WithCancel(ctx)
err := s.dataSources.Health.Notify(ctx, &structs.ServiceSpecificRequest{
PeerName: opts.peer,
Datacenter: opts.datacenter,
QueryOptions: structs.QueryOptions{
Token: s.token,
Filter: opts.filter,
},
ServiceName: opts.service,
Connect: true,
// Note that Identifier doesn't type-prefix for service any more as it's
// the default and makes metrics and other things much cleaner. It's
// simpler for us if we have the type to make things unambiguous.
Source: *s.source,
EnterpriseMeta: entMeta,
}, correlationID, s.ch)
if err != nil {
cancel()
return err
}
snap.WatchedUpstreams[opts.upstreamID][opts.chainID] = cancel
if uid.Peer == "" {
return nil
}
if ok := snap.PeerUpstreamEndpoints.IsWatched(uid); !ok {
snap.PeerUpstreamEndpoints.InitWatch(uid, cancel)
}
// Check whether a watch for this peer exists to avoid duplicates.
if ok := snap.UpstreamPeerTrustBundles.IsWatched(uid.Peer); !ok {
peerCtx, cancel := context.WithCancel(ctx)
if err := s.dataSources.TrustBundle.Notify(peerCtx, &cachetype.TrustBundleReadRequest{
Request: &pbpeering.TrustBundleReadRequest{
Name: uid.Peer,
Partition: uid.PartitionOrDefault(),
},
QueryOptions: structs.QueryOptions{Token: s.token},
}, peerTrustBundleIDPrefix+uid.Peer, s.ch); err != nil {
cancel()
return fmt.Errorf("error while watching trust bundle for peer %q: %w", uid.Peer, err)
}
snap.UpstreamPeerTrustBundles.InitWatch(uid.Peer, cancel)
}
return nil
}
type discoveryChainWatchOpts struct {
id UpstreamID
name string
namespace string
partition string
datacenter string
cfg reducedUpstreamConfig
meshGateway structs.MeshGatewayConfig
}
func (s *handlerUpstreams) watchDiscoveryChain(ctx context.Context, snap *ConfigSnapshot, opts discoveryChainWatchOpts) error {
var watchedDiscoveryChains map[UpstreamID]context.CancelFunc
switch s.kind {
case structs.ServiceKindAPIGateway:
watchedDiscoveryChains = snap.APIGateway.WatchedDiscoveryChains
case structs.ServiceKindIngressGateway:
watchedDiscoveryChains = snap.IngressGateway.WatchedDiscoveryChains
case structs.ServiceKindConnectProxy:
watchedDiscoveryChains = snap.ConnectProxy.WatchedDiscoveryChains
default:
return fmt.Errorf("unsupported kind %s", s.kind)
}
if _, ok := watchedDiscoveryChains[opts.id]; ok {
return nil
}
ctx, cancel := context.WithCancel(ctx)
err := s.dataSources.CompiledDiscoveryChain.Notify(ctx, &structs.DiscoveryChainRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: opts.name,
EvaluateInDatacenter: opts.datacenter,
EvaluateInNamespace: opts.namespace,
EvaluateInPartition: opts.partition,
OverrideProtocol: opts.cfg.Protocol,
OverrideConnectTimeout: opts.cfg.ConnectTimeout(),
OverrideMeshGateway: opts.meshGateway,
}, "discovery-chain:"+opts.id.String(), s.ch)
if err != nil {
cancel()
return err
}
watchedDiscoveryChains[opts.id] = cancel
return nil
}
// reducedUpstreamConfig represents the basic opaque config values that are now
// managed with the discovery chain but for backwards compatibility reasons
// should still affect how the proxy is configured.
//
// The full-blown config is agent/xds.UpstreamConfig
type reducedUpstreamConfig struct {
Protocol string `mapstructure:"protocol"`
ConnectTimeoutMs int `mapstructure:"connect_timeout_ms"`
}
func (c *reducedUpstreamConfig) ConnectTimeout() time.Duration {
return time.Duration(c.ConnectTimeoutMs) * time.Millisecond
}
func parseReducedUpstreamConfig(m map[string]interface{}) (reducedUpstreamConfig, error) {
var cfg reducedUpstreamConfig
err := mapstructure.WeakDecode(m, &cfg)
return cfg, err
}
func (s *handlerUpstreams) setupWatchForLocalGWEndpoints(
ctx context.Context,
upstreams *ConfigSnapshotUpstreams,
) error {
gk := GatewayKey{
Partition: s.proxyID.PartitionOrDefault(),
Datacenter: s.source.Datacenter,
}
// If the watch is already initialized, do nothing.
if upstreams.WatchedLocalGWEndpoints.IsWatched(gk.String()) {
return nil
}
opts := gatewayWatchOpts{
internalServiceDump: s.dataSources.InternalServiceDump,
notifyCh: s.ch,
source: *s.source,
token: s.token,
key: gk,
}
if err := watchMeshGateway(ctx, opts); err != nil {
return fmt.Errorf("error while watching for local mesh gateway: %w", err)
}
upstreams.WatchedLocalGWEndpoints.InitWatch(gk.String(), nil)
return nil
}