open-consul/agent/consul/state/catalog.go

4936 lines
162 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package state
import (
"errors"
"fmt"
"net"
"reflect"
"strings"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/configentry"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/lib/maps"
"github.com/hashicorp/consul/types"
)
const (
// indexServiceExtinction keeps track of the last raft index when the last instance
// of any service was unregistered. This is used by blocking queries on missing services.
indexServiceExtinction = "service_last_extinction"
// indexNodeExtinction keeps track of the last raft index when the last instance
// of any node was unregistered. This is used by blocking queries on missing nodes.
indexNodeExtinction = "node_last_extinction"
)
const (
// minUUIDLookupLen is used as a minimum length of a node name required before
// we test to see if the name is actually a UUID and perform an ID-based node
// lookup.
minUUIDLookupLen = 2
)
var (
// startingVirtualIP is the start of the virtual IP range we assign to services.
// The effective CIDR range is startingVirtualIP to (startingVirtualIP + virtualIPMaxOffset).
startingVirtualIP = net.IP{240, 0, 0, 0}
virtualIPMaxOffset = net.IP{15, 255, 255, 254}
ErrNodeNotFound = errors.New("node not found")
)
func resizeNodeLookupKey(s string) string {
l := len(s)
if l%2 != 0 {
return s[0 : l-1]
}
return s
}
// Nodes is used to pull the full list of nodes for use during snapshots.
func (s *Snapshot) Nodes() (memdb.ResultIterator, error) {
iter, err := s.tx.Get(tableNodes, indexID)
if err != nil {
return nil, err
}
return iter, nil
}
// Services is used to pull the full list of services for a given node for use
// during snapshots.
func (s *Snapshot) Services(node string, entMeta *acl.EnterpriseMeta, peerName string) (memdb.ResultIterator, error) {
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
return s.tx.Get(tableServices, indexNode, Query{
Value: node,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
}
// Checks is used to pull the full list of checks for a given node for use
// during snapshots.
func (s *Snapshot) Checks(node string, entMeta *acl.EnterpriseMeta, peerName string) (memdb.ResultIterator, error) {
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
return s.tx.Get(tableChecks, indexNode, Query{
Value: node,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
}
// ServiceVirtualIPs is used to pull the service virtual IP mappings for use during snapshots.
func (s *Snapshot) ServiceVirtualIPs() (memdb.ResultIterator, error) {
iter, err := s.tx.Get(tableServiceVirtualIPs, indexID)
if err != nil {
return nil, err
}
return iter, nil
}
// FreeVirtualIPs is used to pull the freed virtual IPs for use during snapshots.
func (s *Snapshot) FreeVirtualIPs() (memdb.ResultIterator, error) {
iter, err := s.tx.Get(tableFreeVirtualIPs, indexID)
if err != nil {
return nil, err
}
return iter, nil
}
// Registration is used to make sure a node, service, and check registration is
// performed within a single transaction to avoid race conditions on state
// updates.
func (s *Restore) Registration(idx uint64, req *structs.RegisterRequest) error {
return s.store.ensureRegistrationTxn(s.tx, idx, true, req, true)
}
func (s *Restore) ServiceVirtualIP(req ServiceVirtualIP) error {
if err := s.tx.Insert(tableServiceVirtualIPs, req); err != nil {
return err
}
if err := updateVirtualIPMaxIndexes(s.tx, req.ModifyIndex, req.Service.ServiceName.PartitionOrDefault(), req.Service.Peer); err != nil {
return err
}
return nil
}
func (s *Restore) FreeVirtualIP(req FreeVirtualIP) error {
return s.tx.Insert(tableFreeVirtualIPs, req)
}
// EnsureRegistration is used to make sure a node, service, and check
// registration is performed within a single transaction to avoid race
// conditions on state updates.
func (s *Store) EnsureRegistration(idx uint64, req *structs.RegisterRequest) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
if err := s.ensureRegistrationTxn(tx, idx, false, req, false); err != nil {
return err
}
return tx.Commit()
}
func (s *Store) ensureCheckIfNodeMatches(
tx WriteTxn,
idx uint64,
preserveIndexes bool,
node string,
nodePartition string,
nodePeerName string,
check *structs.HealthCheck,
) error {
if !strings.EqualFold(check.PeerName, nodePeerName) {
return fmt.Errorf("check peer name %q does not match node peer name %q", check.PeerName, nodePeerName)
}
if !strings.EqualFold(check.Node, node) || !acl.EqualPartitions(nodePartition, check.PartitionOrDefault()) {
return fmt.Errorf("check node %q does not match node %q",
printNodeName(check.Node, check.PartitionOrDefault()),
printNodeName(node, nodePartition),
)
}
if err := s.ensureCheckTxn(tx, idx, preserveIndexes, check); err != nil {
return fmt.Errorf("failed inserting check on node %q: %v", printNodeName(check.Node, check.PartitionOrDefault()), err)
}
return nil
}
func printNodeName(nodeName, partition string) string {
if acl.IsDefaultPartition(partition) {
return nodeName
}
return partition + "/" + nodeName
}
// ensureRegistrationTxn is used to make sure a node, service, and check
// registration is performed within a single transaction to avoid race
// conditions on state updates.
func (s *Store) ensureRegistrationTxn(tx WriteTxn, idx uint64, preserveIndexes bool, req *structs.RegisterRequest, restore bool) error {
if err := validateRegisterRequestPeerNamesTxn(tx, req, restore); err != nil {
return err
}
if _, err := validateRegisterRequestTxn(tx, req, restore); err != nil {
return err
}
// Create a node structure.
node := &structs.Node{
ID: req.ID,
Node: req.Node,
Address: req.Address,
Datacenter: req.Datacenter,
Partition: req.PartitionOrDefault(),
TaggedAddresses: req.TaggedAddresses,
Meta: req.NodeMeta,
PeerName: req.PeerName,
Locality: req.Locality,
}
if preserveIndexes {
node.CreateIndex = req.CreateIndex
node.ModifyIndex = req.ModifyIndex
}
// Since this gets called for all node operations (service and check
// updates) and churn on the node itself is basically none after the
// node updates itself the first time, it's worth seeing if we need to
// modify the node at all so we prevent watch churn and useless writes
// and modify index bumps on the node.
{
existing, err := tx.First(tableNodes, indexID, Query{
Value: node.Node,
EnterpriseMeta: *node.GetEnterpriseMeta(),
PeerName: node.PeerName,
})
if err != nil {
return fmt.Errorf("node lookup failed: %s", err)
}
if existing == nil || req.ChangesNode(existing.(*structs.Node)) {
if err := s.ensureNodeTxn(tx, idx, preserveIndexes, node); err != nil {
return fmt.Errorf("failed inserting node: %s", err)
}
}
}
// Add the service, if any. We perform a similar check as we do for the
// node info above to make sure we actually need to update the service
// definition in order to prevent useless churn if nothing has changed.
if req.Service != nil {
existing, err := tx.First(tableServices, indexID, NodeServiceQuery{
EnterpriseMeta: req.Service.EnterpriseMeta,
Node: req.Node,
Service: req.Service.ID,
PeerName: req.PeerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
if existing == nil || !(existing.(*structs.ServiceNode).ToNodeService()).IsSame(req.Service) {
if err := ensureServiceTxn(tx, idx, req.Node, preserveIndexes, req.Service); err != nil {
return fmt.Errorf("failed inserting service: %s", err)
}
}
}
// Add the checks, if any.
if req.Check != nil {
err := s.ensureCheckIfNodeMatches(tx, idx, preserveIndexes, req.Node, req.PartitionOrDefault(), req.PeerName, req.Check)
if err != nil {
return err
}
}
for _, check := range req.Checks {
err := s.ensureCheckIfNodeMatches(tx, idx, preserveIndexes, req.Node, req.PartitionOrDefault(), req.PeerName, check)
if err != nil {
return err
}
}
return nil
}
func validateRegisterRequestPeerNamesTxn(_ ReadTxn, args *structs.RegisterRequest, _ bool) error {
var (
peerNames = make(map[string]struct{})
)
if args.Service != nil {
if args.Service.PeerName == "" {
args.Service.PeerName = args.PeerName
}
peerName := args.Service.PeerName
// TODO(peering): validate the peering exists (skip check on restore)
peerNames[peerName] = struct{}{}
}
validateCheck := func(chk *structs.HealthCheck) error {
if chk.PeerName == "" {
chk.PeerName = args.PeerName
}
peerName := chk.PeerName
// TODO(peering): validate the peering exists (skip check on restore)
peerNames[peerName] = struct{}{}
return nil
}
if args.Check != nil {
if err := validateCheck(args.Check); err != nil {
return err
}
}
for _, chk := range args.Checks {
if err := validateCheck(chk); err != nil {
return err
}
}
{
// TODO(peering): validate the node's peering exists (skip check on restore)
peerName := args.PeerName
peerNames[peerName] = struct{}{}
}
if len(peerNames) > 1 {
return fmt.Errorf("Cannot register services and checks for multiple peer names in one registration request")
} else if len(peerNames) == 0 {
return fmt.Errorf("No peer names are present on the registration request; this makes no sense")
}
return nil
}
// EnsureNode is used to upsert node registration or modification.
func (s *Store) EnsureNode(idx uint64, node *structs.Node) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Call the node upsert
if err := s.ensureNodeTxn(tx, idx, false, node); err != nil {
return err
}
return tx.Commit()
}
// ensureNoNodeWithSimilarNameTxn checks that no other node has conflict in its name
// If allowClashWithoutID then, getting a conflict on another node without ID will be allowed
func ensureNoNodeWithSimilarNameTxn(tx ReadTxn, node *structs.Node, allowClashWithoutID bool) error {
// Retrieve all of the nodes
q := Query{
PeerName: node.PeerName,
EnterpriseMeta: *node.GetEnterpriseMeta(),
}
enodes, err := tx.Get(tableNodes, indexID+"_prefix", q)
if err != nil {
return fmt.Errorf("Cannot lookup all nodes: %s", err)
}
for nodeIt := enodes.Next(); nodeIt != nil; nodeIt = enodes.Next() {
enode := nodeIt.(*structs.Node)
if strings.EqualFold(node.Node, enode.Node) && node.ID != enode.ID {
// Look up the existing node's Serf health check to see if it's failed.
// If it is, the node can be renamed.
enodeCheck, err := tx.First(tableChecks, indexID, NodeCheckQuery{
EnterpriseMeta: *node.GetEnterpriseMeta(),
Node: enode.Node,
CheckID: string(structs.SerfCheckID),
PeerName: enode.PeerName,
})
if err != nil {
return fmt.Errorf("Cannot get status of node %s: %s", enode.Node, err)
}
// Get the node health. If there's no Serf health check, we consider it safe to rename
// the node as it's likely an external node registration not managed by Consul.
var nodeHealthy bool
if enodeCheck != nil {
enodeSerfCheck, ok := enodeCheck.(*structs.HealthCheck)
if ok {
nodeHealthy = enodeSerfCheck.Status != api.HealthCritical
}
}
if !(enode.ID == "" && allowClashWithoutID) && nodeHealthy {
return fmt.Errorf("Node name %s is reserved by node %s with name %s (%s)", node.Node, enode.ID, enode.Node, enode.Address)
}
}
}
return nil
}
// ensureNodeCASTxn updates a node only if the existing index matches the given index.
// Returns a bool indicating if a write happened and any error.
func (s *Store) ensureNodeCASTxn(tx WriteTxn, idx uint64, node *structs.Node) (bool, error) {
// Retrieve the existing entry.
existing, err := getNodeTxn(tx, node.Node, node.GetEnterpriseMeta(), node.PeerName)
if err != nil {
return false, err
}
// Check if the we should do the set. A ModifyIndex of 0 means that
// we are doing a set-if-not-exists.
if node.ModifyIndex == 0 && existing != nil {
return false, nil
}
if node.ModifyIndex != 0 && existing == nil {
return false, nil
}
if existing != nil && node.ModifyIndex != 0 && node.ModifyIndex != existing.ModifyIndex {
return false, nil
}
// Perform the update.
if err := s.ensureNodeTxn(tx, idx, false, node); err != nil {
return false, err
}
return true, nil
}
// ensureNodeTxn is the inner function called to actually create a node
// registration or modify an existing one in the state store. It allows
// passing in a memdb transaction so it may be part of a larger txn.
func (s *Store) ensureNodeTxn(tx WriteTxn, idx uint64, preserveIndexes bool, node *structs.Node) error {
// See if there's an existing node with this UUID, and make sure the
// name is the same.
var n *structs.Node
if node.ID != "" {
existing, err := getNodeIDTxn(tx, node.ID, node.GetEnterpriseMeta(), node.PeerName)
if err != nil {
return fmt.Errorf("node lookup failed: %s", err)
}
if existing != nil {
n = existing
if !strings.EqualFold(n.Node, node.Node) {
// Lets first get all nodes and check whether name do match, we do not allow clash on nodes without ID
dupNameError := ensureNoNodeWithSimilarNameTxn(tx, node, false)
if dupNameError != nil {
return fmt.Errorf("Error while renaming Node ID: %q (%s): %s", node.ID, node.Address, dupNameError)
}
// We are actually renaming a node, remove its reference first
err := s.deleteNodeTxn(tx, idx, n.Node, n.GetEnterpriseMeta(), n.PeerName)
if err != nil {
return fmt.Errorf("Error while renaming Node ID: %q (%s) from %s to %s: %w",
node.ID, node.Address, n.Node, node.Node, err)
}
}
} else {
// We allow to "steal" another node name that would have no ID
// It basically means that we allow upgrading a node without ID and add the ID
dupNameError := ensureNoNodeWithSimilarNameTxn(tx, node, true)
if dupNameError != nil {
return fmt.Errorf("Error while renaming Node ID: %q: %s", node.ID, dupNameError)
}
}
}
// TODO: else Node.ID == "" should be forbidden in future Consul releases
// See https://github.com/hashicorp/consul/pull/3983 for context
// Check for an existing node by name to support nodes with no IDs.
if n == nil {
existing, err := tx.First(tableNodes, indexID, Query{
Value: node.Node,
EnterpriseMeta: *node.GetEnterpriseMeta(),
PeerName: node.PeerName,
})
if err != nil {
return fmt.Errorf("node name lookup failed: %s", err)
}
if existing != nil {
n = existing.(*structs.Node)
}
// WARNING, for compatibility reasons with tests, we do not check
// for case insensitive matches, which may lead to DB corruption
// See https://github.com/hashicorp/consul/pull/3983 for context
}
// Get the indexes.
if n != nil {
node.CreateIndex = n.CreateIndex
node.ModifyIndex = n.ModifyIndex
// We do not need to update anything
if node.IsSame(n) {
return nil
}
node.ModifyIndex = idx
} else if !preserveIndexes || node.CreateIndex == 0 {
// If this isn't a snapshot or there were no saved indexes, set CreateIndex
// and ModifyIndex from the given index. Prior to 1.9.0/1.8.3/1.7.7, nodes
// were not saved with an index, so this is to avoid ending up with a 0 index
// when loading a snapshot from an older version.
node.CreateIndex = idx
node.ModifyIndex = idx
}
// Insert the node and update the index.
return catalogInsertNode(tx, node)
}
// GetNode is used to retrieve a node registration by node name ID.
func (s *Store) GetNode(nodeNameOrID string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.Node, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Get the table index.
idx := catalogNodesMaxIndex(tx, entMeta, peerName)
// Retrieve the node from the state store
node, err := getNodeTxn(tx, nodeNameOrID, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("node lookup failed: %s", err)
}
return idx, node, nil
}
func getNodeTxn(tx ReadTxn, nodeNameOrID string, entMeta *acl.EnterpriseMeta, peerName string) (*structs.Node, error) {
node, err := tx.First(tableNodes, indexID, Query{
Value: nodeNameOrID,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return nil, fmt.Errorf("node lookup failed: %s", err)
}
if node != nil {
return node.(*structs.Node), nil
}
return nil, nil
}
func getNodeIDTxn(tx ReadTxn, id types.NodeID, entMeta *acl.EnterpriseMeta, peerName string) (*structs.Node, error) {
node, err := tx.First(tableNodes, indexUUID+"_prefix", Query{
Value: string(id),
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return nil, fmt.Errorf("node lookup by ID failed: %s", err)
}
if node != nil {
return node.(*structs.Node), nil
}
return nil, nil
}
// GetNodeID is used to retrieve a node registration by node ID.
func (s *Store) GetNodeID(id types.NodeID, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.Node, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
idx := catalogNodesMaxIndex(tx, entMeta, peerName)
// Retrieve the node from the state store
node, err := getNodeIDTxn(tx, id, entMeta, peerName)
return idx, node, err
}
// Nodes is used to return all of the known nodes.
func (s *Store) Nodes(ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.Nodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
idx := catalogNodesMaxIndex(tx, entMeta, peerName)
// Retrieve all of the nodes
q := Query{
PeerName: peerName,
EnterpriseMeta: *entMeta,
}
nodes, err := tx.Get(tableNodes, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed nodes lookup: %s", err)
}
ws.Add(nodes.WatchCh())
// Create and return the nodes list.
var results structs.Nodes
for node := nodes.Next(); node != nil; node = nodes.Next() {
results = append(results, node.(*structs.Node))
}
return idx, results, nil
}
// NodesByMeta is used to return all nodes with the given metadata key/value pairs.
func (s *Store) NodesByMeta(ws memdb.WatchSet, filters map[string]string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.Nodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
idx := catalogNodesMaxIndex(tx, entMeta, peerName)
if len(filters) == 0 {
return idx, nil, nil // NodesByMeta is never called with an empty map, but just in case make it return no results.
