open-consul/agent/structs/structs.go

1678 lines
50 KiB
Go

package structs
import (
"bytes"
"encoding/json"
"fmt"
"math/rand"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"time"
"github.com/hashicorp/consul/agent/cache"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/types"
"github.com/hashicorp/go-msgpack/codec"
multierror "github.com/hashicorp/go-multierror"
"github.com/hashicorp/serf/coordinate"
"github.com/mitchellh/hashstructure"
)
type MessageType uint8
// RaftIndex is used to track the index used while creating
// or modifying a given struct type.
type RaftIndex struct {
CreateIndex uint64 `bexpr:"-"`
ModifyIndex uint64 `bexpr:"-"`
}
// These are serialized between Consul servers and stored in Consul snapshots,
// so entries must only ever be added.
const (
RegisterRequestType MessageType = 0
DeregisterRequestType = 1
KVSRequestType = 2
SessionRequestType = 3
ACLRequestType = 4 // DEPRECATED (ACL-Legacy-Compat)
TombstoneRequestType = 5
CoordinateBatchUpdateType = 6
PreparedQueryRequestType = 7
TxnRequestType = 8
AutopilotRequestType = 9
AreaRequestType = 10
ACLBootstrapRequestType = 11
IntentionRequestType = 12
ConnectCARequestType = 13
ConnectCAProviderStateType = 14
ConnectCAConfigType = 15 // FSM snapshots only.
IndexRequestType = 16 // FSM snapshots only.
ACLTokenSetRequestType = 17
ACLTokenDeleteRequestType = 18
ACLPolicySetRequestType = 19
ACLPolicyDeleteRequestType = 20
ConnectCALeafRequestType = 21
ConfigEntryRequestType = 22
ACLRoleSetRequestType = 23
ACLRoleDeleteRequestType = 24
ACLBindingRuleSetRequestType = 25
ACLBindingRuleDeleteRequestType = 26
ACLAuthMethodSetRequestType = 27
ACLAuthMethodDeleteRequestType = 28
)
const (
// IgnoreUnknownTypeFlag is set along with a MessageType
// to indicate that the message type can be safely ignored
// if it is not recognized. This is for future proofing, so
// that new commands can be added in a way that won't cause
// old servers to crash when the FSM attempts to process them.
IgnoreUnknownTypeFlag MessageType = 128
// NodeMaint is the special key set by a node in maintenance mode.
NodeMaint = "_node_maintenance"
// ServiceMaintPrefix is the prefix for a service in maintenance mode.
ServiceMaintPrefix = "_service_maintenance:"
// The meta key prefix reserved for Consul's internal use
metaKeyReservedPrefix = "consul-"
// metaMaxKeyPairs is maximum number of metadata key pairs allowed to be registered
metaMaxKeyPairs = 64
// metaKeyMaxLength is the maximum allowed length of a metadata key
metaKeyMaxLength = 128
// metaValueMaxLength is the maximum allowed length of a metadata value
metaValueMaxLength = 512
// MetaSegmentKey is the node metadata key used to store the node's network segment
MetaSegmentKey = "consul-network-segment"
// MaxLockDelay provides a maximum LockDelay value for
// a session. Any value above this will not be respected.
MaxLockDelay = 60 * time.Second
)
// metaKeyFormat checks if a metadata key string is valid
var metaKeyFormat = regexp.MustCompile(`^[a-zA-Z0-9_-]+$`).MatchString
func ValidStatus(s string) bool {
return s == api.HealthPassing || s == api.HealthWarning || s == api.HealthCritical
}
// RPCInfo is used to describe common information about query
type RPCInfo interface {
RequestDatacenter() string
IsRead() bool
AllowStaleRead() bool
TokenSecret() string
}
// QueryOptions is used to specify various flags for read queries
type QueryOptions struct {
// Token is the ACL token ID. If not provided, the 'anonymous'
// token is assumed for backwards compatibility.
Token string
// If set, wait until query exceeds given index. Must be provided
// with MaxQueryTime.
MinQueryIndex uint64
// Provided with MinQueryIndex to wait for change.
MaxQueryTime time.Duration
// If set, any follower can service the request. Results
// may be arbitrarily stale.
AllowStale bool
// If set, the leader must verify leadership prior to
// servicing the request. Prevents a stale read.
RequireConsistent bool
// If set, the local agent may respond with an arbitrarily stale locally
// cached response. The semantics differ from AllowStale since the agent may
// be entirely partitioned from the servers and still considered "healthy" by
// operators. Stale responses from Servers are also arbitrarily stale, but can
// provide additional bounds on the last contact time from the leader. It's
// expected that servers that are partitioned are noticed and replaced in a
// timely way by operators while the same may not be true for client agents.
UseCache bool
// If set and AllowStale is true, will try first a stale
// read, and then will perform a consistent read if stale
// read is older than value.
MaxStaleDuration time.Duration
// MaxAge limits how old a cached value will be returned if UseCache is true.
