open-consul/agent/consul/leader.go

1436 lines
44 KiB
Go

package consul
import (
"context"
"fmt"
"net"
"reflect"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
"github.com/armon/go-metrics/prometheus"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-uuid"
"github.com/hashicorp/go-version"
"github.com/hashicorp/raft"
"github.com/hashicorp/serf/serf"
"golang.org/x/time/rate"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/metadata"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/logging"
"github.com/hashicorp/consul/types"
)
var LeaderSummaries = []prometheus.SummaryDefinition{
{
Name: []string{"leader", "barrier"},
Help: "Measures the time spent waiting for the raft barrier upon gaining leadership.",
},
{
Name: []string{"leader", "reconcileMember"},
Help: "Measures the time spent updating the raft store for a single serf member's information.",
},
{
Name: []string{"leader", "reapTombstones"},
Help: "Measures the time spent clearing tombstones.",
},
}
const (
newLeaderEvent = "consul:new-leader"
barrierWriteTimeout = 2 * time.Minute
)
var (
// caRootPruneInterval is how often we check for stale CARoots to remove.
caRootPruneInterval = time.Hour
// minCentralizedConfigVersion is the minimum Consul version in which centralized
// config is supported
minCentralizedConfigVersion = version.Must(version.NewVersion("1.5.0"))
)
// monitorLeadership is used to monitor if we acquire or lose our role
// as the leader in the Raft cluster. There is some work the leader is
// expected to do, so we must react to changes
func (s *Server) monitorLeadership() {
// We use the notify channel we configured Raft with, NOT Raft's
// leaderCh, which is only notified best-effort. Doing this ensures
// that we get all notifications in order, which is required for
// cleanup and to ensure we never run multiple leader loops.
raftNotifyCh := s.raftNotifyCh
var weAreLeaderCh chan struct{}
var leaderLoop sync.WaitGroup
for {
select {
case isLeader := <-raftNotifyCh:
switch {
case isLeader:
if weAreLeaderCh != nil {
s.logger.Error("attempted to start the leader loop while running")
continue
}
weAreLeaderCh = make(chan struct{})
leaderLoop.Add(1)
go func(ch chan struct{}) {
defer leaderLoop.Done()
s.leaderLoop(ch)
}(weAreLeaderCh)
s.logger.Info("cluster leadership acquired")
default:
if weAreLeaderCh == nil {
s.logger.Error("attempted to stop the leader loop while not running")
continue
}
s.logger.Debug("shutting down leader loop")
close(weAreLeaderCh)
leaderLoop.Wait()
weAreLeaderCh = nil
s.logger.Info("cluster leadership lost")
}
case <-s.shutdownCh:
return
}
}
}
func (s *Server) leadershipTransfer() error {
retryCount := 3
for i := 0; i < retryCount; i++ {
future := s.raft.LeadershipTransfer()
if err := future.Error(); err != nil {
s.logger.Error("failed to transfer leadership attempt, will retry",
"attempt", i,
"retry_limit", retryCount,
"error", err,
)
} else {
s.logger.Info("successfully transferred leadership",
"attempt", i,
"retry_limit", retryCount,
)
return nil
}
}
return fmt.Errorf("failed to transfer leadership in %d attempts", retryCount)
}
// leaderLoop runs as long as we are the leader to run various
// maintenance activities
func (s *Server) leaderLoop(stopCh chan struct{}) {
stopCtx := &lib.StopChannelContext{StopCh: stopCh}
// Fire a user event indicating a new leader
payload := []byte(s.config.NodeName)
for name, segment := range s.LANSegments() {
if err := segment.UserEvent(newLeaderEvent, payload, false); err != nil {
s.logger.Warn("failed to broadcast new leader event on segment",
"segment", name,
"error", err,
)
}
}
// Reconcile channel is only used once initial reconcile
// has succeeded
var reconcileCh chan serf.Member
establishedLeader := false
RECONCILE:
// Setup a reconciliation timer
reconcileCh = nil
interval := time.After(s.config.ReconcileInterval)
// Apply a raft barrier to ensure our FSM is caught up
start := time.Now()
barrier := s.raft.Barrier(barrierWriteTimeout)
if err := barrier.Error(); err != nil {
s.logger.Error("failed to wait for barrier", "error", err)
goto WAIT
}
metrics.MeasureSince([]string{"leader", "barrier"}, start)
// Check if we need to handle initial leadership actions
if !establishedLeader {
if err := s.establishLeadership(stopCtx); err != nil {
s.logger.Error("failed to establish leadership", "error", err)
// Immediately revoke leadership since we didn't successfully
// establish leadership.
s.revokeLeadership()
// attempt to transfer leadership. If successful it is
// time to leave the leaderLoop since this node is no
// longer the leader. If leadershipTransfer() fails, we
// will try to acquire it again after
// 5 seconds.
if err := s.leadershipTransfer(); err != nil {
s.logger.Error("failed to transfer leadership", "error", err)
interval = time.After(5 * time.Second)
goto WAIT
}
return
}
establishedLeader = true
defer s.revokeLeadership()
}
// Reconcile any missing data
if err := s.reconcile(); err != nil {
s.logger.Error("failed to reconcile", "error", err)
goto WAIT
}
// Initial reconcile worked, now we can process the channel
// updates
reconcileCh = s.reconcileCh
WAIT:
// Poll the stop channel to give it priority so we don't waste time
// trying to perform the other operations if we have been asked to shut
// down.