}
// Retrieve all of the nodes. We'll do a lookup of just ONE KV pair, which
// over-matches if multiple pairs are requested, but then in the loop below
// we'll finish filtering.
var firstKey, firstValue string
for firstKey, firstValue = range filters {
break
}
nodes, err := tx.Get(tableNodes, indexMeta, KeyValueQuery{
Key: firstKey,
Value: firstValue,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed nodes lookup: %s", err)
}
ws.Add(nodes.WatchCh())
// Create and return the nodes list.
var results structs.Nodes
for node := nodes.Next(); node != nil; node = nodes.Next() {
n := node.(*structs.Node)
if len(filters) <= 1 || structs.SatisfiesMetaFilters(n.Meta, filters) {
results = append(results, n)
}
}
return idx, results, nil
}
// DeleteNode is used to delete a given node by its ID.
func (s *Store) DeleteNode(idx uint64, nodeName string, entMeta *acl.EnterpriseMeta, peerName string) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Call the node deletion.
if err := s.deleteNodeTxn(tx, idx, nodeName, entMeta, peerName); err != nil {
return err
}
return tx.Commit()
}
// deleteNodeCASTxn is used to try doing a node delete operation with a given
// raft index. If the CAS index specified is not equal to the last observed index for
// the given check, then the call is a noop, otherwise a normal check delete is invoked.
func (s *Store) deleteNodeCASTxn(tx WriteTxn, idx, cidx uint64, nodeName string, entMeta *acl.EnterpriseMeta, peerName string) (bool, error) {
// Look up the node.
node, err := getNodeTxn(tx, nodeName, entMeta, peerName)
if err != nil {
return false, err
}
if node == nil {
return false, nil
}
// If the existing index does not match the provided CAS
// index arg, then we shouldn't update anything and can safely
// return early here.
if node.ModifyIndex != cidx {
return false, nil
}
// Call the actual deletion if the above passed.
if err := s.deleteNodeTxn(tx, idx, nodeName, entMeta, peerName); err != nil {
return false, err
}
return true, nil
}
// deleteNodeTxn is the inner method used for removing a node from
// the store within a given transaction.
func (s *Store) deleteNodeTxn(tx WriteTxn, idx uint64, nodeName string, entMeta *acl.EnterpriseMeta, peerName string) error {
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Look up the node.
nodeRaw, err := tx.First(tableNodes, indexID, Query{
Value: nodeName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("node lookup failed: %s", err)
}
if nodeRaw == nil {
return nil
}
// Delete all services associated with the node and update the service index.
services, err := tx.Get(tableServices, indexNode, Query{
Value: nodeName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
var deleteServices []*structs.ServiceNode
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
deleteServices = append(deleteServices, svc)
if err := catalogUpdateServiceIndexes(tx, idx, svc.ServiceName, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
if err := catalogUpdateServiceKindIndexes(tx, idx, svc.ServiceKind, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
}
// Do the delete in a separate loop so we don't trash the iterator.
for _, svc := range deleteServices {
if err := s.deleteServiceTxn(tx, idx, nodeName, svc.ServiceID, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
}
// Delete all checks associated with the node. This will invalidate
// sessions as necessary.
checks, err := tx.Get(tableChecks, indexNode, Query{
Value: nodeName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("failed check lookup: %s", err)
}
var deleteChecks []*structs.HealthCheck
for check := checks.Next(); check != nil; check = checks.Next() {
deleteChecks = append(deleteChecks, check.(*structs.HealthCheck))
}
// Do the delete in a separate loop so we don't trash the iterator.
for _, chk := range deleteChecks {
if err := s.deleteCheckTxn(tx, idx, nodeName, chk.CheckID, &chk.EnterpriseMeta, chk.PeerName); err != nil {
return err
}
}
if peerName == "" {
// Delete any coordinates associated with this node.
coords, err := tx.Get(tableCoordinates, indexNode, Query{
Value: nodeName,
EnterpriseMeta: *entMeta,
PeerName: structs.DefaultPeerKeyword,
})
if err != nil {
return fmt.Errorf("failed coordinate lookup: %s", err)
}
var coordsToDelete []*structs.Coordinate
for coord := coords.Next(); coord != nil; coord = coords.Next() {
coordsToDelete = append(coordsToDelete, coord.(*structs.Coordinate))
}
for _, coord := range coordsToDelete {
if err := deleteCoordinateTxn(tx, idx, coord); err != nil {
return fmt.Errorf("failed deleting coordinate: %s", err)
}
}
}
// Delete the node and update the index.
if err := tx.Delete(tableNodes, nodeRaw); err != nil {
return fmt.Errorf("failed deleting node: %s", err)
}
node := nodeRaw.(*structs.Node)
if err := catalogUpdateNodesIndexes(tx, idx, entMeta, node.PeerName); err != nil {
return fmt.Errorf("failed updating index: %s", err)
}
// Clean up node entry from index table
if err := tx.Delete(tableIndex, &IndexEntry{Key: nodeIndexName(nodeName, entMeta, node.PeerName)}); err != nil {
return fmt.Errorf("failed deleting nodeIndex %q: %w", nodeIndexName(nodeName, entMeta, node.PeerName), err)
}
if err := catalogUpdateNodeExtinctionIndex(tx, idx, entMeta, node.PeerName); err != nil {
return err
}
if peerName == "" {
// Invalidate any sessions for this node.
toDelete, err := allNodeSessionsTxn(tx, nodeName, entMeta.PartitionOrDefault())
if err != nil {
return err
}
for _, session := range toDelete {
if err := s.deleteSessionTxn(tx, idx, session.ID, &session.EnterpriseMeta); err != nil {
return fmt.Errorf("failed to delete session '%s': %v", session.ID, err)
}
}
}
return nil
}
// EnsureService is called to upsert creation of a given NodeService.
func (s *Store) EnsureService(idx uint64, node string, svc *structs.NodeService) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Call the service registration upsert
if err := ensureServiceTxn(tx, idx, node, false, svc); err != nil {
return err
}
return tx.Commit()
}
var errCASCompareFailed = errors.New("compare-and-set: comparison failed")
// ensureServiceCASTxn updates a service only if the existing index matches the given index.
// Returns an error if the write didn't happen and nil if write was successful.
func ensureServiceCASTxn(tx WriteTxn, idx uint64, node string, svc *structs.NodeService) error {
// Retrieve the existing service.
existing, err := tx.First(tableServices, indexID,
NodeServiceQuery{
EnterpriseMeta: svc.EnterpriseMeta,
Node: node,
Service: svc.ID,
PeerName: svc.PeerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
// Check if the we should do the set. A ModifyIndex of 0 means that
// we are doing a set-if-not-exists.
if svc.ModifyIndex == 0 && existing != nil {
return errCASCompareFailed
}
if svc.ModifyIndex != 0 && existing == nil {
return errCASCompareFailed
}
e, ok := existing.(*structs.ServiceNode)
if ok && svc.ModifyIndex != 0 && svc.ModifyIndex != e.ModifyIndex {
return errCASCompareFailed
}
return ensureServiceTxn(tx, idx, node, false, svc)
}
// ensureServiceTxn is used to upsert a service registration within an
// existing memdb transaction.
func ensureServiceTxn(tx WriteTxn, idx uint64, node string, preserveIndexes bool, svc *structs.NodeService) error {
// Check for existing service
existing, err := tx.First(tableServices, indexID, NodeServiceQuery{
EnterpriseMeta: svc.EnterpriseMeta,
Node: node,
Service: svc.ID,
PeerName: svc.PeerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
if err = structs.ValidateServiceMetadata(svc.Kind, svc.Meta, false); err != nil {
return fmt.Errorf("Invalid Service Meta for node %s and serviceID %s: %v", node, svc.ID, err)
}
if svc.PeerName == "" {
// Do not associate non-typical services with gateways or consul services
if svc.Kind == structs.ServiceKindTypical && svc.Service != "consul" {
// Check if this service is covered by a gateway's wildcard specifier, we force the service kind to a gateway-service here as that take precedence
sn := structs.NewServiceName(svc.Service, &svc.EnterpriseMeta)
if err = checkGatewayWildcardsAndUpdate(tx, idx, &sn, svc, structs.GatewayServiceKindService); err != nil {
return fmt.Errorf("failed updating gateway mapping: %s", err)
}
if err = checkGatewayAndUpdate(tx, idx, &sn, structs.GatewayServiceKindService); err != nil {
return fmt.Errorf("failed updating gateway mapping: %s", err)
}
}
// Only upsert KindServiceName if service is local
if err := upsertKindServiceName(tx, idx, svc.Kind, svc.CompoundServiceName()); err != nil {
return fmt.Errorf("failed to persist service name: %v", err)
}
}
// Update upstream/downstream mappings if it's a connect service
if svc.Kind == structs.ServiceKindConnectProxy || svc.Connect.Native {
if err = updateMeshTopology(tx, idx, node, svc, existing); err != nil {
return fmt.Errorf("failed updating upstream/downstream association")
}
service := svc.Service
if svc.Kind == structs.ServiceKindConnectProxy {
service = svc.Proxy.DestinationServiceName
}
sn := structs.ServiceName{Name: service, EnterpriseMeta: svc.EnterpriseMeta}
if err = checkGatewayWildcardsAndUpdate(tx, idx, &sn, svc, structs.GatewayServiceKindService); err != nil {
return fmt.Errorf("failed updating gateway mapping: %s", err)
}
if svc.PeerName == "" && sn.Name != "" {
if err := upsertKindServiceName(tx, idx, structs.ServiceKindConnectEnabled, sn); err != nil {
return fmt.Errorf("failed to persist service name as connect-enabled: %v", err)
}
}
// Update the virtual IP for the service
supported, err := virtualIPsSupported(tx, nil)
if err != nil {
return err
}
if supported && sn.Name != "" {
psn := structs.PeeredServiceName{Peer: svc.PeerName, ServiceName: sn}
vip, err := assignServiceVirtualIP(tx, idx, psn)
if err != nil {
return fmt.Errorf("failed updating virtual IP: %s", err)
}
if svc.TaggedAddresses == nil {
svc.TaggedAddresses = make(map[string]structs.ServiceAddress)
}
svc.TaggedAddresses[structs.TaggedAddressVirtualIP] = structs.ServiceAddress{Address: vip, Port: svc.Port}
}
}
if svc.PeerName == "" {
// If there's a terminating gateway config entry for this service, populate the tagged addresses
// with virtual IP mappings.
termGatewayVIPsSupported, err := terminatingGatewayVirtualIPsSupported(tx, nil)
if err != nil {
return err
}
if termGatewayVIPsSupported && svc.Kind == structs.ServiceKindTerminatingGateway {
_, conf, err := configEntryTxn(tx, nil, structs.TerminatingGateway, svc.Service, &svc.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to retrieve terminating gateway config: %s", err)
}
if conf != nil {
termGatewayConf := conf.(*structs.TerminatingGatewayConfigEntry)
addrs, err := getTermGatewayVirtualIPs(tx, idx, termGatewayConf.Services, &svc.EnterpriseMeta)
if err != nil {
return err
}
if svc.TaggedAddresses == nil {
svc.TaggedAddresses = make(map[string]structs.ServiceAddress)
}
for key, addr := range addrs {
svc.TaggedAddresses[key] = addr
}
}
}
}
// Create the service node entry and populate the indexes. Note that
// conversion doesn't populate any of the node-specific information.
// That's always populated when we read from the state store.
entry := svc.ToServiceNode(node)
// Get the node
n, err := tx.First(tableNodes, indexID, Query{
Value: node,
EnterpriseMeta: svc.EnterpriseMeta,
PeerName: svc.PeerName,
})
if err != nil {
return fmt.Errorf("failed node lookup: %s", err)
}
if n == nil {
return ErrMissingNode
}
if existing != nil {
serviceNode := existing.(*structs.ServiceNode)
entry.CreateIndex = serviceNode.CreateIndex
entry.ModifyIndex = serviceNode.ModifyIndex
// We cannot return here because: we want to keep existing behavior (ex: failed node lookup -> ErrMissingNode)
// It might be modified in future, but it requires changing many unit tests
// Enforcing saving the entry also ensures that if we add default values in .ToServiceNode()
// those values will be saved even if node is not really modified for a while.
if entry.IsSameService(serviceNode) {
return nil
}
}
if !preserveIndexes {
entry.ModifyIndex = idx
if existing == nil {
entry.CreateIndex = idx
}
}
// Insert the service and update the index
return catalogInsertService(tx, entry)
}
// assignServiceVirtualIP assigns a virtual IP to the target service and updates
// the global virtual IP counter if necessary.
func assignServiceVirtualIP(tx WriteTxn, idx uint64, psn structs.PeeredServiceName) (string, error) {
serviceVIP, err := tx.First(tableServiceVirtualIPs, indexID, psn)
if err != nil {
return "", fmt.Errorf("failed service virtual IP lookup: %s", err)
}
// Service already has a virtual IP assigned, nothing to do.
if serviceVIP != nil {
sVIP := serviceVIP.(ServiceVirtualIP).IP
result, err := addIPOffset(startingVirtualIP, sVIP)
if err != nil {
return "", err
}
return result.String(), nil
}
// Get the next available virtual IP, drawing from any freed from deleted services
// first and then falling back to the global counter if none are available.
latestVIP, err := tx.First(tableFreeVirtualIPs, indexCounterOnly, false)
if err != nil {
return "", fmt.Errorf("failed virtual IP index lookup: %s", err)
}
if latestVIP == nil {
latestVIP, err = tx.First(tableFreeVirtualIPs, indexCounterOnly, true)
if err != nil {
return "", fmt.Errorf("failed virtual IP index lookup: %s", err)
}
}
if latestVIP != nil {
if err := tx.Delete(tableFreeVirtualIPs, latestVIP); err != nil {
return "", fmt.Errorf("failed updating freed virtual IP table: %v", err)
}
}
var latest FreeVirtualIP
if latestVIP == nil {
latest = FreeVirtualIP{
IP: net.IPv4zero,
IsCounter: true,
}
} else {
latest = latestVIP.(FreeVirtualIP)
}
// Store the next virtual IP from the counter if there aren't any freed IPs to draw from.
// Then increment to store the next free virtual IP.
newEntry := FreeVirtualIP{
IP: latest.IP,
IsCounter: latest.IsCounter,
}
if latest.IsCounter {
newEntry.IP = make(net.IP, len(latest.IP))
copy(newEntry.IP, latest.IP)
for i := len(newEntry.IP) - 1; i >= 0; i-- {
newEntry.IP[i]++
if newEntry.IP[i] != 0 {
break
}
}
// Out of virtual IPs, fail registration.
if newEntry.IP.Equal(virtualIPMaxOffset) {
return "", fmt.Errorf("cannot allocate any more unique service virtual IPs")
}
if err := tx.Insert(tableFreeVirtualIPs, newEntry); err != nil {
return "", fmt.Errorf("failed updating freed virtual IP table: %v", err)
}
}
assignedVIP := ServiceVirtualIP{
Service: psn,
IP: newEntry.IP,
RaftIndex: structs.RaftIndex{
ModifyIndex: idx,
CreateIndex: idx,
},
}
if err := tx.Insert(tableServiceVirtualIPs, assignedVIP); err != nil {
return "", fmt.Errorf("failed inserting service virtual IP entry: %s", err)
}
if err := updateVirtualIPMaxIndexes(tx, idx, psn.ServiceName.PartitionOrDefault(), psn.Peer); err != nil {
return "", err
}
result, err := addIPOffset(startingVirtualIP, assignedVIP.IP)
if err != nil {
return "", err
}
return result.String(), nil
}
// AssignManualServiceVIPs attempts to associate a list of manual virtual IP addresses with a given service name.
// Any IP addresses given will be removed from other services in the same partition. This is done to ensure
// that a manual VIP can only exist once for a given partition.
// This function returns:
// - a bool indicating whether the given service exists.
// - a list of service names that had ip addresses removed from them.
// - an error indicating success or failure of the call.
func (s *Store) AssignManualServiceVIPs(idx uint64, psn structs.PeeredServiceName, ips []string) (bool, []structs.PeeredServiceName, error) {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// First remove the given IPs from any existing services, to avoid duplicate assignments.
assignedIPs := map[string]struct{}{}
for _, ip := range ips {
assignedIPs[ip] = struct{}{}
}
modifiedEntries := make(map[structs.PeeredServiceName]struct{})
for ip := range assignedIPs {
entry, err := tx.First(tableServiceVirtualIPs, indexManualVIPs, psn.ServiceName.PartitionOrDefault(), ip)
if err != nil {
return false, nil, fmt.Errorf("failed service virtual IP lookup: %s", err)
}
if entry == nil {
continue
}
newEntry := entry.(ServiceVirtualIP)
if newEntry.Service.ServiceName.Matches(psn.ServiceName) {
continue
}
// Rebuild this entry's list of manual IPs, removing any that are present
// in new list we're assigning.
var filteredIPs []string
for _, existingIP := range newEntry.ManualIPs {
if _, ok := assignedIPs[existingIP]; !ok {
filteredIPs = append(filteredIPs, existingIP)
}
}
newEntry.ManualIPs = filteredIPs
newEntry.ModifyIndex = idx
if err := tx.Insert(tableServiceVirtualIPs, newEntry); err != nil {
return false, nil, fmt.Errorf("failed inserting service virtual IP entry: %s", err)
}
modifiedEntries[newEntry.Service] = struct{}{}
}
entry, err := tx.First(tableServiceVirtualIPs, indexID, psn)
if err != nil {
return false, nil, fmt.Errorf("failed service virtual IP lookup: %s", err)
}
if entry == nil {
return false, nil, nil
}
newEntry := entry.(ServiceVirtualIP)
newEntry.ManualIPs = ips
newEntry.ModifyIndex = idx
if err := tx.Insert(tableServiceVirtualIPs, newEntry); err != nil {
return false, nil, fmt.Errorf("failed inserting service virtual IP entry: %s", err)
}
if err := updateVirtualIPMaxIndexes(tx, idx, psn.ServiceName.PartitionOrDefault(), psn.Peer); err != nil {
return false, nil, err
}
if err = tx.Commit(); err != nil {
return false, nil, err
}
return true, maps.SliceOfKeys(modifiedEntries), nil
}
func updateVirtualIPMaxIndexes(txn WriteTxn, idx uint64, partition, peerName string) error {
// update per-partition max index
if err := indexUpdateMaxTxn(txn, idx, partitionedIndexEntryName(tableServiceVirtualIPs, partition)); err != nil {
return fmt.Errorf("failed while updating partitioned index: %w", err)
}
if peerName != "" {
// track a separate max index for imported services
if err := indexUpdateMaxTxn(txn, idx, partitionedIndexEntryName(tableServiceVirtualIPs+".imported", partition)); err != nil {
return fmt.Errorf("failed while updating partitioned index for imported services: %w", err)
}
}
return nil
}
func addIPOffset(a, b net.IP) (net.IP, error) {
a4 := a.To4()
b4 := b.To4()
if a4 == nil || b4 == nil {
return nil, errors.New("ip is not ipv4")
}
var raw uint64
for i := 0; i < 4; i++ {
raw = raw<<8 + uint64(a4[i]) + uint64(b4[i])
}
return net.IPv4(byte(raw>>24), byte(raw>>16), byte(raw>>8), byte(raw)), nil
}
func virtualIPsSupported(tx ReadTxn, ws memdb.WatchSet) (bool, error) {
_, entry, err := systemMetadataGetTxn(tx, ws, structs.SystemMetadataVirtualIPsEnabled)
if err != nil {
return false, fmt.Errorf("failed system metadata lookup: %s", err)
}
if entry == nil {
return false, nil
}
return entry.Value != "", nil
}
func terminatingGatewayVirtualIPsSupported(tx ReadTxn, ws memdb.WatchSet) (bool, error) {
_, entry, err := systemMetadataGetTxn(tx, ws, structs.SystemMetadataTermGatewayVirtualIPsEnabled)
if err != nil {
return false, fmt.Errorf("failed system metadata lookup: %s", err)
}
if entry == nil {
return false, nil
}
return entry.Value != "", nil
}
// Services returns all services along with a list of associated tags.
func (s *Store) Services(ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, []*structs.ServiceNode, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// Get the table index.
idx := catalogServicesMaxIndex(tx, entMeta, peerName)
// List all the services.
services, err := catalogServiceListNoWildcard(tx, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed querying services: %s", err)
}
ws.Add(services.WatchCh())
var result []*structs.ServiceNode
for service := services.Next(); service != nil; service = services.Next() {
result = append(result, service.(*structs.ServiceNode))
}
return idx, result, nil
}
func (s *Store) ServiceList(ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceList, error) {
tx := s.db.Txn(false)
defer tx.Abort()
return serviceListTxn(tx, ws, entMeta, peerName)
}
func serviceListTxn(tx ReadTxn, ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceList, error) {
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
idx := catalogServicesMaxIndex(tx, entMeta, peerName)
services, err := tx.Get(tableServices, indexID+"_prefix", Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed querying services: %s", err)
}
ws.Add(services.WatchCh())
unique := make(map[structs.ServiceName]struct{})
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
unique[svc.CompoundServiceName().ServiceName] = struct{}{}
}
results := make(structs.ServiceList, 0, len(unique))
for sn := range unique {
results = append(results, structs.ServiceName{Name: sn.Name, EnterpriseMeta: sn.EnterpriseMeta})
}
return idx, results, nil
}
// ServicesByNodeMeta returns all services, filtered by the given node metadata.
func (s *Store) ServicesByNodeMeta(ws memdb.WatchSet, filters map[string]string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, []*structs.ServiceNode, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Get the table index.
idx := catalogServicesMaxIndex(tx, entMeta, peerName)
if nodeIdx := catalogNodesMaxIndex(tx, entMeta, peerName); nodeIdx > idx {
idx = nodeIdx
}
if len(filters) == 0 {
return idx, nil, nil // ServicesByNodeMeta is never called with an empty map, but just in case make it return no results.