select {
case <-stopCh:
return
default:
}
// Periodically reconcile as long as we are the leader,
// or when Serf events arrive
for {
select {
case <-stopCh:
return
case <-s.shutdownCh:
return
case <-interval:
goto RECONCILE
case member := <-reconcileCh:
s.reconcileMember(member)
case index := <-s.tombstoneGC.ExpireCh():
go s.reapTombstones(index)
case errCh := <-s.reassertLeaderCh:
// we can get into this state when the initial
// establishLeadership has failed as well as the follow
// up leadershipTransfer. Afterwards we will be waiting
// for the interval to trigger a reconciliation and can
// potentially end up here. There is no point to
// reassert because this agent was never leader in the
// first place.
if !establishedLeader {
errCh <- fmt.Errorf("leadership has not been established")
continue
}
// continue to reassert only if we previously were the
// leader, which means revokeLeadership followed by an
// establishLeadership().
s.revokeLeadership()
err := s.establishLeadership(stopCtx)
errCh <- err
// in case establishLeadership failed, we will try to
// transfer leadership. At this time raft thinks we are
// the leader, but consul disagrees.
if err != nil {
if err := s.leadershipTransfer(); err != nil {
// establishedLeader was true before,
// but it no longer is since it revoked
// leadership and Leadership transfer
// also failed. Which is why it stays
// in the leaderLoop, but now
// establishedLeader needs to be set to
// false.
establishedLeader = false
interval = time.After(5 * time.Second)
goto WAIT
}
// leadershipTransfer was successful and it is
// time to leave the leaderLoop.
return
}
}
}
}
// establishLeadership is invoked once we become leader and are able
// to invoke an initial barrier. The barrier is used to ensure any
// previously inflight transactions have been committed and that our
// state is up-to-date.
func (s *Server) establishLeadership(ctx context.Context) error {
start := time.Now()
if err := s.initializeACLs(ctx); err != nil {
return err
}
// Hint the tombstone expiration timer. When we freshly establish leadership
// we become the authoritative timer, and so we need to start the clock
// on any pending GC events.
s.tombstoneGC.SetEnabled(true)
lastIndex := s.raft.LastIndex()
s.tombstoneGC.Hint(lastIndex)
// Setup the session timers. This is done both when starting up or when
// a leader fail over happens. Since the timers are maintained by the leader
// node along, effectively this means all the timers are renewed at the
// time of failover. The TTL contract is that the session will not be expired
// before the TTL, so expiring it later is allowable.
//
// This MUST be done after the initial barrier to ensure the latest Sessions
// are available to be initialized. Otherwise initialization may use stale
// data.
if err := s.initializeSessionTimers(); err != nil {
return err
}
if err := s.establishEnterpriseLeadership(ctx); err != nil {
return err
}
s.getOrCreateAutopilotConfig()
s.autopilot.Start(ctx)
s.startConfigReplication(ctx)
s.startFederationStateReplication(ctx)
s.startFederationStateAntiEntropy(ctx)
if err := s.startConnectLeader(ctx); err != nil {
return err
}
// Attempt to bootstrap config entries. We wait until after starting the
// Connect leader tasks so we hopefully have transitioned to supporting
// service-intentions.
if err := s.bootstrapConfigEntries(s.config.ConfigEntryBootstrap); err != nil {
return err
}
s.setConsistentReadReady()
s.logger.Debug("successfully established leadership", "duration", time.Since(start))
return nil
}
// revokeLeadership is invoked once we step down as leader.
// This is used to cleanup any state that may be specific to a leader.
func (s *Server) revokeLeadership() {
// Disable the tombstone GC, since it is only useful as a leader
s.tombstoneGC.SetEnabled(false)
// Clear the session timers on either shutdown or step down, since we
// are no longer responsible for session expirations.
s.clearAllSessionTimers()
s.revokeEnterpriseLeadership()
s.stopFederationStateAntiEntropy()
s.stopFederationStateReplication()
s.stopConfigReplication()
s.stopConnectLeader()
s.stopACLTokenReaping()
s.stopACLUpgrade()
s.resetConsistentReadReady()
// Stop returns a chan and we want to block until it is closed
// which indicates that autopilot is actually stopped.
<-s.autopilot.Stop()
}
// initializeACLs is used to setup the ACLs if we are the leader
// and need to do this.
func (s *Server) initializeACLs(ctx context.Context) error {
if !s.config.ACLsEnabled {
return nil
}
// Purge the cache, since it could've changed while we were not the
// leader.
s.acls.cache.Purge()
// Purge the auth method validators since they could've changed while we
// were not leader.
s.aclAuthMethodValidators.Purge()
// Remove any token affected by CVE-2019-8336
if !s.InACLDatacenter() {
_, token, err := s.fsm.State().ACLTokenGetBySecret(nil, redactedToken, nil)
if err == nil && token != nil {
req := structs.ACLTokenBatchDeleteRequest{
TokenIDs: []string{token.AccessorID},
}
_, err := s.raftApply(structs.ACLTokenDeleteRequestType, &req)
if err != nil {
return fmt.Errorf("failed to remove token with a redacted secret: %v", err)
}
}
}
if s.InACLDatacenter() {
s.logger.Info("initializing acls")
// TODO(partitions): initialize acls in all of the partitions?
// Create/Upgrade the builtin global-management policy
_, policy, err := s.fsm.State().ACLPolicyGetByID(nil, structs.ACLPolicyGlobalManagementID, structs.DefaultEnterpriseMetaInDefaultPartition())
if err != nil {
return fmt.Errorf("failed to get the builtin global-management policy")
}
if policy == nil || policy.Rules != structs.ACLPolicyGlobalManagement {
newPolicy := structs.ACLPolicy{
ID: structs.ACLPolicyGlobalManagementID,
Name: "global-management",
Description: "Builtin Policy that grants unlimited access",
Rules: structs.ACLPolicyGlobalManagement,
Syntax: acl.SyntaxCurrent,
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
}
if policy != nil {
newPolicy.Name = policy.Name
newPolicy.Description = policy.Description
}
newPolicy.SetHash(true)
req := structs.ACLPolicyBatchSetRequest{
Policies: structs.ACLPolicies{&newPolicy},
}
_, err := s.raftApply(structs.ACLPolicySetRequestType, &req)
if err != nil {
return fmt.Errorf("failed to create global-management policy: %v", err)
}
s.logger.Info("Created ACL 'global-management' policy")
}
// Check for configured master token.
if master := s.config.ACLMasterToken; len(master) > 0 {
state := s.fsm.State()
if _, err := uuid.ParseUUID(master); err != nil {
s.logger.Warn("Configuring a non-UUID master token is deprecated")
}
_, token, err := state.ACLTokenGetBySecret(nil, master, nil)
if err != nil {
return fmt.Errorf("failed to get master token: %v", err)
}
// Ignoring expiration times to avoid an insertion collision.
if token == nil {
accessor, err := lib.GenerateUUID(s.checkTokenUUID)
if err != nil {
return fmt.Errorf("failed to generate the accessor ID for the master token: %v", err)
}
token := structs.ACLToken{
AccessorID: accessor,
SecretID: master,
Description: "Master Token",
Policies: []structs.ACLTokenPolicyLink{
{
ID: structs.ACLPolicyGlobalManagementID,
},
},
CreateTime: time.Now(),
Local: false,
// DEPRECATED (ACL-Legacy-Compat) - only needed for compatibility
Type: structs.ACLTokenTypeManagement,
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
}
token.SetHash(true)
done := false
if canBootstrap, _, err := state.CanBootstrapACLToken(); err == nil && canBootstrap {
req := structs.ACLTokenBootstrapRequest{
Token: token,
ResetIndex: 0,
}
if _, err := s.raftApply(structs.ACLBootstrapRequestType, &req); err == nil {
s.logger.Info("Bootstrapped ACL master token from configuration")
done = true
} else {
if err.Error() != structs.ACLBootstrapNotAllowedErr.Error() &&
err.Error() != structs.ACLBootstrapInvalidResetIndexErr.Error() {
return fmt.Errorf("failed to bootstrap master token: %v", err)
}
}
}
if !done {
// either we didn't attempt to or setting the token with a bootstrap request failed.
req := structs.ACLTokenBatchSetRequest{
Tokens: structs.ACLTokens{&token},
CAS: false,
}
if _, err := s.raftApply(structs.ACLTokenSetRequestType, &req); err != nil {
return fmt.Errorf("failed to create master token: %v", err)
}
s.logger.Info("Created ACL master token from configuration")
}
}
}
state := s.fsm.State()
_, token, err := state.ACLTokenGetBySecret(nil, structs.ACLTokenAnonymousID, nil)
if err != nil {
return fmt.Errorf("failed to get anonymous token: %v", err)
}
// Ignoring expiration times to avoid an insertion collision.
if token == nil {
// DEPRECATED (ACL-Legacy-Compat) - Don't need to query for previous "anonymous" token
// check for legacy token that needs an upgrade
_, legacyToken, err := state.ACLTokenGetBySecret(nil, anonymousToken, nil)
if err != nil {
return fmt.Errorf("failed to get anonymous token: %v", err)
}
// Ignoring expiration times to avoid an insertion collision.
// the token upgrade routine will take care of upgrading the token if a legacy version exists
if legacyToken == nil {
token = &structs.ACLToken{
AccessorID: structs.ACLTokenAnonymousID,
SecretID: anonymousToken,
Description: "Anonymous Token",
CreateTime: time.Now(),
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
}
token.SetHash(true)
req := structs.ACLTokenBatchSetRequest{
Tokens: structs.ACLTokens{token},
CAS: false,
}
_, err := s.raftApply(structs.ACLTokenSetRequestType, &req)
if err != nil {
return fmt.Errorf("failed to create anonymous token: %v", err)
}
s.logger.Info("Created ACL anonymous token from configuration")
}
}
// launch the upgrade go routine to generate accessors for everything
s.startACLUpgrade(ctx)
} else {
s.startACLReplication(ctx)
}
s.startACLTokenReaping(ctx)
return nil
}
// This function is only intended to be run as a managed go routine, it will block until
// the context passed in indicates that it should exit.
func (s *Server) legacyACLTokenUpgrade(ctx context.Context) error {
limiter := rate.NewLimiter(aclUpgradeRateLimit, int(aclUpgradeRateLimit))
for {
if err := limiter.Wait(ctx); err != nil {
return err
}
// actually run the upgrade here
state := s.fsm.State()
tokens, waitCh, err := state.ACLTokenListUpgradeable(aclUpgradeBatchSize)
if err != nil {
s.logger.Warn("encountered an error while searching for tokens without accessor ids", "error", err)
}
// No need to check expiration time here, as that only exists for v2 tokens.