}
// Retrieve all of the nodes. We'll do a lookup of just ONE KV pair, which
// over-matches if multiple pairs are requested, but then in the loop below
// we'll finish filtering.
var firstKey, firstValue string
for firstKey, firstValue = range filters {
break
}
nodes, err := tx.Get(tableNodes, indexMeta, KeyValueQuery{
Key: firstKey,
Value: firstValue,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed nodes lookup: %s", err)
}
ws.Add(nodes.WatchCh())
// We don't want to track an unlimited number of services, so we pull a
// top-level watch to use as a fallback.
allServices, err := catalogServiceListNoWildcard(tx, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed services lookup: %s", err)
}
allServicesCh := allServices.WatchCh()
var result structs.ServiceNodes
for node := nodes.Next(); node != nil; node = nodes.Next() {
n := node.(*structs.Node)
if len(filters) > 1 && !structs.SatisfiesMetaFilters(n.Meta, filters) {
continue
}
// List all the services on the node
services, err := catalogServiceListByNode(tx, n.Node, entMeta, n.PeerName, false)
if err != nil {
return 0, nil, fmt.Errorf("failed querying services: %s", err)
}
ws.AddWithLimit(watchLimit, services.WatchCh(), allServicesCh)
for service := services.Next(); service != nil; service = services.Next() {
result = append(result, service.(*structs.ServiceNode))
}
}
return idx, result, nil
}
// maxIndexForService return the maximum Raft Index for a service
// If the index is not set for the service, it will return the missing
// service index.
// The service_last_extinction is set to the last raft index when a service
// was unregistered (or 0 if no services were ever unregistered). This
// allows blocking queries to
// - return when the last instance of a service is removed
// - block until an instance for this service is available, or another
// service is unregistered.
func maxIndexForService(tx ReadTxn, serviceName string, serviceExists, checks bool, entMeta *acl.EnterpriseMeta, peerName string) uint64 {
idx, _ := maxIndexAndWatchChForService(tx, serviceName, serviceExists, checks, entMeta, peerName)
return idx
}
// maxIndexAndWatchChForService return the maximum Raft Index for a service. If
// the index is not set for the service, it will return the missing service
// index. The service_last_extinction is set to the last raft index when a
// service was unregistered (or 0 if no services were ever unregistered). This
// allows blocking queries to
// - return when the last instance of a service is removed
// - block until an instance for this service is available, or another
// service is unregistered.
//
// It also _may_ return a watch chan to add to a WatchSet. It will only return
// one if the service exists, and has a service index. If it doesn't then nil is
// returned for the chan. This allows for blocking watchers to _only_ watch this
// one chan in the common case, falling back to watching all touched MemDB
// indexes in more complicated cases.
func maxIndexAndWatchChForService(tx ReadTxn, serviceName string, serviceExists, checks bool, entMeta *acl.EnterpriseMeta, peerName string) (uint64, <-chan struct{}) {
if !serviceExists {
res, err := catalogServiceLastExtinctionIndex(tx, entMeta, peerName)
if missingIdx, ok := res.(*IndexEntry); ok && err == nil {
// Note safe to only watch the extinction index as it's not updated when new instances come along so return nil watchCh
return missingIdx.Value, nil
}
}
ch, res, err := catalogServiceMaxIndex(tx, serviceName, entMeta, peerName)
if idx, ok := res.(*IndexEntry); ok && err == nil {
return idx.Value, ch
}
return catalogMaxIndex(tx, entMeta, peerName, checks), nil
}
// Wrapper for maxIndexAndWatchChForService that operates on a list of ServiceNodes
func maxIndexAndWatchChsForServiceNodes(tx ReadTxn,
nodes structs.ServiceNodes, watchChecks bool) (uint64, []<-chan struct{}) {
var watchChans []<-chan struct{}
var maxIdx uint64
seen := make(map[structs.ServiceName]bool)
for i := 0; i < len(nodes); i++ {
sn := structs.NewServiceName(nodes[i].ServiceName, &nodes[i].EnterpriseMeta)
if ok := seen[sn]; !ok {
idx, svcCh := maxIndexAndWatchChForService(tx, sn.Name, true, watchChecks, &sn.EnterpriseMeta, nodes[i].PeerName)
if idx > maxIdx {
maxIdx = idx
}
if svcCh != nil {
watchChans = append(watchChans, svcCh)
}
seen[sn] = true
}
}
return maxIdx, watchChans
}
// ConnectServiceNodes returns the nodes associated with a Connect
// compatible destination for the given service name. This will include
// both proxies and native integrations.
func (s *Store) ConnectServiceNodes(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceNodes, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: serviceName,
PeerName: peerName,
EnterpriseMeta: *entMeta,
}
return serviceNodesTxn(tx, ws, indexConnect, q)
}
// ServiceNodes returns the nodes associated with a given service name.
func (s *Store) ServiceNodes(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceNodes, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: serviceName,
PeerName: peerName,
EnterpriseMeta: *entMeta,
}
return serviceNodesTxn(tx, ws, indexService, q)
}
func serviceNodesTxn(tx ReadTxn, ws memdb.WatchSet, index string, q Query) (uint64, structs.ServiceNodes, error) {
connect := index == indexConnect
serviceName := q.Value
services, err := tx.Get(tableServices, index, q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
ws.Add(services.WatchCh())
var results structs.ServiceNodes
for service := services.Next(); service != nil; service = services.Next() {
results = append(results, service.(*structs.ServiceNode))
}
// If we are querying for Connect nodes, the associated proxy might be a gateway.
// Gateways are tracked in a separate table, and we append them to the result set.
// We append rather than replace since it allows users to migrate a service
// to the mesh with a mix of sidecars and gateways until all its instances have a sidecar.
var idx uint64
if connect && q.PeerName == "" {
// Look up gateway nodes associated with the service
gwIdx, nodes, err := serviceGatewayNodes(tx, ws, serviceName, structs.ServiceKindTerminatingGateway, &q.EnterpriseMeta, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, fmt.Errorf("failed gateway nodes lookup: %v", err)
}
if idx < gwIdx {
idx = gwIdx
}
// Watch for index changes to the gateway nodes
svcIdx, chans := maxIndexAndWatchChsForServiceNodes(tx, nodes, false)
if svcIdx > idx {
idx = svcIdx
}
for _, ch := range chans {
ws.Add(ch)
}
for i := 0; i < len(nodes); i++ {
results = append(results, nodes[i])
}
}
// Fill in the node details.
results, err = parseServiceNodes(tx, ws, results, &q.EnterpriseMeta, q.PeerName)
if err != nil {
return 0, nil, fmt.Errorf("failed parsing service nodes: %s", err)
}
// Get the table index.
// TODO (gateways) (freddy) Why do we always consider the main service index here?
// This doesn't seem to make sense for Connect when there's more than 1 result
svcIdx := maxIndexForService(tx, serviceName, len(results) > 0, false, &q.EnterpriseMeta, q.PeerName)
if idx < svcIdx {
idx = svcIdx
}
return idx, results, nil
}
// ServiceTagNodes returns the nodes associated with a given service, filtering
// out services that don't contain the given tags.
func (s *Store) ServiceTagNodes(ws memdb.WatchSet, service string, tags []string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
services, err := tx.Get(tableServices, indexService, Query{
Value: service,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
ws.Add(services.WatchCh())
// Gather all the services and apply the tag filter.
serviceExists := false
var results structs.ServiceNodes
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
serviceExists = true
if !serviceTagsFilter(svc, tags) {
results = append(results, svc)
}
}
// Fill in the node details.
results, err = parseServiceNodes(tx, ws, results, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed parsing service nodes: %s", err)
}
// Get the table index.
idx := maxIndexForService(tx, service, serviceExists, false, entMeta, peerName)
return idx, results, nil
}
// serviceTagFilter returns true (should filter) if the given service node
// doesn't contain the given tag.
func serviceTagFilter(sn *structs.ServiceNode, tag string) bool {
tag = strings.ToLower(tag)
// Look for the lower cased version of the tag.
for _, t := range sn.ServiceTags {
if strings.ToLower(t) == tag {
return false
}
}
// If we didn't hit the tag above then we should filter.
return true
}
// serviceTagsFilter returns true (should filter) if the given service node
// doesn't contain the given set of tags.
func serviceTagsFilter(sn *structs.ServiceNode, tags []string) bool {
for _, tag := range tags {
if serviceTagFilter(sn, tag) {
// If any one of the expected tags was not found, filter the service
return true
}
}
// If all tags were found, don't filter the service
return false
}
// ServiceAddressNodes returns the nodes associated with a given service, filtering
// out services that don't match the given serviceAddress
func (s *Store) ServiceAddressNodes(ws memdb.WatchSet, address string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// List all the services.
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
services, err := tx.Get(tableServices, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
ws.Add(services.WatchCh())
// Gather all the services and apply the tag filter.
var results structs.ServiceNodes
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
if svc.ServiceAddress == address {
results = append(results, svc)
} else {
for _, addr := range svc.ServiceTaggedAddresses {
if addr.Address == address {
results = append(results, svc)
break
}
}
}
}
// Fill in the node details.
results, err = parseServiceNodes(tx, ws, results, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed parsing service nodes: %s", err)
}
return 0, results, nil
}
// parseServiceNodes iterates over a services query and fills in the node details,
// returning a ServiceNodes slice.
func parseServiceNodes(tx ReadTxn, ws memdb.WatchSet, services structs.ServiceNodes, entMeta *acl.EnterpriseMeta, peerName string) (structs.ServiceNodes, error) {
// We don't want to track an unlimited number of nodes, so we pull a
// top-level watch to use as a fallback.
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
allNodes, err := tx.Get(tableNodes, indexID+"_prefix", q)
if err != nil {
return nil, fmt.Errorf("failed nodes lookup: %s", err)
}
allNodesCh := allNodes.WatchCh()
// Fill in the node data for each service instance.
var results structs.ServiceNodes
for _, sn := range services {
// Note that we have to clone here because we don't want to
// modify the node-related fields on the object in the database,
// which is what we are referencing.
s := sn.PartialClone()
// Grab the corresponding node record.
watchCh, n, err := tx.FirstWatch(tableNodes, indexID, Query{
Value: sn.Node,
EnterpriseMeta: sn.EnterpriseMeta,
PeerName: sn.PeerName,
})
if err != nil {
return nil, fmt.Errorf("failed node lookup: %s", err)
}
ws.AddWithLimit(watchLimit, watchCh, allNodesCh)
// Populate the node-related fields. The tagged addresses may be
// used by agents to perform address translation if they are
// configured to do that.
node := n.(*structs.Node)
s.ID = node.ID
s.Address = node.Address
s.Datacenter = node.Datacenter
s.TaggedAddresses = node.TaggedAddresses
s.EnterpriseMeta.Merge(node.GetEnterpriseMeta())
s.NodeMeta = node.Meta
results = append(results, s)
}
return results, nil
}
// NodeService is used to retrieve a specific service associated with the given
// node.
func (s *Store) NodeService(ws memdb.WatchSet, nodeName string, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.NodeService, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// Get the table index.
idx := catalogServicesMaxIndex(tx, entMeta, peerName)
// Query the service
service, err := getNodeServiceTxn(tx, ws, nodeName, serviceID, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed querying service for node %q: %s", nodeName, err)
}
return idx, service, nil
}
func getNodeServiceTxn(tx ReadTxn, ws memdb.WatchSet, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) (*structs.NodeService, error) {
sn, err := getServiceNodeTxn(tx, ws, nodeName, serviceID, entMeta, peerName)
if err != nil {
return nil, err
}
if sn != nil {
return sn.ToNodeService(), nil
}
return nil, nil
}
func getServiceNodeTxn(tx ReadTxn, ws memdb.WatchSet, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) (*structs.ServiceNode, error) {
// TODO: pass non-pointer type for ent meta
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Query the service
watch, service, err := tx.FirstWatch(tableServices, indexID, NodeServiceQuery{
EnterpriseMeta: *entMeta,
Node: nodeName,
Service: serviceID,
PeerName: peerName,
})
if err != nil {
return nil, fmt.Errorf("failed querying service for node %q: %s", nodeName, err)
}
ws.Add(watch)
if service != nil {
return service.(*structs.ServiceNode), nil
}
return nil, nil
}
// ServiceNode is used to retrieve a specific service by service ID and node ID or name.
func (s *Store) ServiceNode(nodeID, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.ServiceNode, error) {
var (
node *structs.Node
err error
)
if nodeID != "" {
_, node, err = s.GetNodeID(types.NodeID(nodeID), entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("Failure looking up node by ID %s: %w", nodeID, err)
}
} else if nodeName != "" {
_, node, err = s.GetNode(nodeName, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("Failure looking up node by name %s: %w", nodeName, err)
}
} else {
return 0, nil, fmt.Errorf("Node ID or name required to lookup the service")
}
if node == nil {
return 0, nil, ErrNodeNotFound
}
tx := s.db.Txn(false)
defer tx.Abort()
// Get the table index.
idx := catalogServicesMaxIndex(tx, entMeta, peerName)
// Query the service
service, err := getServiceNodeTxn(tx, nil, node.Node, serviceID, entMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed querying service for node %q: %w", node.Node, err)
}
if service != nil {
service.ID = node.ID
}
return idx, service, nil
}
func (s *Store) nodeServices(ws memdb.WatchSet, nodeNameOrID string, entMeta *acl.EnterpriseMeta, peerName string, allowWildcard bool) (bool, uint64, *structs.Node, memdb.ResultIterator, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value for entMeta
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Query the node by node name
watchCh, n, err := tx.FirstWatch(tableNodes, indexID, Query{
Value: nodeNameOrID,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return true, 0, nil, nil, fmt.Errorf("node lookup failed: %s", err)
}
if n != nil {
ws.Add(watchCh)
} else {
if len(nodeNameOrID) < minUUIDLookupLen {
ws.Add(watchCh)
return true, 0, nil, nil, nil
}
// Attempt to lookup the node by its node ID
iter, err := tx.Get(tableNodes, indexUUID+"_prefix", Query{
Value: resizeNodeLookupKey(nodeNameOrID),
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
ws.Add(watchCh)
idx := catalogNodeLastExtinctionIndex(tx, entMeta, peerName)
return true, idx, nil, nil, nil
}
n = iter.Next()
if n == nil {
// No nodes matched, even with the Node ID: add a watch on the node name.
ws.Add(watchCh)
idx := catalogNodeLastExtinctionIndex(tx, entMeta, peerName)
return true, idx, nil, nil, nil
}
idWatchCh := iter.WatchCh()
if iter.Next() != nil {
// More than one match present: Watch on the node name channel and return
// an empty result (node lookups can not be ambiguous).
ws.Add(watchCh)
return true, 0, nil, nil, nil
}
ws.Add(idWatchCh)
}
node := n.(*structs.Node)
nodeName := node.Node
// Read all of the services
services, err := catalogServiceListByNode(tx, nodeName, entMeta, peerName, allowWildcard)
if err != nil {
return true, 0, nil, nil, fmt.Errorf("failed querying services for node %q: %s", nodeName, err)
}
ws.Add(services.WatchCh())
// Get the table index.
idx := catalogNodeMaxIndex(tx, nodeName, entMeta, peerName)
return false, idx, node, services, nil
}
// NodeServices is used to query service registrations by node name or UUID.
func (s *Store) NodeServices(ws memdb.WatchSet, nodeNameOrID string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.NodeServices, error) {
done, idx, node, services, err := s.nodeServices(ws, nodeNameOrID, entMeta, peerName, false)
if done || err != nil {
return idx, nil, err
}
// Initialize the node services struct
ns := &structs.NodeServices{
Node: node,
Services: make(map[string]*structs.NodeService),
}
if services != nil {
// Add all of the services to the map.
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode).ToNodeService()
ns.Services[svc.ID] = svc
}
}
return idx, ns, nil
}
// NodeServices is used to query service registrations by node name or UUID.
func (s *Store) NodeServiceList(ws memdb.WatchSet, nodeNameOrID string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.NodeServiceList, error) {
done, idx, node, services, err := s.nodeServices(ws, nodeNameOrID, entMeta, peerName, true)
if done || err != nil {
return idx, nil, err
}
if idx == 0 {
return 0, nil, nil
}
// Initialize the node services struct
ns := &structs.NodeServiceList{
Node: node,
}
if services != nil {
// Add all of the services to the map.