if len(tokens) == 0 {
ws := memdb.NewWatchSet()
ws.Add(state.AbandonCh())
ws.Add(waitCh)
ws.Add(ctx.Done())
// wait for more tokens to need upgrading or the aclUpgradeCh to be closed
ws.Watch(nil)
continue
}
var newTokens structs.ACLTokens
for _, token := range tokens {
// This should be entirely unnecessary but is just a small safeguard against changing accessor IDs
if token.AccessorID != "" {
continue
}
newToken := *token
if token.SecretID == anonymousToken {
newToken.AccessorID = structs.ACLTokenAnonymousID
} else {
accessor, err := lib.GenerateUUID(s.checkTokenUUID)
if err != nil {
s.logger.Warn("failed to generate accessor during token auto-upgrade", "error", err)
continue
}
newToken.AccessorID = accessor
}
// Assign the global-management policy to legacy management tokens
if len(newToken.Policies) == 0 &&
len(newToken.ServiceIdentities) == 0 &&
len(newToken.NodeIdentities) == 0 &&
len(newToken.Roles) == 0 &&
newToken.Type == structs.ACLTokenTypeManagement {
newToken.Policies = append(newToken.Policies, structs.ACLTokenPolicyLink{ID: structs.ACLPolicyGlobalManagementID})
}
// need to copy these as we are going to do a CAS operation.
newToken.CreateIndex = token.CreateIndex
newToken.ModifyIndex = token.ModifyIndex
newToken.SetHash(true)
newTokens = append(newTokens, &newToken)
}
req := &structs.ACLTokenBatchSetRequest{Tokens: newTokens, CAS: true}
_, err = s.raftApply(structs.ACLTokenSetRequestType, req)
if err != nil {
s.logger.Error("failed to apply acl token upgrade batch", "error", err)
}
}
}
func (s *Server) startACLUpgrade(ctx context.Context) {
if s.config.PrimaryDatacenter != s.config.Datacenter {
// token upgrades should only run in the primary
return
}
s.leaderRoutineManager.Start(ctx, aclUpgradeRoutineName, s.legacyACLTokenUpgrade)
}
func (s *Server) stopACLUpgrade() {
s.leaderRoutineManager.Stop(aclUpgradeRoutineName)
}
func (s *Server) startACLReplication(ctx context.Context) {
if s.InACLDatacenter() {
return
}
// unlike some other leader routines this initializes some extra state
// and therefore we want to prevent re-initialization if things are already
// running
if s.leaderRoutineManager.IsRunning(aclPolicyReplicationRoutineName) {
return
}
s.initReplicationStatus()
s.leaderRoutineManager.Start(ctx, aclPolicyReplicationRoutineName, s.runACLPolicyReplicator)
s.leaderRoutineManager.Start(ctx, aclRoleReplicationRoutineName, s.runACLRoleReplicator)
if s.config.ACLTokenReplication {
s.leaderRoutineManager.Start(ctx, aclTokenReplicationRoutineName, s.runACLTokenReplicator)
s.updateACLReplicationStatusRunning(structs.ACLReplicateTokens)
} else {
s.updateACLReplicationStatusRunning(structs.ACLReplicatePolicies)
}
}
type replicateFunc func(ctx context.Context, logger hclog.Logger, lastRemoteIndex uint64) (uint64, bool, error)
// This function is only intended to be run as a managed go routine, it will block until
// the context passed in indicates that it should exit.
func (s *Server) runACLPolicyReplicator(ctx context.Context) error {
policyLogger := s.aclReplicationLogger(structs.ACLReplicatePolicies.SingularNoun())
policyLogger.Info("started ACL Policy replication")
return s.runACLReplicator(ctx, policyLogger, structs.ACLReplicatePolicies, s.replicateACLPolicies, "acl-policies")
}
// This function is only intended to be run as a managed go routine, it will block until
// the context passed in indicates that it should exit.
func (s *Server) runACLRoleReplicator(ctx context.Context) error {
roleLogger := s.aclReplicationLogger(structs.ACLReplicateRoles.SingularNoun())
roleLogger.Info("started ACL Role replication")
return s.runACLReplicator(ctx, roleLogger, structs.ACLReplicateRoles, s.replicateACLRoles, "acl-roles")
}
// This function is only intended to be run as a managed go routine, it will block until
// the context passed in indicates that it should exit.
func (s *Server) runACLTokenReplicator(ctx context.Context) error {
tokenLogger := s.aclReplicationLogger(structs.ACLReplicateTokens.SingularNoun())
tokenLogger.Info("started ACL Token replication")
return s.runACLReplicator(ctx, tokenLogger, structs.ACLReplicateTokens, s.replicateACLTokens, "acl-tokens")
}
// This function is only intended to be run as a managed go routine, it will block until
// the context passed in indicates that it should exit.
func (s *Server) runACLReplicator(
ctx context.Context,
logger hclog.Logger,
replicationType structs.ACLReplicationType,
replicateFunc replicateFunc,
metricName string,
) error {
var failedAttempts uint
limiter := rate.NewLimiter(rate.Limit(s.config.ACLReplicationRate), s.config.ACLReplicationBurst)
var lastRemoteIndex uint64
for {
if err := limiter.Wait(ctx); err != nil {
return err
}
if s.tokens.ReplicationToken() == "" {
continue
}
index, exit, err := replicateFunc(ctx, logger, lastRemoteIndex)
if exit {
return nil
}
if err != nil {
metrics.SetGauge([]string{"leader", "replication", metricName, "status"},
0,
)
lastRemoteIndex = 0
s.updateACLReplicationStatusError(err.Error())
logger.Warn("ACL replication error (will retry if still leader)",
"error", err,
)
if (1 << failedAttempts) < aclReplicationMaxRetryBackoff {
failedAttempts++
}
select {
case <-ctx.Done():
return nil
case <-time.After((1 << failedAttempts) * time.Second):
// do nothing
}
} else {
metrics.SetGauge([]string{"leader", "replication", metricName, "status"},
1,
)
metrics.SetGauge([]string{"leader", "replication", metricName, "index"},
float32(index),
)
lastRemoteIndex = index
s.updateACLReplicationStatusIndex(replicationType, index)
logger.Debug("ACL replication completed through remote index",
"index", index,
)
failedAttempts = 0
}
}
}
func (s *Server) aclReplicationLogger(singularNoun string) hclog.Logger {
return s.loggers.
Named(logging.Replication).
Named(logging.ACL).
Named(singularNoun)
}
func (s *Server) stopACLReplication() {
// these will be no-ops when not started
s.leaderRoutineManager.Stop(aclPolicyReplicationRoutineName)
s.leaderRoutineManager.Stop(aclRoleReplicationRoutineName)
s.leaderRoutineManager.Stop(aclTokenReplicationRoutineName)
}
func (s *Server) startConfigReplication(ctx context.Context) {
if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter {
// replication shouldn't run in the primary DC
return
}
s.leaderRoutineManager.Start(ctx, configReplicationRoutineName, s.configReplicator.Run)
}
func (s *Server) stopConfigReplication() {
// will be a no-op when not started
s.leaderRoutineManager.Stop(configReplicationRoutineName)
}
func (s *Server) startFederationStateReplication(ctx context.Context) {
if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter {
// replication shouldn't run in the primary DC
return
}
if s.gatewayLocator != nil {
s.gatewayLocator.SetUseReplicationSignal(true)
s.gatewayLocator.SetLastFederationStateReplicationError(nil, false)
}
s.leaderRoutineManager.Start(ctx, federationStateReplicationRoutineName, s.federationStateReplicator.Run)
}
func (s *Server) stopFederationStateReplication() {
// will be a no-op when not started
s.leaderRoutineManager.Stop(federationStateReplicationRoutineName)
if s.gatewayLocator != nil {
s.gatewayLocator.SetUseReplicationSignal(false)
s.gatewayLocator.SetLastFederationStateReplicationError(nil, false)
}
}
// getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary
func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig {
logger := s.loggers.Named(logging.Autopilot)
state := s.fsm.State()
_, config, err := state.AutopilotConfig()
if err != nil {
logger.Error("failed to get config", "error", err)
return nil
}
if config != nil {
return config
}
config = s.config.AutopilotConfig
req := structs.AutopilotSetConfigRequest{Config: *config}
if _, err = s.raftApply(structs.AutopilotRequestType, req); err != nil {
logger.Error("failed to initialize config", "error", err)
return nil
}
return config
}
func (s *Server) bootstrapConfigEntries(entries []structs.ConfigEntry) error {
if s.config.PrimaryDatacenter != "" && s.config.PrimaryDatacenter != s.config.Datacenter {
// only bootstrap in the primary datacenter
return nil
}
if len(entries) < 1 {
// nothing to initialize
return nil
}
if ok, _ := ServersInDCMeetMinimumVersion(s, s.config.Datacenter, minCentralizedConfigVersion); !ok {
s.loggers.
Named(logging.CentralConfig).
Warn("config: can't initialize until all servers >=" + minCentralizedConfigVersion.String())
return nil
}
state := s.fsm.State()
// Do some quick preflight checks to see if someone is doing something
// that's not allowed at this time:
//
// - Trying to upgrade from an older pre-1.9.0 version of consul with
// intentions AND are trying to bootstrap a service-intentions config entry
// at the same time.
//
// - Trying to insert service-intentions config entries when connect is
// disabled.