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode).ToNodeService()
ns.Services = append(ns.Services, svc)
}
}
return idx, ns, nil
}
// DeleteService is used to delete a given service associated with a node.
func (s *Store) DeleteService(idx uint64, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Call the service deletion
if err := s.deleteServiceTxn(tx, idx, nodeName, serviceID, entMeta, peerName); err != nil {
return err
}
return tx.Commit()
}
// deleteServiceCASTxn is used to try doing a service delete operation with a given
// raft index. If the CAS index specified is not equal to the last observed index for
// the given service, then the call is a noop, otherwise a normal delete is invoked.
func (s *Store) deleteServiceCASTxn(tx WriteTxn, idx, cidx uint64, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) (bool, error) {
// Look up the service.
service, err := getNodeServiceTxn(tx, nil, nodeName, serviceID, entMeta, peerName)
if err != nil {
return false, fmt.Errorf("service lookup failed: %s", err)
}
if service == nil {
return false, nil
}
// If the existing index does not match the provided CAS
// index arg, then we shouldn't update anything and can safely
// return early here.
if service.ModifyIndex != cidx {
return false, nil
}
// Call the actual deletion if the above passed.
if err := s.deleteServiceTxn(tx, idx, nodeName, serviceID, entMeta, peerName); err != nil {
return false, err
}
return true, nil
}
// deleteServiceTxn is the inner method called to remove a service
// registration within an existing transaction.
func (s *Store) deleteServiceTxn(tx WriteTxn, idx uint64, nodeName, serviceID string, entMeta *acl.EnterpriseMeta, peerName string) error {
// TODO: pass non-pointer type for ent meta
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
service, err := tx.First(tableServices, indexID,
NodeServiceQuery{
EnterpriseMeta: *entMeta,
Node: nodeName,
Service: serviceID,
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
if service == nil {
return nil
}
// Delete any checks associated with the service. This will invalidate
// sessions as necessary.
nsq := NodeServiceQuery{
Node: nodeName,
Service: serviceID,
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
checks, err := tx.Get(tableChecks, indexNodeService, nsq)
if err != nil {
return fmt.Errorf("failed service check lookup: %s", err)
}
var deleteChecks []*structs.HealthCheck
for check := checks.Next(); check != nil; check = checks.Next() {
deleteChecks = append(deleteChecks, check.(*structs.HealthCheck))
}
// Do the delete in a separate loop so we don't trash the iterator.
for _, check := range deleteChecks {
if err := s.deleteCheckTxn(tx, idx, nodeName, check.CheckID, &check.EnterpriseMeta, check.PeerName); err != nil {
return err
}
}
// Update the index.
if err := catalogUpdateCheckIndexes(tx, idx, entMeta, peerName); err != nil {
return err
}
// Delete the service and update the index
if err := tx.Delete(tableServices, service); err != nil {
return fmt.Errorf("failed deleting service: %s", err)
}
svc := service.(*structs.ServiceNode)
if err := catalogUpdateServicesIndexes(tx, idx, entMeta, svc.PeerName); err != nil {
return fmt.Errorf("failed updating services indexes: %w", err)
}
if err := catalogUpdateServiceKindIndexes(tx, idx, svc.ServiceKind, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return fmt.Errorf("failed updating service-kind indexes: %w", err)
}
// Update the node indexes as the service information is included in node catalog queries.
if err := catalogUpdateNodesIndexes(tx, idx, entMeta, svc.PeerName); err != nil {
return fmt.Errorf("failed updating nodes indexes: %w", err)
}
if err := catalogUpdateNodeIndexes(tx, idx, nodeName, entMeta, svc.PeerName); err != nil {
return fmt.Errorf("failed updating node indexes: %w", err)
}
psn := svc.CompoundServiceName()
if err := cleanupMeshTopology(tx, idx, svc); err != nil {
return fmt.Errorf("failed to clean up mesh-topology associations for %q: %v", psn.String(), err)
}
q := Query{
Value: svc.ServiceName,
EnterpriseMeta: *entMeta,
PeerName: svc.PeerName,
}
if remainingService, err := tx.First(tableServices, indexService, q); err == nil {
if remainingService != nil {
// We have at least one remaining service, update the index
if err := catalogUpdateServiceIndexes(tx, idx, svc.ServiceName, entMeta, svc.PeerName); err != nil {
return err
}
} else {
// There are no more service instances, cleanup the service.<serviceName> index
_, serviceIndex, err := catalogServiceMaxIndex(tx, svc.ServiceName, entMeta, svc.PeerName)
if err == nil && serviceIndex != nil {
// we found service.<serviceName> index, garbage collect it
if err := tx.Delete(tableIndex, serviceIndex); err != nil {
return fmt.Errorf("[FAILED] deleting serviceIndex %s: %s", svc.ServiceName, err)
}
}
if err := catalogUpdateServiceExtinctionIndex(tx, idx, entMeta, svc.PeerName); err != nil {
return err
}
if err := freeServiceVirtualIP(tx, idx, psn, nil); err != nil {
return fmt.Errorf("failed to clean up virtual IP for %q: %v", psn.String(), err)
}
if svc.PeerName == "" {
if err := cleanupKindServiceName(tx, idx, psn.ServiceName, svc.ServiceKind); err != nil {
return fmt.Errorf("failed to persist service name: %v", err)
}
}
}
} else {
return fmt.Errorf("Could not find any service %s: %s", svc.ServiceName, err)
}
// Cleanup ConnectEnabled for this service if none exist.
if svc.PeerName == "" && (svc.ServiceKind == structs.ServiceKindConnectProxy || svc.ServiceConnect.Native) {
service := svc.ServiceName
if svc.ServiceKind == structs.ServiceKindConnectProxy {
service = svc.ServiceProxy.DestinationServiceName
}
sn := structs.ServiceName{Name: service, EnterpriseMeta: svc.EnterpriseMeta}
connectEnabled, err := serviceHasConnectEnabledInstances(tx, sn.Name, &sn.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to search for connect instances for service %q: %w", sn.Name, err)
}
if !connectEnabled {
if err := cleanupKindServiceName(tx, idx, sn, structs.ServiceKindConnectEnabled); err != nil {
return fmt.Errorf("failed to cleanup connect-enabled service name: %v", err)
}
}
}
if svc.PeerName == "" {
sn := structs.ServiceName{Name: svc.ServiceName, EnterpriseMeta: svc.EnterpriseMeta}
if err := cleanupGatewayWildcards(tx, idx, sn, false); err != nil {
return fmt.Errorf("failed to clean up gateway-service associations for %q: %v", psn.String(), err)
}
}
return nil
}
// freeServiceVirtualIP is used to free a virtual IP for a service after the last instance
// is removed.
func freeServiceVirtualIP(
tx WriteTxn,
idx uint64,
psn structs.PeeredServiceName,
excludeGateway *structs.ServiceName,
) error {
supported, err := virtualIPsSupported(tx, nil)
if err != nil {
return err
}
if !supported {
return nil
}
// Don't deregister the virtual IP if at least one instance of this service still exists.
q := Query{
Value: psn.ServiceName.Name,
EnterpriseMeta: psn.ServiceName.EnterpriseMeta,
PeerName: psn.Peer,
}
if remainingService, err := tx.First(tableServices, indexService, q); err == nil {
if remainingService != nil {
return nil
}
} else {
return fmt.Errorf("failed service lookup for %q: %s", psn.ServiceName.Name, err)
}
// Don't deregister the virtual IP if at least one resolver/router/splitter config entry still
// references this service.
configEntryVIPKinds := []string{
structs.ServiceResolver,
structs.ServiceRouter,
structs.ServiceSplitter,
structs.ServiceDefaults,
structs.ServiceIntentions,
}
for _, kind := range configEntryVIPKinds {
_, entry, err := configEntryTxn(tx, nil, kind, psn.ServiceName.Name, &psn.ServiceName.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed config entry lookup for %s/%s: %s", kind, psn.ServiceName.Name, err)
}
if entry != nil {
return nil
}
}
// Don't deregister the virtual IP if at least one terminating gateway still references this service.
termGatewaySupported, err := terminatingGatewayVirtualIPsSupported(tx, nil)
if err != nil {
return err
}
if termGatewaySupported {
svcGateways, err := tx.Get(tableGatewayServices, indexService, psn.ServiceName)
if err != nil {
return fmt.Errorf("failed gateway lookup for %q: %s", psn.ServiceName.Name, err)
}
for service := svcGateways.Next(); service != nil; service = svcGateways.Next() {
if svc, ok := service.(*structs.GatewayService); ok && svc != nil {
ignoreGateway := excludeGateway == nil || !svc.Gateway.Matches(*excludeGateway)
if ignoreGateway && svc.GatewayKind == structs.ServiceKindTerminatingGateway {
return nil
}
}
}
}
serviceVIP, err := tx.First(tableServiceVirtualIPs, indexID, psn)
if err != nil {
return fmt.Errorf("failed service virtual IP lookup: %s", err)
}
// Service has no virtual IP assigned, nothing to do.
if serviceVIP == nil {
return nil
}
// Delete the service virtual IP and add it to the freed IPs list.
if err := tx.Delete(tableServiceVirtualIPs, serviceVIP); err != nil {
return fmt.Errorf("failed updating freed virtual IP table: %v", err)
}
newEntry := FreeVirtualIP{IP: serviceVIP.(ServiceVirtualIP).IP}
if err := tx.Insert(tableFreeVirtualIPs, newEntry); err != nil {
return fmt.Errorf("failed updating freed virtual IP table: %v", err)
}
if err := updateVirtualIPMaxIndexes(tx, idx, psn.ServiceName.PartitionOrDefault(), psn.Peer); err != nil {
return err
}
return nil
}
// EnsureCheck is used to store a check registration in the db.
func (s *Store) EnsureCheck(idx uint64, hc *structs.HealthCheck) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Call the check registration
if err := s.ensureCheckTxn(tx, idx, false, hc); err != nil {
return err
}
return tx.Commit()
}
// updateAllServiceIndexesOfNode updates the Raft index of all the services associated with this node
func updateAllServiceIndexesOfNode(tx WriteTxn, idx uint64, nodeID string, entMeta *acl.EnterpriseMeta, peerName string) error {
if peerName == "" {
peerName = structs.LocalPeerKeyword
}
services, err := tx.Get(tableServices, indexNode, Query{
Value: nodeID,
EnterpriseMeta: *entMeta.WithWildcardNamespace(),
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("failed updating services for node %s: %s", nodeID, err)
}
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
if err := catalogUpdateServiceIndexes(tx, idx, svc.ServiceName, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
if err := catalogUpdateServiceKindIndexes(tx, idx, svc.ServiceKind, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
}
return nil
}
// ensureCheckCASTxn updates a check only if the existing index matches the given index.
// Returns a bool indicating if a write happened and any error.
func (s *Store) ensureCheckCASTxn(tx WriteTxn, idx uint64, hc *structs.HealthCheck) (bool, error) {
// Retrieve the existing entry.
_, existing, err := getNodeCheckTxn(tx, hc.Node, hc.CheckID, &hc.EnterpriseMeta, hc.PeerName)
if err != nil {
return false, fmt.Errorf("failed health check lookup: %s", err)
}
// Check if the we should do the set. A ModifyIndex of 0 means that
// we are doing a set-if-not-exists.
if hc.ModifyIndex == 0 && existing != nil {
return false, nil
}
if hc.ModifyIndex != 0 && existing == nil {
return false, nil
}
if existing != nil && hc.ModifyIndex != 0 && hc.ModifyIndex != existing.ModifyIndex {
return false, nil
}
// Perform the update.
if err := s.ensureCheckTxn(tx, idx, false, hc); err != nil {
return false, err
}
return true, nil
}
// ensureCheckTxn is used as the inner method to handle inserting
// a health check into the state store. It ensures safety against inserting
// checks with no matching node or service.
func (s *Store) ensureCheckTxn(tx WriteTxn, idx uint64, preserveIndexes bool, hc *structs.HealthCheck) error {
// Check if we have an existing health check
existing, err := tx.First(tableChecks, indexID, NodeCheckQuery{
EnterpriseMeta: hc.EnterpriseMeta,
Node: hc.Node,
CheckID: string(hc.CheckID),
PeerName: hc.PeerName,
})
if err != nil {
return fmt.Errorf("failed health check lookup: %s", err)
}
// Set the indexes
if existing != nil {
existingCheck := existing.(*structs.HealthCheck)
hc.CreateIndex = existingCheck.CreateIndex
hc.ModifyIndex = existingCheck.ModifyIndex
} else if !preserveIndexes {
hc.CreateIndex = idx
}
// Use the default check status if none was provided
if hc.Status == "" {
hc.Status = api.HealthCritical
}
// Get the node
node, err := tx.First(tableNodes, indexID, Query{
Value: hc.Node,
EnterpriseMeta: hc.EnterpriseMeta,
PeerName: hc.PeerName,
})
if err != nil {
return fmt.Errorf("failed node lookup: %s", err)
}
if node == nil {
return ErrMissingNode
}
modified := true
// If the check is associated with a service, check that we have
// a registration for the service.
if hc.ServiceID != "" {
service, err := tx.First(tableServices, indexID, NodeServiceQuery{
EnterpriseMeta: hc.EnterpriseMeta,
Node: hc.Node,
Service: hc.ServiceID,
PeerName: hc.PeerName,
})
if err != nil {
return fmt.Errorf("failed service lookup: %s", err)
}
if service == nil {
return ErrMissingService
}
// Copy in the service name and tags
svc := service.(*structs.ServiceNode)
hc.ServiceName = svc.ServiceName
hc.ServiceTags = svc.ServiceTags
if existing != nil && existing.(*structs.HealthCheck).IsSame(hc) {
modified = false
} else {
if err = catalogUpdateServiceIndexes(tx, idx, svc.ServiceName, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
if err := catalogUpdateServiceKindIndexes(tx, idx, svc.ServiceKind, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
}
} else {
if existing != nil && existing.(*structs.HealthCheck).IsSame(hc) {
modified = false
} else {
// Since the check has been modified, it impacts all services of node
// Update the status for all the services associated with this node
err = updateAllServiceIndexesOfNode(tx, idx, hc.Node, &hc.EnterpriseMeta, hc.PeerName)
if err != nil {
return err
}
}
}
// Delete any sessions for this check if the health is critical.
if hc.Status == api.HealthCritical && hc.PeerName == "" {
sessions, err := checkSessionsTxn(tx, hc)
if err != nil {
return err
}
// Delete the session in a separate loop so we don't trash the
// iterator.
for _, sess := range sessions {
if err := s.deleteSessionTxn(tx, idx, sess.Session, &sess.EnterpriseMeta); err != nil {
return fmt.Errorf("failed deleting session: %s", err)
}
}
}
if !modified {
return nil
}
if !preserveIndexes {
hc.ModifyIndex = idx
}
return catalogInsertCheck(tx, hc, idx)
}
// NodeCheck is used to retrieve a specific check associated with the given
// node.
func (s *Store) NodeCheck(nodeName string, checkID types.CheckID, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.HealthCheck, error) {
tx := s.db.Txn(false)
defer tx.Abort()
return getNodeCheckTxn(tx, nodeName, checkID, entMeta, peerName)
}
// nodeCheckTxn is used as the inner method to handle reading a health check
// from the state store.
func getNodeCheckTxn(tx ReadTxn, nodeName string, checkID types.CheckID, entMeta *acl.EnterpriseMeta, peerName string) (uint64, *structs.HealthCheck, error) {
// Get the table index.
idx := catalogChecksMaxIndex(tx, entMeta, peerName)
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Return the check.
check, err := tx.First(tableChecks, indexID,
NodeCheckQuery{
EnterpriseMeta: *entMeta,
Node: nodeName,
CheckID: string(checkID),
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed check lookup: %s", err)
}
if check != nil {
return idx, check.(*structs.HealthCheck), nil
}
return idx, nil, nil
}
// NodeChecks is used to retrieve checks associated with the
// given node from the state store.
func (s *Store) NodeChecks(ws memdb.WatchSet, nodeName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.HealthChecks, error) {
tx := s.db.Txn(false)
defer tx.Abort()
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Get the table index.
idx := catalogChecksMaxIndex(tx, entMeta, peerName)
// Return the checks.
iter, err := catalogListChecksByNode(tx, Query{
Value: nodeName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed check lookup: %s", err)
}
ws.Add(iter.WatchCh())
var results structs.HealthChecks
for check := iter.Next(); check != nil; check = iter.Next() {
results = append(results, check.(*structs.HealthCheck))
}
return idx, results, nil
}
// ServiceChecks is used to get all checks associated with a
// given service ID. The query is performed against a service
// _name_ instead of a service ID.
func (s *Store) ServiceChecks(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.HealthChecks, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// Get the table index.
idx := catalogChecksMaxIndex(tx, entMeta, peerName)
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: serviceName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
iter, err := tx.Get(tableChecks, indexService, q)
if err != nil {
return 0, nil, fmt.Errorf("failed check lookup: %s", err)
}
ws.Add(iter.WatchCh())
var results structs.HealthChecks
for check := iter.Next(); check != nil; check = iter.Next() {
results = append(results, check.(*structs.HealthCheck))
}
return idx, results, nil
}
// ServiceChecksByNodeMeta is used to get all checks associated with a
// given service ID, filtered by the given node metadata values. The query
// is performed against a service _name_ instead of a service ID.
func (s *Store) ServiceChecksByNodeMeta(ws memdb.WatchSet, serviceName string, filters map[string]string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.HealthChecks, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// Get the table index.
idx := maxIndexForService(tx, serviceName, true, true, entMeta, peerName)
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: serviceName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
iter, err := tx.Get(tableChecks, indexService, q)
if err != nil {
return 0, nil, fmt.Errorf("failed check lookup: %s", err)
}
ws.Add(iter.WatchCh())
return parseChecksByNodeMeta(tx, ws, idx, iter, filters, entMeta, peerName)
}
// ChecksInState is used to query the state store for all checks
// which are in the provided state.
func (s *Store) ChecksInState(ws memdb.WatchSet, state string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.HealthChecks, error) {
tx := s.db.Txn(false)
defer tx.Abort()
idx, iter, err := checksInStateTxn(tx, ws, state, entMeta, peerName)
if err != nil {
return 0, nil, err
}
var results structs.HealthChecks
for check := iter.Next(); check != nil; check = iter.Next() {
results = append(results, check.(*structs.HealthCheck))
}
return idx, results, nil
}
// ChecksInStateByNodeMeta is used to query the state store for all checks
// which are in the provided state, filtered by the given node metadata values.
func (s *Store) ChecksInStateByNodeMeta(ws memdb.WatchSet, state string, filters map[string]string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.HealthChecks, error) {
tx := s.db.Txn(false)
defer tx.Abort()
idx, iter, err := checksInStateTxn(tx, ws, state, entMeta, peerName)
if err != nil {
return 0, nil, err
}
return parseChecksByNodeMeta(tx, ws, idx, iter, filters, entMeta, peerName)
}
func checksInStateTxn(tx ReadTxn, ws memdb.WatchSet, state string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, memdb.ResultIterator, error) {
// Get the table index.
idx := catalogChecksMaxIndex(tx, entMeta, peerName)
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Query all checks if HealthAny is passed, otherwise use the index.
var iter memdb.ResultIterator
var err error
if state == api.HealthAny {
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
iter, err = tx.Get(tableChecks, indexID+"_prefix", q)
} else {
q := Query{
Value: state,
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
iter, err = tx.Get(tableChecks, indexStatus, q)
}
if err != nil {
return 0, nil, fmt.Errorf("failed check lookup: %s", err)
}
ws.Add(iter.WatchCh())
return idx, iter, err
}
// parseChecksByNodeMeta is a helper function used to deduplicate some
// repetitive code for returning health checks filtered by node metadata fields.
func parseChecksByNodeMeta(
tx ReadTxn,
ws memdb.WatchSet,
idx uint64,
iter memdb.ResultIterator,
filters map[string]string,
entMeta *acl.EnterpriseMeta,
peerName string,
) (uint64, structs.HealthChecks, error) {
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// We don't want to track an unlimited number of nodes, so we pull a
// top-level watch to use as a fallback.
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
allNodes, err := tx.Get(tableNodes, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed nodes lookup: %s", err)
}
allNodesCh := allNodes.WatchCh()
// Only take results for nodes that satisfy the node metadata filters.
var results structs.HealthChecks
for check := iter.Next(); check != nil; check = iter.Next() {
healthCheck := check.(*structs.HealthCheck)
watchCh, node, err := tx.FirstWatch(tableNodes, indexID, Query{
Value: healthCheck.Node,
EnterpriseMeta: healthCheck.EnterpriseMeta,
PeerName: healthCheck.PeerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed node lookup: %s", err)
}
if node == nil {
return 0, nil, ErrMissingNode
}
// Add even the filtered nodes so we wake up if the node metadata
// changes.
ws.AddWithLimit(watchLimit, watchCh, allNodesCh)
if structs.SatisfiesMetaFilters(node.(*structs.Node).Meta, filters) {
results = append(results, healthCheck)
}
}
return idx, results, nil
}
// DeleteCheck is used to delete a health check registration.
func (s *Store) DeleteCheck(idx uint64, node string, checkID types.CheckID, entMeta *acl.EnterpriseMeta, peerName string) error {
tx := s.db.WriteTxn(idx)
defer tx.Abort()
// Call the check deletion
if err := s.deleteCheckTxn(tx, idx, node, checkID, entMeta, peerName); err != nil {
return err
}
return tx.Commit()
}
// deleteCheckCASTxn is used to try doing a check delete operation with a given
// raft index. If the CAS index specified is not equal to the last observed index for
// the given check, then the call is a noop, otherwise a normal check delete is invoked.
func (s *Store) deleteCheckCASTxn(
tx WriteTxn,
idx, cidx uint64,
node string,
checkID types.CheckID,
entMeta *acl.EnterpriseMeta,
peerName string,
) (bool, error) {
// Try to retrieve the existing health check.