usingConfigEntries, err := s.fsm.State().AreIntentionsInConfigEntries()
if err != nil {
return fmt.Errorf("Failed to determine if we are migrating intentions yet: %v", err)
}
if !usingConfigEntries || !s.config.ConnectEnabled {
for _, entry := range entries {
if entry.GetKind() == structs.ServiceIntentions {
if !s.config.ConnectEnabled {
return fmt.Errorf("Refusing to apply configuration entry %q / %q because Connect must be enabled to bootstrap intentions",
entry.GetKind(), entry.GetName())
}
if !usingConfigEntries {
return fmt.Errorf("Refusing to apply configuration entry %q / %q because intentions are still being migrated to config entries",
entry.GetKind(), entry.GetName())
}
}
}
}
for _, entry := range entries {
// avoid a round trip through Raft if we know the CAS is going to fail
_, existing, err := state.ConfigEntry(nil, entry.GetKind(), entry.GetName(), entry.GetEnterpriseMeta())
if err != nil {
return fmt.Errorf("Failed to determine whether the configuration for %q / %q already exists: %v", entry.GetKind(), entry.GetName(), err)
}
if existing == nil {
// ensure the ModifyIndex is set to 0 for the CAS request
entry.GetRaftIndex().ModifyIndex = 0
req := structs.ConfigEntryRequest{
Op: structs.ConfigEntryUpsertCAS,
Datacenter: s.config.Datacenter,
Entry: entry,
}
_, err := s.raftApply(structs.ConfigEntryRequestType, &req)
if err != nil {
return fmt.Errorf("Failed to apply configuration entry %q / %q: %v", entry.GetKind(), entry.GetName(), err)
}
}
}
return nil
}
// reconcileReaped is used to reconcile nodes that have failed and been reaped
// from Serf but remain in the catalog. This is done by looking for unknown nodes with serfHealth checks registered.
// We generate a "reap" event to cause the node to be cleaned up.
func (s *Server) reconcileReaped(known map[string]struct{}, nodeEntMeta *structs.EnterpriseMeta) error {
if nodeEntMeta == nil {
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
state := s.fsm.State()
_, checks, err := state.ChecksInState(nil, api.HealthAny, nodeEntMeta)
if err != nil {
return err
}
for _, check := range checks {
// Ignore any non serf checks
if check.CheckID != structs.SerfCheckID {
continue
}
// Check if this node is "known" by serf
if _, ok := known[check.Node]; ok {
continue
}
// Get the node services, look for ConsulServiceID
_, services, err := state.NodeServices(nil, check.Node, nodeEntMeta)
if err != nil {
return err
}
serverPort := 0
serverAddr := ""
serverID := ""
CHECKS:
for _, service := range services.Services {
if service.ID == structs.ConsulServiceID {
_, node, err := state.GetNode(check.Node, nodeEntMeta)
if err != nil {
s.logger.Error("Unable to look up node with name", "name", check.Node, "error", err)
continue CHECKS
}
serverAddr = node.Address
serverPort = service.Port
lookupAddr := net.JoinHostPort(serverAddr, strconv.Itoa(serverPort))
svr := s.serverLookup.Server(raft.ServerAddress(lookupAddr))
if svr != nil {
serverID = svr.ID
}
break
}
}
// Create a fake member
member := serf.Member{
Name: check.Node,
Tags: map[string]string{
"dc": s.config.Datacenter,
"role": "node",
},
}
addEnterpriseSerfTags(member.Tags, nodeEntMeta)
// Create the appropriate tags if this was a server node
if serverPort > 0 {
member.Tags["role"] = "consul"
member.Tags["port"] = strconv.FormatUint(uint64(serverPort), 10)
member.Tags["id"] = serverID
member.Addr = net.ParseIP(serverAddr)
}
// Attempt to reap this member
if err := s.handleReapMember(member, nodeEntMeta); err != nil {
return err
}
}
return nil
}
// reconcileMember is used to do an async reconcile of a single
// serf member
func (s *Server) reconcileMember(member serf.Member) error {
// Check if this is a member we should handle
if !s.shouldHandleMember(member) {
// TODO(partition): log the partition name
s.logger.Warn("skipping reconcile of node", "member", member)
return nil
}
defer metrics.MeasureSince([]string{"leader", "reconcileMember"}, time.Now())
nodeEntMeta := getSerfMemberEnterpriseMeta(member)
var err error
switch member.Status {
case serf.StatusAlive:
err = s.handleAliveMember(member, nodeEntMeta)
case serf.StatusFailed:
err = s.handleFailedMember(member, nodeEntMeta)
case serf.StatusLeft:
err = s.handleLeftMember(member, nodeEntMeta)
case StatusReap:
err = s.handleReapMember(member, nodeEntMeta)
}
if err != nil {
s.logger.Error("failed to reconcile member",
// TODO(partition): log the partition name
"member", member,
"error", err,
)
// Permission denied should not bubble up
if acl.IsErrPermissionDenied(err) {
return nil
}
}
return nil
}
// shouldHandleMember checks if this is a Consul pool member
func (s *Server) shouldHandleMember(member serf.Member) bool {
if valid, dc := isConsulNode(member); valid && dc == s.config.Datacenter {
return true
}
if valid, parts := metadata.IsConsulServer(member); valid &&
parts.Segment == "" &&
parts.Datacenter == s.config.Datacenter {
return true
}
return false
}
// handleAliveMember is used to ensure the node
// is registered, with a passing health check.