_, hc, err := getNodeCheckTxn(tx, node, checkID, entMeta, peerName)
if err != nil {
return false, fmt.Errorf("check lookup failed: %s", err)
}
if hc == nil {
return false, nil
}
// If the existing index does not match the provided CAS
// index arg, then we shouldn't update anything and can safely
// return early here.
if hc.ModifyIndex != cidx {
return false, nil
}
// Call the actual deletion if the above passed.
if err := s.deleteCheckTxn(tx, idx, node, checkID, entMeta, peerName); err != nil {
return false, err
}
return true, nil
}
// NodeServiceQuery is a type used to query the checks table.
type NodeServiceQuery struct {
Node string
Service string
PeerName string
acl.EnterpriseMeta
}
func (q NodeServiceQuery) PeerOrEmpty() string {
return q.PeerName
}
// NamespaceOrDefault exists because structs.EnterpriseMeta uses a pointer
// receiver for this method. Remove once that is fixed.
func (q NodeServiceQuery) NamespaceOrDefault() string {
return q.EnterpriseMeta.NamespaceOrDefault()
}
// PartitionOrDefault exists because structs.EnterpriseMeta uses a pointer
// receiver for this method. Remove once that is fixed.
func (q NodeServiceQuery) PartitionOrDefault() string {
return q.EnterpriseMeta.PartitionOrDefault()
}
// deleteCheckTxn is the inner method used to call a health
// check deletion within an existing transaction.
func (s *Store) deleteCheckTxn(tx WriteTxn, idx uint64, node string, checkID types.CheckID, entMeta *acl.EnterpriseMeta, peerName string) error {
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// Try to retrieve the existing health check.
hc, err := tx.First(tableChecks, indexID,
NodeCheckQuery{
EnterpriseMeta: *entMeta,
Node: node,
CheckID: string(checkID),
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("check lookup failed: %s", err)
}
if hc == nil {
return nil
}
existing := hc.(*structs.HealthCheck)
if existing != nil {
// When no service is linked to this service, update all services of node
if existing.ServiceID != "" {
if err := catalogUpdateServiceIndexes(tx, idx, existing.ServiceName, &existing.EnterpriseMeta, existing.PeerName); err != nil {
return err
}
svcRaw, err := tx.First(tableServices, indexID,
NodeServiceQuery{
EnterpriseMeta: existing.EnterpriseMeta,
Node: existing.Node,
Service: existing.ServiceID,
PeerName: existing.PeerName,
})
if err != nil {
return fmt.Errorf("failed retrieving service from state store: %v", err)
}
svc := svcRaw.(*structs.ServiceNode)
if err := catalogUpdateServiceKindIndexes(tx, idx, svc.ServiceKind, &svc.EnterpriseMeta, svc.PeerName); err != nil {
return err
}
} else {
if err := updateAllServiceIndexesOfNode(tx, idx, existing.Node, &existing.EnterpriseMeta, existing.PeerName); err != nil {
return fmt.Errorf("Failed to update services linked to deleted healthcheck: %s", err)
}
if err := catalogUpdateServicesIndexes(tx, idx, entMeta, existing.PeerName); err != nil {
return err
}
}
}
// Delete the check from the DB and update the index.
if err := tx.Delete(tableChecks, hc); err != nil {
return fmt.Errorf("failed removing check: %s", err)
}
if err := catalogUpdateCheckIndexes(tx, idx, entMeta, peerName); err != nil {
return err
}
if peerName == "" {
// Delete any sessions for this check.
sessions, err := checkSessionsTxn(tx, existing)
if err != nil {
return err
}
// Do the delete in a separate loop so we don't trash the iterator.
for _, sess := range sessions {
if err := s.deleteSessionTxn(tx, idx, sess.Session, &sess.EnterpriseMeta); err != nil {
return fmt.Errorf("failed deleting session: %s", err)
}
}
}
return nil
}
// CombinedCheckServiceNodes is used to query all nodes and checks for both typical and Connect endpoints of a service
func (s *Store) CombinedCheckServiceNodes(ws memdb.WatchSet, service structs.ServiceName, peerName string) (uint64, structs.CheckServiceNodes, error) {
var (
resp structs.CheckServiceNodes
maxIdx uint64
)
idx, csn, err := s.CheckServiceNodes(ws, service.Name, &service.EnterpriseMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed to get downstream nodes for %q: %v", service, err)
}
if idx > maxIdx {
maxIdx = idx
}
resp = append(resp, csn...)
idx, csn, err = s.CheckConnectServiceNodes(ws, service.Name, &service.EnterpriseMeta, peerName)
if err != nil {
return 0, nil, fmt.Errorf("failed to get downstream connect nodes for %q: %v", service, err)
}
if idx > maxIdx {
maxIdx = idx
}
resp = append(resp, csn...)
return maxIdx, resp, nil
}
// CheckServiceNodes is used to query all nodes and checks for a given service.
func (s *Store) CheckServiceNodes(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
return s.checkServiceNodes(ws, serviceName, false, entMeta, peerName)
}
// CheckConnectServiceNodes is used to query all nodes and checks for Connect
// compatible endpoints for a given service.
func (s *Store) CheckConnectServiceNodes(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
return s.checkServiceNodes(ws, serviceName, true, entMeta, peerName)
}
// CheckIngressServiceNodes is used to query all nodes and checks for ingress
// endpoints for a given service.
func (s *Store) CheckIngressServiceNodes(ws memdb.WatchSet, serviceName string, entMeta *acl.EnterpriseMeta) (uint64, structs.CheckServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
maxIdx, nodes, err := serviceGatewayNodes(tx, ws, serviceName, structs.ServiceKindIngressGateway, entMeta, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, fmt.Errorf("failed gateway nodes lookup: %v", err)
}
// TODO(ingress) : Deal with incorporating index from mapping table
// Watch for index changes to the gateway nodes
idx, chans := maxIndexAndWatchChsForServiceNodes(tx, nodes, false)
for _, ch := range chans {
ws.Add(ch)
}
maxIdx = lib.MaxUint64(maxIdx, idx)
// TODO(ingress): Test namespace functionality here
// De-dup services to lookup
names := make(map[structs.ServiceName]struct{})
for _, n := range nodes {
names[n.CompoundServiceName().ServiceName] = struct{}{}
}
var results structs.CheckServiceNodes
for sn := range names {
idx, n, err := checkServiceNodesTxn(tx, ws, sn.Name, false, &sn.EnterpriseMeta, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, err
}
maxIdx = lib.MaxUint64(maxIdx, idx)
results = append(results, n...)
}
return maxIdx, results, nil
}
func (s *Store) checkServiceNodes(ws memdb.WatchSet, serviceName string, connect bool, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
return checkServiceNodesTxn(tx, ws, serviceName, connect, entMeta, peerName)
}
func checkServiceNodesTxn(tx ReadTxn, ws memdb.WatchSet, serviceName string, connect bool, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
index := indexService
if connect {
index = indexConnect
}
// TODO: accept non-pointer
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: serviceName,
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
iter, err := tx.Get(tableServices, index, q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
// Note we decide if we want to watch this iterator or not down below. We need
// to see if it returned anything first.
// Return the results.
var results structs.ServiceNodes
// For connect queries we need a list of any proxy service names in the result
// set. Rather than have different code path for connect and non-connect, we
// use the same one in both cases. For non-empty non-connect results,
// serviceNames will always have exactly one element which is the same as
// serviceName. For Connect there might be multiple different service names -
// one for each service name a proxy is registered under, and the target
// service name IFF there is at least one Connect-native instance of that
// service. Either way there is usually only one distinct name if proxies are
// named consistently but could be multiple.
serviceNames := make(map[structs.ServiceName]struct{}, 2)
for service := iter.Next(); service != nil; service = iter.Next() {
sn := service.(*structs.ServiceNode)
results = append(results, sn)
name := structs.NewServiceName(sn.ServiceName, &sn.EnterpriseMeta)
serviceNames[name] = struct{}{}
}
// If we are querying for Connect nodes, the associated proxy might be a terminating-gateway.
// Gateways are tracked in a separate table, and we append them to the result set.
// We append rather than replace since it allows users to migrate a service
// to the mesh with a mix of sidecars and gateways until all its instances have a sidecar.
var idx uint64
if connect && peerName == "" {
// Look up gateway nodes associated with the service
// TODO(peering): we'll have to do something here
gwIdx, nodes, err := serviceGatewayNodes(tx, ws, serviceName, structs.ServiceKindTerminatingGateway, entMeta, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, fmt.Errorf("failed gateway nodes lookup: %v", err)
}
idx = lib.MaxUint64(idx, gwIdx)
for i := 0; i < len(nodes); i++ {
results = append(results, nodes[i])
name := structs.NewServiceName(nodes[i].ServiceName, &nodes[i].EnterpriseMeta)
serviceNames[name] = struct{}{}
}
}
// watchOptimized tracks if we meet the necessary condition to optimize
// WatchSet size. That is that every service name represented in the result
// set must have a service-specific index we can watch instead of many radix
// nodes for all the actual nodes touched. This saves us watching potentially
// thousands of watch chans for large services which may need many goroutines.
// It also avoids the performance cliff that is hit when watchLimit is hit
// (~682 service instances). See
// https://github.com/hashicorp/consul/issues/4984
watchOptimized := false
if len(serviceNames) > 0 {
// Assume optimization will work since it really should at this point. For
// safety we'll sanity check this below for each service name.
watchOptimized = true
// Fetch indexes for all names services in result set.
for n := range serviceNames {
// We know service values should exist since the serviceNames map is only
// populated if there is at least one result above. so serviceExists arg
// below is always true.
svcIdx, svcCh := maxIndexAndWatchChForService(tx, n.Name, true, true, &n.EnterpriseMeta, peerName)
// Take the max index represented
idx = lib.MaxUint64(idx, svcIdx)
if svcCh != nil {
// Watch the service-specific index for changes in liu of all iradix nodes
// for checks etc.
ws.Add(svcCh)
} else {
// Nil svcCh shouldn't really happen since all existent services should
// have a service-specific index but just in case it does due to a bug,
// fall back to the more expensive old way of watching every radix node
// we touch.
watchOptimized = false
}
}
} else {
// If we have no results, we should use the index of the last service
// extinction event so we don't go backwards when services deregister. We
// use target serviceName here but it actually doesn't matter. No chan will
// be returned as we can't use the optimization in this case (and don't need
// to as there is only one chan to watch anyway).
svcIdx, _ := maxIndexAndWatchChForService(tx, serviceName, false, true, entMeta, peerName)
idx = lib.MaxUint64(idx, svcIdx)
}
// Create a nil watchset to pass below, we'll only pass the real one if we
// need to. Nil watchers are safe/allowed and saves some allocation too.
var fallbackWS memdb.WatchSet
if !watchOptimized {
// We weren't able to use the optimization of watching only service indexes
// for some reason. That means we need to fallback to watching everything we
// touch in the DB as normal. We plumb the caller's watchset through (note
// it's a map so this is a by-reference assignment.)
fallbackWS = ws
// We also need to watch the iterator from earlier too.
fallbackWS.Add(iter.WatchCh())
} else if connect {
// If this is a connect query then there is a subtlety to watch out for.
// In addition to watching the proxy service indexes for changes above, we
// need to still keep an eye on the connect service index in case a new
// proxy with a new name registers - we are only watching proxy service
// names we know about above so we'd miss that otherwise. Thankfully this
// is only ever one extra chan to watch and will catch any changes to
// proxy registrations for this target service.
ws.Add(iter.WatchCh())
}
return parseCheckServiceNodes(tx, fallbackWS, idx, results, entMeta, peerName, err)
}
// CheckServiceTagNodes is used to query all nodes and checks for a given
// service, filtering out services that don't contain the given tag.
func (s *Store) CheckServiceTagNodes(ws memdb.WatchSet, serviceName string, tags []string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// TODO: accept non-pointer value
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{Value: serviceName, EnterpriseMeta: *entMeta, PeerName: peerName}
iter, err := tx.Get(tableServices, indexService, q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
ws.Add(iter.WatchCh())
// Return the results, filtering by tag.
serviceExists := false
var results structs.ServiceNodes
for service := iter.Next(); service != nil; service = iter.Next() {
svc := service.(*structs.ServiceNode)
serviceExists = true
if !serviceTagsFilter(svc, tags) {
results = append(results, svc)
}
}
// Get the table index.
idx := maxIndexForService(tx, serviceName, serviceExists, true, entMeta, peerName)
return parseCheckServiceNodes(tx, ws, idx, results, entMeta, peerName, err)
}
// GatewayServices is used to query all services associated with a gateway
func (s *Store) GatewayServices(ws memdb.WatchSet, gateway string, entMeta *acl.EnterpriseMeta) (uint64, structs.GatewayServices, error) {
tx := s.db.Txn(false)
defer tx.Abort()
iter, err := tx.Get(tableGatewayServices, indexGateway, structs.NewServiceName(gateway, entMeta))
if err != nil {
return 0, nil, fmt.Errorf("failed gateway services lookup: %s", err)
}
ws.Add(iter.WatchCh())
maxIdx, results, err := s.collectGatewayServices(tx, ws, iter)
if err != nil {
return 0, nil, err
}
idx := maxIndexTxn(tx, tableGatewayServices)
return lib.MaxUint64(maxIdx, idx), results, nil
}
// TODO: Find a way to consolidate this with CheckIngressServiceNodes
// ServiceGateways is used to query all gateways associated with a service
func (s *Store) ServiceGateways(ws memdb.WatchSet, service string, kind structs.ServiceKind, entMeta acl.EnterpriseMeta) (uint64, structs.CheckServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
// tableGatewayServices is not peer-aware, and the existence of TG/IG gateways is scrubbed during peer replication.
maxIdx, nodes, err := serviceGatewayNodes(tx, ws, service, kind, &entMeta, structs.DefaultPeerKeyword)
// Watch for index changes to the gateway nodes
idx, chans := maxIndexAndWatchChsForServiceNodes(tx, nodes, false)
for _, ch := range chans {
ws.Add(ch)
}
maxIdx = lib.MaxUint64(maxIdx, idx)
return parseCheckServiceNodes(tx, ws, maxIdx, nodes, &entMeta, structs.DefaultPeerKeyword, err)
}
func (s *Store) VirtualIPForService(psn structs.PeeredServiceName) (string, error) {
tx := s.db.Txn(false)
defer tx.Abort()
vip, err := tx.First(tableServiceVirtualIPs, indexID, psn)
if err != nil {
return "", fmt.Errorf("failed service virtual IP lookup: %s", err)
}
if vip == nil {
return "", nil
}
return vip.(ServiceVirtualIP).IPWithOffset()
}
func (s *Store) ServiceVirtualIPs() (uint64, []ServiceVirtualIP, error) {
tx := s.db.Txn(false)
defer tx.Abort()
return servicesVirtualIPsTxn(tx, nil)
}
func servicesVirtualIPsTxn(tx ReadTxn, ws memdb.WatchSet) (uint64, []ServiceVirtualIP, error) {
iter, err := tx.Get(tableServiceVirtualIPs, indexID)
if err != nil {
return 0, nil, err
}
ws.Add(iter.WatchCh())
var vips []ServiceVirtualIP
for raw := iter.Next(); raw != nil; raw = iter.Next() {
vip := raw.(ServiceVirtualIP)
vips = append(vips, vip)
}
idx := maxIndexWatchTxn(tx, nil, tableServiceVirtualIPs)
return idx, vips, nil
}
func (s *Store) ServiceManualVIPs(psn structs.PeeredServiceName) (*ServiceVirtualIP, error) {
tx := s.db.Txn(false)
defer tx.Abort()
return serviceVIPsTxn(tx, psn)
}
func serviceVIPsTxn(tx ReadTxn, psn structs.PeeredServiceName) (*ServiceVirtualIP, error) {
vip, err := tx.First(tableServiceVirtualIPs, indexID, psn)
if err != nil {
return nil, fmt.Errorf("failed service virtual IP lookup: %s", err)
}
if vip == nil {
return nil, nil
}
entry := vip.(ServiceVirtualIP)
return &entry, nil
}
// VirtualIPsForAllImportedServices returns a slice of ServiceVirtualIP for all
// VirtualIP-assignable services that have been imported by the partition represented in entMeta.
// Namespace is ignored.
func (s *Store) VirtualIPsForAllImportedServices(ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []ServiceVirtualIP, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
q := Query{
EnterpriseMeta: entMeta,
// Wildcard peername is used by prefix index to fetch all remote peers for a partition.
PeerName: "*",
}
iter, err := tx.Get(tableServiceVirtualIPs, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed service virtual IP lookup: %s", err)
}
ws.Add(iter.WatchCh())
idx := maxIndexTxn(tx, partitionedIndexEntryName(tableServiceVirtualIPs+".imported", entMeta.PartitionOrDefault()))
var vips []ServiceVirtualIP
for raw := iter.Next(); raw != nil; raw = iter.Next() {
vip := raw.(ServiceVirtualIP)
vips = append(vips, vip)
}
return idx, vips, nil
}
func (s *Store) ServiceNamesOfKind(ws memdb.WatchSet, kind structs.ServiceKind) (uint64, []*KindServiceName, error) {
tx := s.db.Txn(false)
defer tx.Abort()
wildcardMeta := structs.WildcardEnterpriseMetaInPartition(structs.WildcardSpecifier)
return serviceNamesOfKindTxn(tx, ws, kind, *wildcardMeta)
}
func serviceNamesOfKindTxn(tx ReadTxn, ws memdb.WatchSet, kind structs.ServiceKind, entMeta acl.EnterpriseMeta) (uint64, []*KindServiceName, error) {
iter, err := tx.Get(tableKindServiceNames, indexKind, Query{Value: string(kind), EnterpriseMeta: entMeta})
if err != nil {
return 0, nil, err
}
// TODO(peering): Maybe delete this watch and rely on the max idx tables below, to avoid waking up on unrelated changes
ws.Add(iter.WatchCh())
var names []*KindServiceName
for name := iter.Next(); name != nil; name = iter.Next() {
ksn := name.(*KindServiceName)
names = append(names, ksn)
}
var idx uint64
switch {
case entMeta.PartitionOrDefault() == structs.WildcardSpecifier:
idx = kindServiceNamesMaxIndex(tx, ws, kind.Normalized())
case entMeta.NamespaceOrDefault() == structs.WildcardSpecifier:
idx = kindServiceNamesMaxIndex(tx, ws, partitionedIndexEntryName(kind.Normalized(), entMeta.PartitionOrDefault()))
default:
idx = kindServiceNamesMaxIndex(tx, ws, partitionedAndNamespacedIndexEntryName(kind.Normalized(), &entMeta))
}
return idx, names, nil
}
// parseCheckServiceNodes is used to parse through a given set of services,
// and query for an associated node and a set of checks. This is the inner
// method used to return a rich set of results from a more simple query.
//
// TODO: idx parameter is not used except as a return value. Remove it.