func (s *Server) handleAliveMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
if nodeEntMeta == nil {
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Register consul service if a server
var service *structs.NodeService
if valid, parts := metadata.IsConsulServer(member); valid {
service = &structs.NodeService{
ID: structs.ConsulServiceID,
Service: structs.ConsulServiceName,
Port: parts.Port,
Weights: &structs.Weights{
Passing: 1,
Warning: 1,
},
EnterpriseMeta: *nodeEntMeta,
Meta: map[string]string{
// DEPRECATED - remove nonvoter in favor of read_replica in a future version of consul
"non_voter": strconv.FormatBool(member.Tags["nonvoter"] == "1"),
"read_replica": strconv.FormatBool(member.Tags["read_replica"] == "1"),
"raft_version": strconv.Itoa(parts.RaftVersion),
"serf_protocol_current": strconv.FormatUint(uint64(member.ProtocolCur), 10),
"serf_protocol_min": strconv.FormatUint(uint64(member.ProtocolMin), 10),
"serf_protocol_max": strconv.FormatUint(uint64(member.ProtocolMax), 10),
"version": parts.Build.String(),
},
}
// Attempt to join the consul server
if err := s.joinConsulServer(member, parts); err != nil {
return err
}
}
// Check if the node exists
state := s.fsm.State()
_, node, err := state.GetNode(member.Name, nodeEntMeta)
if err != nil {
return err
}
if node != nil && node.Address == member.Addr.String() {
// Check if the associated service is available
if service != nil {
match := false
_, services, err := state.NodeServices(nil, member.Name, nodeEntMeta)
if err != nil {
return err
}
if services != nil {
for id, serv := range services.Services {
if id == service.ID {
// If metadata are different, be sure to update it
match = reflect.DeepEqual(serv.Meta, service.Meta)
}
}
}
if !match {
goto AFTER_CHECK
}
}
// Check if the serfCheck is in the passing state
_, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta)
if err != nil {
return err
}
for _, check := range checks {
if check.CheckID == structs.SerfCheckID && check.Status == api.HealthPassing {
return nil
}
}
}
AFTER_CHECK:
s.logger.Info("member joined, marking health alive", "member", member.Name)
// Register with the catalog.
req := structs.RegisterRequest{
Datacenter: s.config.Datacenter,
Node: member.Name,
ID: types.NodeID(member.Tags["id"]),
Address: member.Addr.String(),
Service: service,
Check: &structs.HealthCheck{
Node: member.Name,
CheckID: structs.SerfCheckID,
Name: structs.SerfCheckName,
Status: api.HealthPassing,
Output: structs.SerfCheckAliveOutput,
},
EnterpriseMeta: *nodeEntMeta,
}
if node != nil {
req.TaggedAddresses = node.TaggedAddresses
req.NodeMeta = node.Meta
}
_, err = s.raftApply(structs.RegisterRequestType, &req)
return err
}
// handleFailedMember is used to mark the node's status
// as being critical, along with all checks as unknown.
func (s *Server) handleFailedMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
if nodeEntMeta == nil {
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Check if the node exists
state := s.fsm.State()
_, node, err := state.GetNode(member.Name, nodeEntMeta)
if err != nil {
return err
}
if node == nil {
s.logger.Info("ignoring failed event for member because it does not exist in the catalog", "member", member.Name)
return nil
}
// TODO(partitions): get the ent meta by parsing serf tags
if node.Address == member.Addr.String() {
// Check if the serfCheck is in the critical state
_, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta)
if err != nil {
return err
}
for _, check := range checks {
if check.CheckID == structs.SerfCheckID && check.Status == api.HealthCritical {
return nil
}
}
}
s.logger.Info("member failed, marking health critical", "member", member.Name)
// Register with the catalog
req := structs.RegisterRequest{
Datacenter: s.config.Datacenter,
Node: member.Name,
EnterpriseMeta: *nodeEntMeta,
ID: types.NodeID(member.Tags["id"]),
Address: member.Addr.String(),
Check: &structs.HealthCheck{
Node: member.Name,
CheckID: structs.SerfCheckID,
Name: structs.SerfCheckName,
Status: api.HealthCritical,
Output: structs.SerfCheckFailedOutput,
},
// If there's existing information about the node, do not
// clobber it.
SkipNodeUpdate: true,
}
_, err = s.raftApply(structs.RegisterRequestType, &req)
return err
}
// handleLeftMember is used to handle members that gracefully
// left. They are deregistered if necessary.
func (s *Server) handleLeftMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
return s.handleDeregisterMember("left", member, nodeEntMeta)
}
// handleReapMember is used to handle members that have been
// reaped after a prolonged failure. They are deregistered.
func (s *Server) handleReapMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
return s.handleDeregisterMember("reaped", member, nodeEntMeta)
}
// handleDeregisterMember is used to deregister a member of a given reason
func (s *Server) handleDeregisterMember(reason string, member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
if nodeEntMeta == nil {
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
}
// Do not deregister ourself. This can only happen if the current leader
// is leaving. Instead, we should allow a follower to take-over and
// deregister us later.
if member.Name == s.config.NodeName {
s.logger.Warn("deregistering self should be done by follower", "name", s.config.NodeName)
return nil
}
// Remove from Raft peers if this was a server
if valid, _ := metadata.IsConsulServer(member); valid {
if err := s.removeConsulServer(member); err != nil {
return err
}
}
// Check if the node does not exist
state := s.fsm.State()
_, node, err := state.GetNode(member.Name, nodeEntMeta)
if err != nil {
return err
}
if node == nil {
return nil
}
// Deregister the node
s.logger.Info("deregistering member", "member", member.Name, "reason", reason)
req := structs.DeregisterRequest{
Datacenter: s.config.Datacenter,
Node: member.Name,
EnterpriseMeta: *nodeEntMeta,
}
_, err = s.raftApply(structs.DeregisterRequestType, &req)
return err
}
// joinConsulServer is used to try to join another consul server
func (s *Server) joinConsulServer(m serf.Member, parts *metadata.Server) error {
// Check for possibility of multiple bootstrap nodes
if parts.Bootstrap {
members := s.serfLAN.Members()
for _, member := range members {
valid, p := metadata.IsConsulServer(member)
if valid && member.Name != m.Name && p.Bootstrap {
s.logger.Error("Two nodes are in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.",
"node_to_add", m.Name,
"other", member.Name,
)
return nil
}
}
}
// We used to do a check here and prevent adding the server if the cluster size was too small (1 or 2 servers) as a means
// of preventing the case where we may remove ourselves and cause a loss of leadership. The Autopilot AddServer function
// will now handle simple address updates better and so long as the address doesn't conflict with another node
// it will not require a removal but will instead just update the address. If it would require a removal of other nodes
// due to conflicts then the logic regarding cluster sizes will kick in and prevent doing anything dangerous that could
// cause loss of leadership.