// TODO: err parameter is only used for early return. Remove it and check from the
// caller.
func parseCheckServiceNodes(
tx ReadTxn, ws memdb.WatchSet, idx uint64,
services structs.ServiceNodes,
entMeta *acl.EnterpriseMeta,
peerName string,
err error,
) (uint64, structs.CheckServiceNodes, error) {
if err != nil {
return 0, nil, err
}
// Special-case the zero return value to nil, since this ends up in
// external APIs.
if len(services) == 0 {
return idx, nil, nil
}
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// We don't want to track an unlimited number of nodes, so we pull a
// top-level watch to use as a fallback.
allNodes, err := tx.Get(tableNodes, indexID+"_prefix", Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed nodes lookup: %s", err)
}
allNodesCh := allNodes.WatchCh()
// We need a similar fallback for checks. Since services need the
// status of node + service-specific checks, we pull in a top-level
// watch over all checks.
allChecks, err := tx.Get(tableChecks, indexID+"_prefix", Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed checks lookup: %s", err)
}
allChecksCh := allChecks.WatchCh()
results := make(structs.CheckServiceNodes, 0, len(services))
for _, sn := range services {
// Retrieve the node.
watchCh, n, err := tx.FirstWatch(tableNodes, indexID, Query{
Value: sn.Node,
EnterpriseMeta: sn.EnterpriseMeta,
PeerName: sn.PeerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed node lookup: %s", err)
}
ws.AddWithLimit(watchLimit, watchCh, allNodesCh)
if n == nil {
return 0, nil, ErrMissingNode
}
node := n.(*structs.Node)
// First add the node-level checks. These always apply to any
// service on the node.
var checks structs.HealthChecks
q := NodeServiceQuery{
Node: sn.Node,
Service: "", // node checks have no service
EnterpriseMeta: *sn.EnterpriseMeta.WithWildcardNamespace(),
PeerName: sn.PeerName,
}
iter, err := tx.Get(tableChecks, indexNodeService, q)
if err != nil {
return 0, nil, err
}
ws.AddWithLimit(watchLimit, iter.WatchCh(), allChecksCh)
for check := iter.Next(); check != nil; check = iter.Next() {
checks = append(checks, check.(*structs.HealthCheck))
}
// Now add the service-specific checks.
q = NodeServiceQuery{
Node: sn.Node,
Service: sn.ServiceID,
EnterpriseMeta: sn.EnterpriseMeta,
PeerName: sn.PeerName,
}
iter, err = tx.Get(tableChecks, indexNodeService, q)
if err != nil {
return 0, nil, err
}
ws.AddWithLimit(watchLimit, iter.WatchCh(), allChecksCh)
for check := iter.Next(); check != nil; check = iter.Next() {
checks = append(checks, check.(*structs.HealthCheck))
}
// Append to the results.
results = append(results, structs.CheckServiceNode{
Node: node,
Service: sn.ToNodeService(),
Checks: checks,
})
}
return idx, results, nil
}
// NodeInfo is used to generate a dump of a single node. The dump includes
// all services and checks which are registered against the node.
func (s *Store) NodeInfo(ws memdb.WatchSet, node string, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.NodeDump, error) {
tx := s.db.Txn(false)
defer tx.Abort()
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Get the table index.
idx := catalogMaxIndex(tx, entMeta, peerName, true)
// Query the node by the passed node
nodes, err := tx.Get(tableNodes, indexID, Query{
Value: node,
EnterpriseMeta: *entMeta,
PeerName: peerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed node lookup: %s", err)
}
ws.Add(nodes.WatchCh())
return parseNodes(tx, ws, idx, nodes, entMeta, peerName)
}
// NodeDump is used to generate a dump of all nodes. This call is expensive
// as it has to query every node, service, and check. The response can also
// be quite large since there is currently no filtering applied.
func (s *Store) NodeDump(ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.NodeDump, error) {
tx := s.db.Txn(false)
defer tx.Abort()
if entMeta == nil {
entMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Get the table index.
idx := catalogMaxIndex(tx, entMeta, peerName, true)
// Fetch all of the registered nodes
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
nodes, err := tx.Get(tableNodes, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed node lookup: %s", err)
}
ws.Add(nodes.WatchCh())
return parseNodes(tx, ws, idx, nodes, entMeta, peerName)
}
func (s *Store) ServiceDump(ws memdb.WatchSet, kind structs.ServiceKind, useKind bool, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
tx := s.db.Txn(false)
defer tx.Abort()
if useKind {
return serviceDumpKindTxn(tx, ws, kind, entMeta, peerName)
} else {
return serviceDumpAllTxn(tx, ws, entMeta, peerName)
}
}
func serviceDumpAllTxn(tx ReadTxn, ws memdb.WatchSet, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
// Get the table index
idx := catalogMaxIndexWatch(tx, ws, entMeta, "", true)
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
services, err := tx.Get(tableServices, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
var results structs.ServiceNodes
for service := services.Next(); service != nil; service = services.Next() {
sn := service.(*structs.ServiceNode)
results = append(results, sn)
}
return parseCheckServiceNodes(tx, nil, idx, results, entMeta, peerName, err)
}
func serviceDumpKindTxn(tx ReadTxn, ws memdb.WatchSet, kind structs.ServiceKind, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.CheckServiceNodes, error) {
// unlike when we are dumping all services here we only need to watch the kind specific index entry for changing (or nodes, checks)
// updating any services, nodes or checks will bump the appropriate service kind index so there is no need to watch any of the individual
// entries
idx := catalogServiceKindMaxIndex(tx, ws, kind, entMeta, peerName)
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: string(kind),
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
services, err := tx.Get(tableServices, indexKind, q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
var results structs.ServiceNodes
for service := services.Next(); service != nil; service = services.Next() {
sn := service.(*structs.ServiceNode)
results = append(results, sn)
}
return parseCheckServiceNodes(tx, nil, idx, results, entMeta, peerName, err)
}
// parseNodes takes an iterator over a set of nodes and returns a struct
// containing the nodes along with all of their associated services
// and/or health checks.
// TODO(peering): support parsing by peerName
func parseNodes(tx ReadTxn, ws memdb.WatchSet, idx uint64,
iter memdb.ResultIterator, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.NodeDump, error) {
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
// We don't want to track an unlimited number of services, so we pull a
// top-level watch to use as a fallback.
q := Query{
EnterpriseMeta: *entMeta,
PeerName: peerName,
}
allServices, err := tx.Get(tableServices, indexID+"_prefix", q)
if err != nil {
return 0, nil, fmt.Errorf("failed services lookup: %s", err)
}
allServicesCh := allServices.WatchCh()
// We need a similar fallback for checks.
allChecks, err := tx.Get(tableChecks, indexID+"_prefix", entMeta)
if err != nil {
return 0, nil, fmt.Errorf("failed checks lookup: %s", err)
}
allChecksCh := allChecks.WatchCh()
var results structs.NodeDump
for n := iter.Next(); n != nil; n = iter.Next() {
node := n.(*structs.Node)
// Create the wrapped node
dump := &structs.NodeInfo{
ID: node.ID,
Node: node.Node,
Partition: node.Partition,
PeerName: node.PeerName,
Address: node.Address,
TaggedAddresses: node.TaggedAddresses,
Meta: node.Meta,
}
// Query the node services
services, err := catalogServiceListByNode(tx, node.Node, entMeta, node.PeerName, true)
if err != nil {
return 0, nil, fmt.Errorf("failed services lookup: %s", err)
}
ws.AddWithLimit(watchLimit, services.WatchCh(), allServicesCh)
for service := services.Next(); service != nil; service = services.Next() {
ns := service.(*structs.ServiceNode).ToNodeService()
dump.Services = append(dump.Services, ns)
}
// Query the service level checks
checks, err := catalogListChecksByNode(tx, Query{
Value: node.Node,
EnterpriseMeta: *entMeta,
PeerName: node.PeerName,
})
if err != nil {
return 0, nil, fmt.Errorf("failed node lookup: %s", err)
}
ws.AddWithLimit(watchLimit, checks.WatchCh(), allChecksCh)
for check := checks.Next(); check != nil; check = checks.Next() {
hc := check.(*structs.HealthCheck)
dump.Checks = append(dump.Checks, hc)
}
// Add the result to the slice
results = append(results, dump)
}
return idx, results, nil
}
// checkSessionsTxn returns the IDs of all sessions associated with a health check
func checkSessionsTxn(tx ReadTxn, hc *structs.HealthCheck) ([]*sessionCheck, error) {
// TODO(peering): what are implications for imported health checks?
mappings, err := tx.Get(tableSessionChecks, indexNodeCheck, MultiQuery{Value: []string{hc.Node, string(hc.CheckID)},
EnterpriseMeta: *structs.DefaultEnterpriseMetaInPartition(hc.PartitionOrDefault())})
if err != nil {
return nil, fmt.Errorf("failed session checks lookup: %s", err)
}
var sessions []*sessionCheck
for mapping := mappings.Next(); mapping != nil; mapping = mappings.Next() {
sessions = append(sessions, mapping.(*sessionCheck))
}
return sessions, nil
}
// updateGatewayServices associates services with gateways as specified in a gateway config entry
func updateGatewayServices(tx WriteTxn, idx uint64, conf structs.ConfigEntry, entMeta *acl.EnterpriseMeta) error {
var (
noChange bool
gatewayServices structs.GatewayServices
err error
)
gateway := structs.NewServiceName(conf.GetName(), entMeta)
switch conf.GetKind() {
case structs.IngressGateway:
noChange, gatewayServices, err = ingressConfigGatewayServices(tx, gateway, conf, entMeta)
case structs.TerminatingGateway:
noChange, gatewayServices, err = terminatingConfigGatewayServices(tx, gateway, conf, entMeta)
default:
return fmt.Errorf("config entry kind %q does not need gateway-services", conf.GetKind())
}
// Return early if there is an error OR we don't have any services to update
if err != nil || noChange {
return err
}
// Update terminating gateway service virtual IPs
vipsSupported, err := terminatingGatewayVirtualIPsSupported(tx, nil)
if err != nil {
return err
}
if vipsSupported && conf.GetKind() == structs.TerminatingGateway {
gatewayConf := conf.(*structs.TerminatingGatewayConfigEntry)
if err := updateTerminatingGatewayVirtualIPs(tx, idx, gatewayConf, entMeta); err != nil {
return err
}
}
// Delete all associated with gateway first, to avoid keeping mappings that were removed
sn := structs.NewServiceName(conf.GetName(), entMeta)
if _, err := tx.DeleteAll(tableGatewayServices, indexGateway, sn); err != nil {
return fmt.Errorf("failed to truncate gateway services table: %v", err)
}
if err := truncateGatewayServiceTopologyMappings(tx, idx, sn, conf.GetKind()); err != nil {
return fmt.Errorf("failed to truncate mesh topology for gateway: %v", err)
}
for _, svc := range gatewayServices {
// If the service is a wildcard we need to target all services within the namespace
if svc.Service.Name == structs.WildcardSpecifier {
if err := updateGatewayNamespace(tx, idx, svc, entMeta); err != nil {
return fmt.Errorf("failed to associate gateway %q with wildcard: %v", gateway.String(), err)
}
// Skip service-specific update below if there was a wildcard update
continue
}
// Since this service was specified on its own, and not with a wildcard,
// if there is an existing entry, we overwrite it. The service entry is the source of truth.
//
// By extension, if TLS creds are provided with a wildcard but are not provided in
// the service entry, the service does not inherit the creds from the wildcard.
err = updateGatewayService(tx, idx, svc)
if err != nil {
return err
}
}
if err := indexUpdateMaxTxn(tx, idx, tableGatewayServices); err != nil {
return fmt.Errorf("failed updating gateway-services index: %v", err)
}
return nil
}
func getTermGatewayVirtualIPs(
tx WriteTxn,
idx uint64,
services []structs.LinkedService,
entMeta *acl.EnterpriseMeta,
) (map[string]structs.ServiceAddress, error) {
addrs := make(map[string]structs.ServiceAddress, len(services))
for _, s := range services {
sn := structs.ServiceName{Name: s.Name, EnterpriseMeta: *entMeta}
// Terminating Gateways cannot route to services in peered clusters
psn := structs.PeeredServiceName{ServiceName: sn, Peer: structs.DefaultPeerKeyword}
vip, err := assignServiceVirtualIP(tx, idx, psn)
if err != nil {
return nil, err
}
key := structs.ServiceGatewayVirtualIPTag(sn)
addrs[key] = structs.ServiceAddress{Address: vip}
}
return addrs, nil
}
func updateTerminatingGatewayVirtualIPs(tx WriteTxn, idx uint64, conf *structs.TerminatingGatewayConfigEntry, entMeta *acl.EnterpriseMeta) error {
// Build the current map of services with virtual IPs for this gateway
services := conf.Services
addrs, err := getTermGatewayVirtualIPs(tx, idx, services, entMeta)
if err != nil {
return err
}
// Find any deleted service entries by comparing the new config entry to the existing one.
_, existing, err := configEntryTxn(tx, nil, conf.GetKind(), conf.GetName(), entMeta)
if err != nil {
return fmt.Errorf("failed to get config entry: %v", err)
}
var deletes []structs.ServiceName
cfg, ok := existing.(*structs.TerminatingGatewayConfigEntry)
if ok {
for _, s := range cfg.Services {
sn := structs.ServiceName{Name: s.Name, EnterpriseMeta: *entMeta}
key := structs.ServiceGatewayVirtualIPTag(sn)
if _, ok := addrs[key]; !ok {
deletes = append(deletes, sn)
}
}
}
q := Query{Value: conf.GetName(), EnterpriseMeta: *entMeta}
_, svcNodes, err := serviceNodesTxn(tx, nil, indexService, q)
if err != nil {
return err
}
// Update the tagged addrs for any existing instances of this terminating gateway.
for _, s := range svcNodes {
newAddrs := make(map[string]structs.ServiceAddress)
for key, addr := range s.ServiceTaggedAddresses {
if !strings.HasPrefix(key, structs.TaggedAddressVirtualIP+":") {
newAddrs[key] = addr
}
}
for key, addr := range addrs {
newAddrs[key] = addr
}
// Don't need to update the service record if it's a no-op.
if reflect.DeepEqual(newAddrs, s.ServiceTaggedAddresses) {
continue
}
newSN := s.PartialClone()
newSN.ServiceTaggedAddresses = newAddrs
newSN.ModifyIndex = idx
if err := catalogInsertService(tx, newSN); err != nil {
return err
}
}
// Check if we can delete any virtual IPs for the removed services.
gatewayName := structs.NewServiceName(conf.GetName(), entMeta)
for _, sn := range deletes {
// If there's no existing service nodes, attempt to free the virtual IP.
q := Query{Value: sn.Name, EnterpriseMeta: sn.EnterpriseMeta}
_, nodes, err := serviceNodesTxn(tx, nil, indexConnect, q)
if err != nil {
return err
}
if len(nodes) == 0 {
psn := structs.PeeredServiceName{Peer: structs.DefaultPeerKeyword, ServiceName: sn}
if err := freeServiceVirtualIP(tx, idx, psn, &gatewayName); err != nil {
return err
}
}
}
return nil
}
// ingressConfigGatewayServices constructs a list of GatewayService structs for
// insertion into the memdb table, specific to ingress gateways. The boolean
// returned indicates that there are no changes necessary to the memdb table.
func ingressConfigGatewayServices(
tx ReadTxn,
gateway structs.ServiceName,
conf structs.ConfigEntry,
entMeta *acl.EnterpriseMeta,
) (bool, structs.GatewayServices, error) {
entry, ok := conf.(*structs.IngressGatewayConfigEntry)
if !ok {
return false, nil, fmt.Errorf("unexpected config entry type: %T", conf)
}
// Check if service list matches the last known list for the config entry, if it does, skip the update
_, c, err := configEntryTxn(tx, nil, conf.GetKind(), conf.GetName(), entMeta)
if err != nil {
return false, nil, fmt.Errorf("failed to get config entry: %v", err)
}
if cfg, ok := c.(*structs.IngressGatewayConfigEntry); ok && cfg != nil {
if reflect.DeepEqual(cfg.Listeners, entry.Listeners) {
// Services are the same, nothing to update
return true, nil, nil
}
}
var gatewayServices structs.GatewayServices
for _, listener := range entry.Listeners {
for _, service := range listener.Services {
mapping := &structs.GatewayService{
Gateway: gateway,
Service: service.ToServiceName(),
GatewayKind: structs.ServiceKindIngressGateway,
Hosts: service.Hosts,
Port: listener.Port,
Protocol: listener.Protocol,
}
gatewayServices = append(gatewayServices, mapping)
}
}
return false, gatewayServices, nil
}
// terminatingConfigGatewayServices constructs a list of GatewayService structs
// for insertion into the memdb table, specific to terminating gateways. The
// boolean returned indicates that there are no changes necessary to the memdb
// table.
func terminatingConfigGatewayServices(
tx ReadTxn,
gateway structs.ServiceName,
conf structs.ConfigEntry,
entMeta *acl.EnterpriseMeta,
) (bool, structs.GatewayServices, error) {
entry, ok := conf.(*structs.TerminatingGatewayConfigEntry)
if !ok {
return false, nil, fmt.Errorf("unexpected config entry type: %T", conf)
}
// Check if service list matches the last known list for the config entry, if it does, skip the update
_, c, err := configEntryTxn(tx, nil, conf.GetKind(), conf.GetName(), entMeta)
if err != nil {
return false, nil, fmt.Errorf("failed to get config entry: %v", err)
}
if cfg, ok := c.(*structs.TerminatingGatewayConfigEntry); ok && cfg != nil {
if reflect.DeepEqual(cfg.Services, entry.Services) {
// Services are the same, nothing to update
return true, nil, nil
}
}
var gatewayServices structs.GatewayServices
for _, svc := range entry.Services {
kind, err := GatewayServiceKind(tx, svc.Name, &svc.EnterpriseMeta)
if err != nil {
return false, nil, fmt.Errorf("failed to get gateway service kind for service %s: %v", svc.Name, err)
}
mapping := &structs.GatewayService{
Gateway: gateway,
Service: structs.NewServiceName(svc.Name, &svc.EnterpriseMeta),
GatewayKind: structs.ServiceKindTerminatingGateway,
KeyFile: svc.KeyFile,
CertFile: svc.CertFile,
CAFile: svc.CAFile,
SNI: svc.SNI,
ServiceKind: kind,
}
gatewayServices = append(gatewayServices, mapping)
}
return false, gatewayServices, nil
}
func GatewayServiceKind(tx ReadTxn, name string, entMeta *acl.EnterpriseMeta) (structs.GatewayServiceKind, error) {
serviceIter, err := tx.First(tableServices, indexService, Query{
Value: name,
EnterpriseMeta: *entMeta,
})
if err != nil {
return structs.GatewayServiceKindUnknown, err
}
if serviceIter != nil {
return structs.GatewayServiceKindService, err
}
_, entry, err := configEntryTxn(tx, nil, structs.ServiceDefaults, name, entMeta)
if err != nil {
return structs.GatewayServiceKindUnknown, err
}
if entry != nil {
sd, ok := entry.(*structs.ServiceConfigEntry)
if !ok {
return structs.GatewayServiceKindUnknown, fmt.Errorf("invalid config entry type %T", entry)
}
if sd.Destination != nil {
return structs.GatewayServiceKindDestination, nil
}
}
return structs.GatewayServiceKindUnknown, nil
}
// updateGatewayNamespace is used to target all services within a namespace
func updateGatewayNamespace(tx WriteTxn, idx uint64, service *structs.GatewayService, entMeta *acl.EnterpriseMeta) error {
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{Value: string(structs.ServiceKindTypical), EnterpriseMeta: *entMeta}
services, err := tx.Get(tableServices, indexKind, q)
if err != nil {
return fmt.Errorf("failed querying services: %s", err)
}
// Iterate over services in namespace and insert mapping for each
for svc := services.Next(); svc != nil; svc = services.Next() {
sn := svc.(*structs.ServiceNode)
// Only associate non-consul services with gateways
if sn.ServiceName == "consul" {
continue
}
hasConnectInstance, hasNonConnectInstance, err := serviceHasConnectInstances(tx, sn.ServiceName, entMeta)
if err != nil {
return err
}
if service.GatewayKind == structs.ServiceKindIngressGateway && !hasConnectInstance {
continue
}
if service.GatewayKind == structs.ServiceKindTerminatingGateway && !hasNonConnectInstance {
continue
}
existing, err := tx.First(tableGatewayServices, indexID, service.Gateway, sn.CompoundServiceName().ServiceName, service.Port)
if err != nil {
return fmt.Errorf("gateway service lookup failed: %s", err)
}
if existing != nil {
// If there's an existing service associated with this gateway then we skip it.
// This means the service was specified on its own, and the service entry overrides the wildcard entry.
continue
}
mapping := service.Clone()
mapping.Service = structs.NewServiceName(sn.ServiceName, &service.Service.EnterpriseMeta)
mapping.FromWildcard = true
err = updateGatewayService(tx, idx, mapping)
if err != nil {
return err
}
}
entries, err := tx.Get(tableConfigEntries, indexID+"_prefix", ConfigEntryKindQuery{Kind: structs.ServiceDefaults, EnterpriseMeta: *entMeta})
if err != nil {
return fmt.Errorf("failed querying entries: %s", err)
}
for entry := entries.Next(); entry != nil; entry = entries.Next() {
e := entry.(*structs.ServiceConfigEntry)
if e.Destination == nil {
continue
}
sn := structs.ServiceName{
Name: e.Name,
EnterpriseMeta: e.EnterpriseMeta,
}
existing, err := tx.First(tableGatewayServices, indexID, service.Gateway, sn, service.Port)
if err != nil {
return fmt.Errorf("gateway service lookup failed: %s", err)
}
if existing != nil {
// If there's an existing service associated with this gateway then we skip it.
// This means the service was specified on its own, and the service entry overrides the wildcard entry.
continue
}
mapping := service.Clone()
mapping.Service = structs.NewServiceName(e.Name, &service.Service.EnterpriseMeta)
mapping.ServiceKind = structs.GatewayServiceKindDestination
mapping.FromWildcard = true
err = updateGatewayService(tx, idx, mapping)
if err != nil {
return err
}
}
// Also store a mapping for the wildcard so that the TLS creds can be pulled
// for new services registered in its namespace
err = updateGatewayService(tx, idx, service)
if err != nil {
return err
}
return nil
}
// serviceHasConnectInstances returns whether the service has at least one connect instance,
// and at least one non-connect instance.
func serviceHasConnectInstances(tx WriteTxn, serviceName string, entMeta *acl.EnterpriseMeta) (bool, bool, error) {
hasConnectInstance := false
query := Query{
Value: serviceName,
EnterpriseMeta: *entMeta,
}
svc, err := tx.First(tableServices, indexConnect, query)
if err != nil {
return false, false, fmt.Errorf("failed service lookup: %s", err)
}
if svc != nil {
hasConnectInstance = true
}
hasNonConnectInstance := false
iter, err := tx.Get(tableServices, indexService, query)
if err != nil {
return false, false, fmt.Errorf("failed service lookup: %s", err)
}
for service := iter.Next(); service != nil; service = iter.Next() {
sn := service.(*structs.ServiceNode)
if !sn.ServiceConnect.Native {
hasNonConnectInstance = true
break
}
}
return hasConnectInstance, hasNonConnectInstance, nil
}
// serviceHasConnectEnabledInstances returns whether the given service name
// has a corresponding connect-proxy or connect-native instance.
// This function is mostly a clone of `serviceHasConnectInstances`, but it has
// an early return to improve performance and returns true if at least one
// connect-native instance exists.
func serviceHasConnectEnabledInstances(tx WriteTxn, serviceName string, entMeta *acl.EnterpriseMeta) (bool, error) {
query := Query{
Value: serviceName,
EnterpriseMeta: *entMeta,
}
svc, err := tx.First(tableServices, indexConnect, query)
if err != nil {
return false, fmt.Errorf("failed service lookup: %w", err)
}
if svc != nil {
return true, nil
}
return false, nil
}
// updateGatewayService associates services with gateways after an eligible event
// ie. Registering a service in a namespace targeted by a gateway
func updateGatewayService(tx WriteTxn, idx uint64, mapping *structs.GatewayService) error {
// Check if mapping already exists in table if it's already in the table
// Avoid insert if nothing changed
existing, err := tx.First(tableGatewayServices, indexID, mapping.Gateway, mapping.Service, mapping.Port)
if err != nil {
return fmt.Errorf("gateway service lookup failed: %s", err)
}
if gs, ok := existing.(*structs.GatewayService); ok && gs != nil {
mapping.CreateIndex = gs.CreateIndex
if gs.IsSame(mapping) {
return nil
}
} else {
// We have a new mapping
mapping.CreateIndex = idx
}
mapping.ModifyIndex = idx
if err := tx.Insert(tableGatewayServices, mapping); err != nil {
return fmt.Errorf("failed inserting gateway service mapping: %s", err)
}
if err := indexUpdateMaxTxn(tx, idx, tableGatewayServices); err != nil {
return fmt.Errorf("failed updating gateway-services index: %v", err)
}
if err := insertGatewayServiceTopologyMapping(tx, idx, mapping); err != nil {
return fmt.Errorf("failed to reconcile mesh topology for gateway: %v", err)
}
return nil
}
// checkWildcardForGatewaysAndUpdate checks whether a service matches a
// wildcard definition in gateway config entries and if so adds it the the
// gateway-services table.
func checkGatewayWildcardsAndUpdate(tx WriteTxn, idx uint64, svc *structs.ServiceName, ns *structs.NodeService, kind structs.GatewayServiceKind) error {
sn := structs.ServiceName{Name: structs.WildcardSpecifier, EnterpriseMeta: svc.EnterpriseMeta}
svcGateways, err := tx.Get(tableGatewayServices, indexService, sn)
if err != nil {
return fmt.Errorf("failed gateway lookup for %q: %s", svc.Name, err)
}
hasConnectInstance, hasNonConnectInstance, err := serviceHasConnectInstances(tx, svc.Name, &svc.EnterpriseMeta)
if err != nil {
return err
}
// If we were passed a NodeService, this might be the first registered instance of the service
// so we need to count it as either a connect or non-connect instance.
if ns != nil {
if ns.Connect.Native || ns.Kind == structs.ServiceKindConnectProxy {
hasConnectInstance = true
} else {
hasNonConnectInstance = true
}
}
for service := svcGateways.Next(); service != nil; service = svcGateways.Next() {
if wildcardSvc, ok := service.(*structs.GatewayService); ok && wildcardSvc != nil {
if wildcardSvc.GatewayKind == structs.ServiceKindIngressGateway && !hasConnectInstance {
continue
}
if wildcardSvc.GatewayKind == structs.ServiceKindTerminatingGateway && !hasNonConnectInstance && kind != structs.GatewayServiceKindDestination {
continue
}
// Copy the wildcard mapping and modify it
gatewaySvc := wildcardSvc.Clone()
gatewaySvc.Service = structs.NewServiceName(svc.Name, &svc.EnterpriseMeta)
gatewaySvc.FromWildcard = true
gatewaySvc.ServiceKind = kind
if err = updateGatewayService(tx, idx, gatewaySvc); err != nil {
return fmt.Errorf("Failed to associate service %q with gateway %q", gatewaySvc.Service.String(), gatewaySvc.Gateway.String())
}
}
}
return nil
}
// checkGatewayAndUpdate checks whether a service matches a
// wildcard definition in gateway config entries and if so adds it the the
// gateway-services table.
func checkGatewayAndUpdate(tx WriteTxn, idx uint64, svc *structs.ServiceName, kind structs.GatewayServiceKind) error {
sn := structs.ServiceName{Name: svc.Name, EnterpriseMeta: svc.EnterpriseMeta}
svcGateways, err := tx.First(tableGatewayServices, indexService, sn)
if err != nil {
return fmt.Errorf("failed gateway lookup for %q: %s", svc.Name, err)
}
if service, ok := svcGateways.(*structs.GatewayService); ok && service != nil {
// Copy the wildcard mapping and modify it
gatewaySvc := service.Clone()
gatewaySvc.Service = structs.NewServiceName(svc.Name, &svc.EnterpriseMeta)
gatewaySvc.ServiceKind = kind
if err = updateGatewayService(tx, idx, gatewaySvc); err != nil {
return fmt.Errorf("Failed to associate service %q with gateway %q", gatewaySvc.Service.String(), gatewaySvc.Gateway.String())
}
}
return nil
}
func cleanupGatewayWildcards(tx WriteTxn, idx uint64, sn structs.ServiceName, cleaningUpDestination bool) error {
// Clean up association between service name and gateways if needed
gateways, err := tx.Get(tableGatewayServices, indexService, sn)
if err != nil {
return fmt.Errorf("failed gateway lookup for %q: %s", sn.Name, err)
}
mappings := make([]*structs.GatewayService, 0)
for mapping := gateways.Next(); mapping != nil; mapping = gateways.Next() {
if gs, ok := mapping.(*structs.GatewayService); ok && gs != nil {
mappings = append(mappings, gs)
}
}
// Check whether there are any connect or non-connect instances remaining for this service.
// If there are no connect instances left, ingress gateways with a wildcard entry can remove
// their association with it (same with terminating gateways if there are no non-connect
// instances left).
hasConnectInstance, hasNonConnectInstance, err := serviceHasConnectInstances(tx, sn.Name, &sn.EnterpriseMeta)
if err != nil {
return err
}
// If we're deleting a service instance but this service is defined as a destination via config entry,
// keep the mapping around.
hasDestination := false
if !cleaningUpDestination {
q := configentry.NewKindName(structs.ServiceDefaults, sn.Name, &sn.EnterpriseMeta)
existing, err := tx.First(tableConfigEntries, indexID, q)
if err != nil {
return fmt.Errorf("failed config entry lookup: %s", err)
}
if existing != nil {
if entry, ok := existing.(*structs.ServiceConfigEntry); ok && entry.Destination != nil {
hasDestination = true
}
}
}
// Do the updates in a separate loop so we don't trash the iterator.
for _, m := range mappings {
// Only delete if association was created by a wildcard specifier.
// Otherwise the service was specified in the config entry, and the association should be maintained
// for when the service is re-registered
if m.FromWildcard {
if m.GatewayKind == structs.ServiceKindIngressGateway && hasConnectInstance {
continue
}
if m.GatewayKind == structs.ServiceKindTerminatingGateway && (hasNonConnectInstance || hasDestination) {
continue
}
if err := tx.Delete(tableGatewayServices, m); err != nil {
return fmt.Errorf("failed to truncate gateway services table: %v", err)
}
if err := indexUpdateMaxTxn(tx, idx, tableGatewayServices); err != nil {
return fmt.Errorf("failed updating gateway-services index: %v", err)
}
if err := deleteGatewayServiceTopologyMapping(tx, idx, m); err != nil {
return fmt.Errorf("failed to reconcile mesh topology for gateway: %v", err)
}
} else {
kind, err := GatewayServiceKind(tx, m.Service.Name, &m.Service.EnterpriseMeta)
if err != nil {
return fmt.Errorf("failed to get gateway service kind for service %s: %v", sn.Name, err)
}
checkGatewayAndUpdate(tx, idx, &structs.ServiceName{Name: m.Service.Name, EnterpriseMeta: m.Service.EnterpriseMeta}, kind)
}
}
return nil
}
func (s *Store) DumpGatewayServices(ws memdb.WatchSet) (uint64, structs.GatewayServices, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
iter, err := tx.Get(tableGatewayServices, indexID)
if err != nil {
return 0, nil, fmt.Errorf("failed to dump gateway-services: %s", err)
}
ws.Add(iter.WatchCh())
maxIdx, results, err := s.collectGatewayServices(tx, ws, iter)
if err != nil {
return 0, nil, err
}
idx := maxIndexTxn(tx, tableGatewayServices)
return lib.MaxUint64(maxIdx, idx), results, nil
}
func (s *Store) collectGatewayServices(tx ReadTxn, ws memdb.WatchSet, iter memdb.ResultIterator) (uint64, structs.GatewayServices, error) {
var maxIdx uint64
var results structs.GatewayServices
for obj := iter.Next(); obj != nil; obj = iter.Next() {
gs := obj.(*structs.GatewayService)
maxIdx = lib.MaxUint64(maxIdx, gs.ModifyIndex)
if gs.Service.Name != structs.WildcardSpecifier {
idx, matches, err := checkProtocolMatch(tx, ws, gs)
if err != nil {
return 0, nil, fmt.Errorf("failed checking protocol: %s", err)
}
maxIdx = lib.MaxUint64(maxIdx, idx)
if matches {
results = append(results, gs)
}
}
}
return maxIdx, results, nil
}
// TODO: How to handle index rolling back when a config entry is
// deleted that references a service?
// We might need something like the service_last_extinction index?
func serviceGatewayNodes(tx ReadTxn, ws memdb.WatchSet, service string, kind structs.ServiceKind, entMeta *acl.EnterpriseMeta, peerName string) (uint64, structs.ServiceNodes, error) {
if peerName != "" {
return 0, nil, nil
}
// Look up gateway name associated with the service
gws, err := tx.Get(tableGatewayServices, indexService, structs.NewServiceName(service, entMeta))
if err != nil {
return 0, nil, fmt.Errorf("failed gateway lookup: %s", err)
}
// Adding this channel to the WatchSet means that the watch will fire if a config entry targeting the service is added.
// Otherwise, if there's no associated gateway, then no watch channel would be returned
ws.Add(gws.WatchCh())
var ret structs.ServiceNodes
var maxIdx uint64
for gateway := gws.Next(); gateway != nil; gateway = gws.Next() {
mapping := gateway.(*structs.GatewayService)
// TODO(ingress): Test this conditional
if mapping.GatewayKind != kind {
continue
}
maxIdx = lib.MaxUint64(maxIdx, mapping.ModifyIndex)
// Look up nodes for gateway
q := Query{
Value: mapping.Gateway.Name,
EnterpriseMeta: mapping.Gateway.EnterpriseMeta,
}
gwServices, err := tx.Get(tableServices, indexService, q)
if err != nil {
return 0, nil, fmt.Errorf("failed service lookup: %s", err)
}
var exists bool
for svc := gwServices.Next(); svc != nil; svc = gwServices.Next() {
sn := svc.(*structs.ServiceNode)
ret = append(ret, sn)
// Tracking existence to know whether we should check extinction index for service
exists = true
}
// This prevents the index from sliding back if case all instances of the gateway service are deregistered
svcIdx := maxIndexForService(tx, mapping.Gateway.Name, exists, false, &mapping.Gateway.EnterpriseMeta, structs.DefaultPeerKeyword)
maxIdx = lib.MaxUint64(maxIdx, svcIdx)
// Ensure that blocking queries wake up if the gateway-service mapping exists, but the gateway does not exist yet
if !exists {
ws.Add(gwServices.WatchCh())
}
}
return maxIdx, ret, nil
}
// metricsProtocolForIngressGateway determines the protocol that should be used when fetching metrics for an ingress gateway
// Since ingress gateways may have listeners with different protocols, favor capturing all traffic by only returning HTTP
// when all listeners are HTTP-like.
func metricsProtocolForIngressGateway(tx ReadTxn, ws memdb.WatchSet, sn structs.ServiceName) (uint64, string, error) {
idx, conf, err := configEntryTxn(tx, ws, structs.IngressGateway, sn.Name, &sn.EnterpriseMeta)
if err != nil {
return 0, "", fmt.Errorf("failed to get ingress-gateway config entry for %q: %v", sn.String(), err)
}
if conf == nil {
return 0, "", nil
}
entry, ok := conf.(*structs.IngressGatewayConfigEntry)
if !ok {
return 0, "", fmt.Errorf("unexpected config entry type: %T", conf)
}
counts := make(map[string]int)
for _, l := range entry.Listeners {
if structs.IsProtocolHTTPLike(l.Protocol) {
counts["http"] += 1
} else {
counts["tcp"] += 1
}
}
protocol := "tcp"
if counts["tcp"] == 0 && counts["http"] > 0 {
protocol = "http"
}
return idx, protocol, nil
}
// checkProtocolMatch filters out any GatewayService entries added from a wildcard with a protocol
// that doesn't match the one configured in their discovery chain.
func checkProtocolMatch(tx ReadTxn, ws memdb.WatchSet, svc *structs.GatewayService) (uint64, bool, error) {
if svc.GatewayKind != structs.ServiceKindIngressGateway || !svc.FromWildcard {
return 0, true, nil
}
idx, protocol, err := protocolForService(tx, ws, svc.Service)
if err != nil {
return 0, false, err
}
return idx, svc.Protocol == protocol, nil
}
// TODO(freddy) Split this up. The upstream/downstream logic is very similar.
// TODO(freddy) Add comprehensive state store test
func (s *Store) ServiceTopology(
ws memdb.WatchSet,
dc, service string,
kind structs.ServiceKind,
defaultAllow acl.EnforcementDecision,
entMeta *acl.EnterpriseMeta,
) (uint64, *structs.ServiceTopology, error) {
tx := s.db.ReadTxn()
defer tx.Abort()
sn := structs.NewServiceName(service, entMeta)
var (
maxIdx uint64
protocol string
err error
fullyTransparent bool
hasTransparent bool
connectNative bool
)
switch kind {
case structs.ServiceKindIngressGateway:
maxIdx, protocol, err = metricsProtocolForIngressGateway(tx, ws, sn)
if err != nil {
return 0, nil, fmt.Errorf("failed to fetch protocol for service %s: %v", sn.String(), err)
}
case structs.ServiceKindTypical:
maxIdx, protocol, err = protocolForService(tx, ws, sn)
if err != nil {
return 0, nil, fmt.Errorf("failed to fetch protocol for service %s: %v", sn.String(), err)
}
// Fetch connect endpoints for the target service in order to learn if its proxies are configured as
// transparent proxies.
if entMeta == nil {
entMeta = structs.DefaultEnterpriseMetaInDefaultPartition()
}
q := Query{
Value: service,
EnterpriseMeta: *entMeta,
PeerName: structs.TODOPeerKeyword,
}
idx, proxies, err := serviceNodesTxn(tx, ws, indexConnect, q)
if err != nil {
return 0, nil, fmt.Errorf("failed to fetch connect endpoints for service %s: %v", sn.String(), err)
}
if idx > maxIdx {
maxIdx = idx
}
if len(proxies) == 0 {
break
}
fullyTransparent = true
for _, proxy := range proxies {
switch proxy.ServiceProxy.Mode {
case structs.ProxyModeTransparent:
hasTransparent = true
default:
// Only consider the target proxy to be transparent when all instances are in that mode.