// get the autpilot library version of a server from the serf member
apServer, err := s.autopilotServer(m)
if err != nil {
return err
}
// now ask autopilot to add it
return s.autopilot.AddServer(apServer)
}
// removeConsulServer is used to try to remove a consul server that has left
func (s *Server) removeConsulServer(m serf.Member) error {
server, err := s.autopilotServer(m)
if err != nil || server == nil {
return err
}
return s.autopilot.RemoveServer(server.ID)
}
// reapTombstones is invoked by the current leader to manage garbage
// collection of tombstones. When a key is deleted, we trigger a tombstone
// GC clock. Once the expiration is reached, this routine is invoked
// to clear all tombstones before this index. This must be replicated
// through Raft to ensure consistency. We do this outside the leader loop
// to avoid blocking.
func (s *Server) reapTombstones(index uint64) {
defer metrics.MeasureSince([]string{"leader", "reapTombstones"}, time.Now())
req := structs.TombstoneRequest{
Datacenter: s.config.Datacenter,
Op: structs.TombstoneReap,
ReapIndex: index,
}
_, err := s.raftApply(structs.TombstoneRequestType, &req)
if err != nil {
s.logger.Error("failed to reap tombstones up to index",
"index", index,
"error", err,
)
}
}
func (s *Server) setDatacenterSupportsFederationStates() {
atomic.StoreInt32(&s.dcSupportsFederationStates, 1)
}
func (s *Server) DatacenterSupportsFederationStates() bool {
if atomic.LoadInt32(&s.dcSupportsFederationStates) != 0 {
return true
}
state := serversFederationStatesInfo{
supported: true,
found: false,
}
// if we are in a secondary, check if they are supported in the primary dc
if s.config.PrimaryDatacenter != s.config.Datacenter {
s.router.CheckServers(s.config.PrimaryDatacenter, state.update)
if !state.supported || !state.found {
s.logger.Debug("federation states are not enabled in the primary dc")
return false
}
}
// check the servers in the local DC
s.router.CheckServers(s.config.Datacenter, state.update)
if state.supported && state.found {
s.setDatacenterSupportsFederationStates()
return true
}
s.logger.Debug("federation states are not enabled in this datacenter", "datacenter", s.config.Datacenter)
return false
}
type serversFederationStatesInfo struct {
// supported indicates whether every processed server supports federation states
supported bool
// found indicates that at least one server was processed
found bool
}
func (s *serversFederationStatesInfo) update(srv *metadata.Server) bool {
if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed {
// they are left or something so regardless we treat these servers as meeting
// the version requirement
return true
}
// mark that we processed at least one server
s.found = true
if supported, ok := srv.FeatureFlags["fs"]; ok && supported == 1 {
return true
}
// mark that at least one server does not support federation states
s.supported = false
// prevent continuing server evaluation
return false
}
func (s *Server) setDatacenterSupportsIntentionsAsConfigEntries() {
atomic.StoreInt32(&s.dcSupportsIntentionsAsConfigEntries, 1)
}
func (s *Server) DatacenterSupportsIntentionsAsConfigEntries() bool {
if atomic.LoadInt32(&s.dcSupportsIntentionsAsConfigEntries) != 0 {
return true
}
state := serversIntentionsAsConfigEntriesInfo{
supported: true,
found: false,
}
// if we are in a secondary, check if they are supported in the primary dc
if s.config.PrimaryDatacenter != s.config.Datacenter {
s.router.CheckServers(s.config.PrimaryDatacenter, state.update)
if !state.supported || !state.found {
s.logger.Debug("intentions have not been migrated to config entries in the primary dc yet")
return false
}
}
// check the servers in the local DC
s.router.CheckServers(s.config.Datacenter, state.update)
if state.supported && state.found {
s.setDatacenterSupportsIntentionsAsConfigEntries()
return true
}
s.logger.Debug("intentions cannot be migrated to config entries in this datacenter", "datacenter", s.config.Datacenter)
return false
}
type serversIntentionsAsConfigEntriesInfo struct {
// supported indicates whether every processed server supports intentions as config entries
supported bool
// found indicates that at least one server was processed
found bool
}
func (s *serversIntentionsAsConfigEntriesInfo) update(srv *metadata.Server) bool {
if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed {
// they are left or something so regardless we treat these servers as meeting
// the version requirement
return true
}
// mark that we processed at least one server
s.found = true
if supported, ok := srv.FeatureFlags["si"]; ok && supported == 1 {
return true
}
// mark that at least one server does not support service-intentions
s.supported = false
// prevent continuing server evaluation
return false
}