// This is done because the flag is used to display warnings about proxies needing to enable
// transparent proxy mode. If ANY instance isn't in the right mode then the warming applies.
fullyTransparent = false
}
if proxy.ServiceConnect.Native {
connectNative = true
}
}
default:
return 0, nil, fmt.Errorf("unsupported kind %q", kind)
}
idx, upstreamNames, err := upstreamsFromRegistrationTxn(tx, ws, sn)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
var upstreamSources = make(map[string]string)
for _, un := range upstreamNames {
upstreamSources[un.String()] = structs.TopologySourceRegistration
}
upstreamDecisions := make(map[string]structs.IntentionDecisionSummary)
// Only transparent proxies / connect native services have upstreams from intentions
if hasTransparent || connectNative {
idx, intentionUpstreams, err := s.intentionTopologyTxn(tx, ws, sn, false, defaultAllow, structs.IntentionTargetService)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
for _, svc := range intentionUpstreams {
if _, ok := upstreamSources[svc.Name.String()]; ok {
// Avoid duplicating entry
continue
}
upstreamDecisions[svc.Name.String()] = svc.Decision
upstreamNames = append(upstreamNames, svc.Name)
var source string
switch {
case svc.Decision.HasExact:
source = structs.TopologySourceSpecificIntention
case svc.Decision.DefaultAllow:
source = structs.TopologySourceDefaultAllow
default:
source = structs.TopologySourceWildcardIntention
}
upstreamSources[svc.Name.String()] = source
}
}
matchEntry := structs.IntentionMatchEntry{
Namespace: entMeta.NamespaceOrDefault(),
Partition: entMeta.PartitionOrDefault(),
Name: service,
}
_, srcIntentions, err := compatIntentionMatchOneTxn(tx, ws, matchEntry, structs.IntentionMatchSource, structs.IntentionTargetService)
if err != nil {
return 0, nil, fmt.Errorf("failed to query intentions for %s", sn.String())
}
for _, un := range upstreamNames {
opts := IntentionDecisionOpts{
Target: un.Name,
Namespace: un.NamespaceOrDefault(),
Partition: un.PartitionOrDefault(),
Intentions: srcIntentions,
MatchType: structs.IntentionMatchDestination,
DefaultDecision: defaultAllow,
AllowPermissions: false,
}
decision, err := s.IntentionDecision(opts)
if err != nil {
return 0, nil, fmt.Errorf("failed to get intention decision from (%s) to (%s): %v",
sn.String(), un.String(), err)
}
upstreamDecisions[un.String()] = decision
}
idx, unfilteredUpstreams, err := s.combinedServiceNodesTxn(tx, ws, upstreamNames, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, fmt.Errorf("failed to get upstreams for %q: %v", sn.String(), err)
}
if idx > maxIdx {
maxIdx = idx
}
var upstreams structs.CheckServiceNodes
for _, upstream := range unfilteredUpstreams {
sn := upstream.Service.CompoundServiceName()
if upstream.Service.Kind == structs.ServiceKindConnectProxy {
sn = structs.NewServiceName(upstream.Service.Proxy.DestinationServiceName, &upstream.Service.EnterpriseMeta)
}
// Avoid returning upstreams from intentions when none of the proxy instances of the target are in transparent mode or connect native.
if !hasTransparent && !connectNative && upstreamSources[sn.String()] != structs.TopologySourceRegistration {
continue
}
upstreams = append(upstreams, upstream)
}
var foundUpstreams = make(map[structs.ServiceName]struct{})
for _, csn := range upstreams {
foundUpstreams[csn.Service.CompoundServiceName()] = struct{}{}
}
// Check upstream names that had no service instances to see if they are routing config.
for _, un := range upstreamNames {
if _, ok := foundUpstreams[un]; ok {
continue
}
for _, kind := range serviceGraphKinds {
idx, entry, err := configEntryTxn(tx, ws, kind, un.Name, &un.EnterpriseMeta)
if err != nil {
return 0, nil, err
}
if entry != nil {
upstreamSources[un.String()] = structs.TopologySourceRoutingConfig
}
if idx > maxIdx {
maxIdx = idx
}
}
}
idx, downstreamNames, err := s.downstreamsForServiceTxn(tx, ws, dc, sn)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
var downstreamSources = make(map[string]string)
for _, dn := range downstreamNames {
downstreamSources[dn.String()] = structs.TopologySourceRegistration
}
idx, intentionDownstreams, err := s.intentionTopologyTxn(tx, ws, sn, true, defaultAllow, structs.IntentionTargetService)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
downstreamDecisions := make(map[string]structs.IntentionDecisionSummary)
for _, svc := range intentionDownstreams {
if _, ok := downstreamSources[svc.Name.String()]; ok {
// Avoid duplicating entry
continue
}
downstreamNames = append(downstreamNames, svc.Name)
downstreamDecisions[svc.Name.String()] = svc.Decision
var source string
switch {
case svc.Decision.HasExact:
source = structs.TopologySourceSpecificIntention
case svc.Decision.DefaultAllow:
source = structs.TopologySourceDefaultAllow
default:
source = structs.TopologySourceWildcardIntention
}
downstreamSources[svc.Name.String()] = source
}
_, dstIntentions, err := compatIntentionMatchOneTxn(tx, ws, matchEntry, structs.IntentionMatchDestination, structs.IntentionTargetService)
if err != nil {
return 0, nil, fmt.Errorf("failed to query intentions for %s", sn.String())
}
for _, dn := range downstreamNames {
opts := IntentionDecisionOpts{
Target: dn.Name,
Namespace: dn.NamespaceOrDefault(),
Partition: dn.PartitionOrDefault(),
Intentions: dstIntentions,
MatchType: structs.IntentionMatchSource,
DefaultDecision: defaultAllow,
AllowPermissions: false,
}
decision, err := s.IntentionDecision(opts)
if err != nil {
return 0, nil, fmt.Errorf("failed to get intention decision from (%s) to (%s): %v",
dn.String(), sn.String(), err)
}
downstreamDecisions[dn.String()] = decision
}
idx, unfilteredDownstreams, err := s.combinedServiceNodesTxn(tx, ws, downstreamNames, structs.DefaultPeerKeyword)
if err != nil {
return 0, nil, fmt.Errorf("failed to get downstreams for %q: %v", sn.String(), err)
}
if idx > maxIdx {
maxIdx = idx
}
// Store downstreams with at least one instance in transparent proxy mode.
// This is to avoid returning downstreams from intentions when none of the downstreams are transparent proxies.
tproxyMap := make(map[structs.ServiceName]struct{})
for _, downstream := range unfilteredDownstreams {
if downstream.Service.Proxy.Mode == structs.ProxyModeTransparent {
sn := structs.NewServiceName(downstream.Service.Proxy.DestinationServiceName, &downstream.Service.EnterpriseMeta)
tproxyMap[sn] = struct{}{}
}
}
var downstreams structs.CheckServiceNodes
for _, downstream := range unfilteredDownstreams {
sn := downstream.Service.CompoundServiceName()
if downstream.Service.Kind == structs.ServiceKindConnectProxy {
sn = structs.NewServiceName(downstream.Service.Proxy.DestinationServiceName, &downstream.Service.EnterpriseMeta)
}
if _, ok := tproxyMap[sn]; !ok && !downstream.Service.Connect.Native && downstreamSources[sn.String()] != structs.TopologySourceRegistration {
// If downstream is not a transparent proxy or connect native, remove references
delete(downstreamSources, sn.String())
delete(downstreamDecisions, sn.String())
continue
}
downstreams = append(downstreams, downstream)
}
resp := &structs.ServiceTopology{
TransparentProxy: fullyTransparent,
MetricsProtocol: protocol,
Upstreams: upstreams,
Downstreams: downstreams,
UpstreamDecisions: upstreamDecisions,
DownstreamDecisions: downstreamDecisions,
UpstreamSources: upstreamSources,
DownstreamSources: downstreamSources,
}
return maxIdx, resp, nil
}
// combinedServiceNodesTxn returns typical and connect endpoints for a list of services.
// This enabled aggregating checks statuses across both.
func (s *Store) combinedServiceNodesTxn(tx ReadTxn, ws memdb.WatchSet, names []structs.ServiceName, peerName string) (uint64, structs.CheckServiceNodes, error) {
var (
maxIdx uint64
resp structs.CheckServiceNodes
)
for _, u := range names {
// Collect typical then connect instances
idx, csn, err := checkServiceNodesTxn(tx, ws, u.Name, false, &u.EnterpriseMeta, peerName)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
resp = append(resp, csn...)
idx, csn, err = checkServiceNodesTxn(tx, ws, u.Name, true, &u.EnterpriseMeta, peerName)
if err != nil {
return 0, nil, err
}
if idx > maxIdx {
maxIdx = idx
}
resp = append(resp, csn...)
}
return maxIdx, resp, nil
}
// downstreamsForServiceTxn will find all downstream services that could route traffic to the input service.
// There are two factors at play. Upstreams defined in a proxy registration, and the discovery chain for those upstreams.
func (s *Store) downstreamsForServiceTxn(tx ReadTxn, ws memdb.WatchSet, dc string, service structs.ServiceName) (uint64, []structs.ServiceName, error) {
// First fetch services that have discovery chains that eventually route to the target service
idx, sources, err := s.discoveryChainSourcesTxn(tx, ws, dc, service)
if err != nil {
return 0, nil, fmt.Errorf("failed to get sources for discovery chain target %q: %v", service.String(), err)
}
var maxIdx uint64
if idx > maxIdx {
maxIdx = idx
}
var (
resp []structs.ServiceName
seen = make(map[structs.ServiceName]bool)
)
for _, s := range sources {
// We then follow these sources one level down to the services defining them as an upstream.
idx, downstreams, err := downstreamsFromRegistrationTxn(tx, ws, s)
if err != nil {
return 0, nil, fmt.Errorf("failed to get registration downstreams for %q: %v", s.String(), err)
}
if idx > maxIdx {
maxIdx = idx
}
for _, d := range downstreams {
if !seen[d] {
resp = append(resp, d)
seen[d] = true
}
}
}
return maxIdx, resp, nil
}
// upstreamsFromRegistrationTxn returns the ServiceNames of the upstreams defined across instances of the input
func upstreamsFromRegistrationTxn(tx ReadTxn, ws memdb.WatchSet, sn structs.ServiceName) (uint64, []structs.ServiceName, error) {
return linkedFromRegistrationTxn(tx, ws, sn, false)
}
// downstreamsFromRegistrationTxn returns the ServiceNames of downstream services based on registrations across instances of the input
func downstreamsFromRegistrationTxn(tx ReadTxn, ws memdb.WatchSet, sn structs.ServiceName) (uint64, []structs.ServiceName, error) {
return linkedFromRegistrationTxn(tx, ws, sn, true)
}
func linkedFromRegistrationTxn(tx ReadTxn, ws memdb.WatchSet, service structs.ServiceName, downstreams bool) (uint64, []structs.ServiceName, error) {
// To fetch upstreams we query services that have the input listed as a downstream
// To fetch downstreams we query services that have the input listed as an upstream
index := indexDownstream
if downstreams {
index = indexUpstream
}
iter, err := tx.Get(tableMeshTopology, index, service)
if err != nil {
return 0, nil, fmt.Errorf("%q lookup failed: %v", tableMeshTopology, err)
}
ws.Add(iter.WatchCh())
var (
idx uint64
resp []structs.ServiceName
)
for raw := iter.Next(); raw != nil; raw = iter.Next() {
entry := raw.(*upstreamDownstream)
if entry.ModifyIndex > idx {
idx = entry.ModifyIndex
}
linked := entry.Upstream
if downstreams {
linked = entry.Downstream
}
resp = append(resp, linked)
}
// TODO (freddy) This needs a tombstone to avoid the index sliding back on mapping deletion
// Using the table index here means that blocking queries will wake up more often than they should
tableIdx := maxIndexTxn(tx, tableMeshTopology)
if tableIdx > idx {
idx = tableIdx
}
return idx, resp, nil
}
// updateMeshTopology creates associations between the input service and its upstreams in the topology table
func updateMeshTopology(tx WriteTxn, idx uint64, node string, svc *structs.NodeService, existing interface{}) error {
// TODO(peering): make this peering aware
oldUpstreams := make(map[structs.ServiceName]bool)
if e, ok := existing.(*structs.ServiceNode); ok {
for _, u := range e.ServiceProxy.Upstreams {
upstreamMeta := acl.NewEnterpriseMetaWithPartition(e.PartitionOrDefault(), u.DestinationNamespace)
sn := structs.NewServiceName(u.DestinationName, &upstreamMeta)
oldUpstreams[sn] = true
}
}
// Despite the name "destination", this service name is downstream of the proxy
downstream := structs.NewServiceName(svc.Proxy.DestinationServiceName, &svc.EnterpriseMeta)
inserted := make(map[structs.ServiceName]bool)
for _, u := range svc.Proxy.Upstreams {
if u.DestinationType == structs.UpstreamDestTypePreparedQuery {
continue
}
// TODO (freddy): Account for upstream datacenter
upstreamMeta := acl.NewEnterpriseMetaWithPartition(svc.PartitionOrDefault(), u.DestinationNamespace)
upstream := structs.NewServiceName(u.DestinationName, &upstreamMeta)
obj, err := tx.First(tableMeshTopology, indexID, upstream, downstream)
if err != nil {
return fmt.Errorf("%q lookup failed: %v", tableMeshTopology, err)
}
sid := svc.CompoundServiceID()
uid := structs.UniqueID(node, sid.String())
var mapping *upstreamDownstream
if existing, ok := obj.(*upstreamDownstream); ok {
mapping := existing.DeepCopy()
mapping.Refs[uid] = struct{}{}
mapping.ModifyIndex = idx
inserted[upstream] = true
}
if mapping == nil {
mapping = &upstreamDownstream{
Upstream: upstream,
Downstream: downstream,
Refs: map[string]struct{}{uid: {}},
RaftIndex: structs.RaftIndex{
CreateIndex: idx,
ModifyIndex: idx,
},
}
}
if err := tx.Insert(tableMeshTopology, mapping); err != nil {
return fmt.Errorf("failed inserting %s mapping: %s", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
inserted[upstream] = true
}
for u := range oldUpstreams {
if !inserted[u] {
if _, err := tx.DeleteAll(tableMeshTopology, indexID, u, downstream); err != nil {
return fmt.Errorf("failed to truncate %s table: %v", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
}
}
return nil
}
// cleanupMeshTopology removes a service from the mesh topology table
// This is only safe to call when there are no more known instances of this proxy
func cleanupMeshTopology(tx WriteTxn, idx uint64, service *structs.ServiceNode) error {
if service.PeerName != "" {
return nil
}
if service.ServiceKind != structs.ServiceKindConnectProxy {
return nil
}
sn := structs.NewServiceName(service.ServiceProxy.DestinationServiceName, &service.EnterpriseMeta)
sid := service.CompoundServiceID()
uid := structs.UniqueID(service.Node, sid.String())
iter, err := tx.Get(tableMeshTopology, indexDownstream, sn)
if err != nil {
return fmt.Errorf("%q lookup failed: %v", tableMeshTopology, err)
}
mappings := make([]*upstreamDownstream, 0)
for raw := iter.Next(); raw != nil; raw = iter.Next() {
mappings = append(mappings, raw.(*upstreamDownstream))
}
// Do the updates in a separate loop so we don't trash the iterator.
for _, m := range mappings {
copy := m.DeepCopy()
// Bail early if there's no reference to the proxy ID we're deleting
if _, ok := copy.Refs[uid]; !ok {
continue
}
delete(copy.Refs, uid)
if len(copy.Refs) == 0 {
if err := tx.Delete(tableMeshTopology, m); err != nil {
return fmt.Errorf("failed to truncate %s table: %v", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
continue
}
if err := tx.Insert(tableMeshTopology, copy); err != nil {
return fmt.Errorf("failed inserting %s mapping: %s", tableMeshTopology, err)
}
}
return nil
}
func insertGatewayServiceTopologyMapping(tx WriteTxn, idx uint64, gs *structs.GatewayService) error {
// Only ingress gateways are standalone items in the mesh topology viz
if gs.GatewayKind != structs.ServiceKindIngressGateway || gs.Service.Name == structs.WildcardSpecifier {
return nil
}
mapping := upstreamDownstream{
Upstream: gs.Service,
Downstream: gs.Gateway,
Refs: make(map[string]struct{}),
RaftIndex: gs.RaftIndex,
}
if err := tx.Insert(tableMeshTopology, &mapping); err != nil {
return fmt.Errorf("failed inserting %s mapping: %s", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
return nil
}
func deleteGatewayServiceTopologyMapping(tx WriteTxn, idx uint64, gs *structs.GatewayService) error {
// Only ingress gateways are standalone items in the mesh topology viz
if gs.GatewayKind != structs.ServiceKindIngressGateway {
return nil
}
if _, err := tx.DeleteAll(tableMeshTopology, indexID, gs.Service, gs.Gateway); err != nil {
return fmt.Errorf("failed to truncate %s table: %v", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
return nil
}
func truncateGatewayServiceTopologyMappings(tx WriteTxn, idx uint64, gateway structs.ServiceName, kind string) error {
// Only ingress gateways are standalone items in the mesh topology viz
if kind != string(structs.ServiceKindIngressGateway) {
return nil
}
if _, err := tx.DeleteAll(tableMeshTopology, indexDownstream, gateway); err != nil {
return fmt.Errorf("failed to truncate %s table: %v", tableMeshTopology, err)
}
if err := indexUpdateMaxTxn(tx, idx, tableMeshTopology); err != nil {
return fmt.Errorf("failed updating %s index: %v", tableMeshTopology, err)
}
return nil
}
func upsertKindServiceName(tx WriteTxn, idx uint64, kind structs.ServiceKind, name structs.ServiceName) error {
// TODO(peering): make this peering aware
q := KindServiceNameQuery{Name: name.Name, Kind: kind, EnterpriseMeta: name.EnterpriseMeta}
existing, err := tx.First(tableKindServiceNames, indexID, q)
if err != nil {
return err
}
// Service name is already known. Nothing to do.
if existing != nil {
return nil
}
ksn := KindServiceName{
Kind: kind,
Service: name,
RaftIndex: structs.RaftIndex{
CreateIndex: idx,
ModifyIndex: idx,
},
}
if err := tx.Insert(tableKindServiceNames, &ksn); err != nil {
return fmt.Errorf("failed inserting %s/%s into %s: %s", kind, name.String(), tableKindServiceNames, err)
}
return updateKindServiceNamesIndex(tx, idx, kind, name.EnterpriseMeta)
}
func cleanupKindServiceName(tx WriteTxn, idx uint64, name structs.ServiceName, kind structs.ServiceKind) error {
q := KindServiceNameQuery{Name: name.Name, Kind: kind, EnterpriseMeta: name.EnterpriseMeta}
if _, err := tx.DeleteAll(tableKindServiceNames, indexID, q); err != nil {
return fmt.Errorf("failed to delete %s from %s: %s", name, tableKindServiceNames, err)
}
return updateKindServiceNamesIndex(tx, idx, kind, name.EnterpriseMeta)
}
// CatalogDump returns all the contents of the node, service and check tables.
// In Enterprise, this will return entries across all partitions and namespaces.
// TODO(peering) make this peering aware?
func (s *Store) CatalogDump() (*structs.CatalogContents, error) {
tx := s.db.Txn(false)
contents := &structs.CatalogContents{}
nodes, err := tx.Get(tableNodes, indexID)
if err != nil {
return nil, fmt.Errorf("failed nodes lookup: %s", err)
}
for node := nodes.Next(); node != nil; node = nodes.Next() {
n := node.(*structs.Node)
contents.Nodes = append(contents.Nodes, n)
}
services, err := tx.Get(tableServices, indexID)
if err != nil {
return nil, fmt.Errorf("failed services lookup: %s", err)
}
for service := services.Next(); service != nil; service = services.Next() {
svc := service.(*structs.ServiceNode)
contents.Services = append(contents.Services, svc)
}
checks, err := tx.Get(tableChecks, indexID)
if err != nil {
return nil, fmt.Errorf("failed checks lookup: %s", err)
}
for check := checks.Next(); check != nil; check = checks.Next() {
c := check.(*structs.HealthCheck)
contents.Checks = append(contents.Checks, c)
}
return contents, nil
}