// If there is a cached response that is older than the MaxAge, it is treated
// as a cache miss and a new fetch invoked. If the fetch fails, the error is
// returned. Clients that wish to allow for stale results on error can set
// StaleIfError to a longer duration to change this behavior. It is ignored
// if the endpoint supports background refresh caching. See
// https://www.consul.io/api/index.html#agent-caching for more details.
MaxAge time.Duration
// MustRevalidate forces the agent to fetch a fresh version of a cached
// resource or at least validate that the cached version is still fresh. It is
// implied by either max-age=0 or must-revalidate Cache-Control headers. It
// only makes sense when UseCache is true. We store it since MaxAge = 0 is the
// default unset value.
MustRevalidate bool
// StaleIfError specifies how stale the client will accept a cached response
// if the servers are unavailable to fetch a fresh one. Only makes sense when
// UseCache is true and MaxAge is set to a lower, non-zero value. It is
// ignored if the endpoint supports background refresh caching. See
// https://www.consul.io/api/index.html#agent-caching for more details.
StaleIfError time.Duration
// Filter specifies the go-bexpr filter expression to be used for
// filtering the data prior to returning a response
Filter string
}
// IsRead is always true for QueryOption.
func (q QueryOptions) IsRead() bool {
return true
}
// ConsistencyLevel display the consistency required by a request
func (q QueryOptions) ConsistencyLevel() string {
if q.RequireConsistent {
return "consistent"
} else if q.AllowStale {
return "stale"
} else {
return "leader"
}
}
func (q QueryOptions) AllowStaleRead() bool {
return q.AllowStale
}
func (q QueryOptions) TokenSecret() string {
return q.Token
}
type WriteRequest struct {
// Token is the ACL token ID. If not provided, the 'anonymous'
// token is assumed for backwards compatibility.
Token string
}
// WriteRequest only applies to writes, always false
func (w WriteRequest) IsRead() bool {
return false
}
func (w WriteRequest) AllowStaleRead() bool {
return false
}
func (w WriteRequest) TokenSecret() string {
return w.Token
}
// QueryMeta allows a query response to include potentially
// useful metadata about a query
type QueryMeta struct {
// This is the index associated with the read
Index uint64
// If AllowStale is used, this is time elapsed since
// last contact between the follower and leader. This
// can be used to gauge staleness.
LastContact time.Duration
// Used to indicate if there is a known leader node
KnownLeader bool
// Consistencylevel returns the consistency used to serve the query
// Having `discovery_max_stale` on the agent can affect whether
// the request was served by a leader.
ConsistencyLevel string
}
// RegisterRequest is used for the Catalog.Register endpoint
// to register a node as providing a service. If no service
// is provided, the node is registered.
type RegisterRequest struct {
Datacenter string
ID types.NodeID
Node string
Address string
TaggedAddresses map[string]string
NodeMeta map[string]string
Service *NodeService
Check *HealthCheck
Checks HealthChecks
// SkipNodeUpdate can be used when a register request is intended for
// updating a service and/or checks, but doesn't want to overwrite any
// node information if the node is already registered. If the node
// doesn't exist, it will still be created, but if the node exists, any
// node portion of this update will not apply.
SkipNodeUpdate bool
WriteRequest
}
func (r *RegisterRequest) RequestDatacenter() string {
return r.Datacenter
}
// ChangesNode returns true if the given register request changes the given
// node, which can be nil. This only looks for changes to the node record itself,
// not any of the health checks.
func (r *RegisterRequest) ChangesNode(node *Node) bool {
// This means it's creating the node.
if node == nil {
return true
}
// If we've been asked to skip the node update, then say there are no
// changes.
if r.SkipNodeUpdate {
return false
}
// Check if any of the node-level fields are being changed.
if r.ID != node.ID ||
r.Node != node.Node ||
r.Address != node.Address ||
r.Datacenter != node.Datacenter ||
!reflect.DeepEqual(r.TaggedAddresses, node.TaggedAddresses) ||
!reflect.DeepEqual(r.NodeMeta, node.Meta) {
return true
}
return false
}
// DeregisterRequest is used for the Catalog.Deregister endpoint
// to deregister a node as providing a service. If no service is
// provided the entire node is deregistered.
type DeregisterRequest struct {
Datacenter string
Node string
ServiceID string
CheckID types.CheckID
WriteRequest
}
func (r *DeregisterRequest) RequestDatacenter() string {
return r.Datacenter
}
// QuerySource is used to pass along information about the source node
// in queries so that we can adjust the response based on its network
// coordinates.
type QuerySource struct {
Datacenter string
Segment string
Node string
Ip string
}
// DCSpecificRequest is used to query about a specific DC
type DCSpecificRequest struct {
Datacenter string
NodeMetaFilters map[string]string
Source QuerySource
QueryOptions
}
func (r *DCSpecificRequest) RequestDatacenter() string {
return r.Datacenter
}
func (r *DCSpecificRequest) CacheInfo() cache.RequestInfo {
info := cache.RequestInfo{
Token: r.Token,
Datacenter: r.Datacenter,
MinIndex: r.MinQueryIndex,
Timeout: r.MaxQueryTime,
MaxAge: r.MaxAge,
MustRevalidate: r.MustRevalidate,
}
// To calculate the cache key we only hash the node meta filters and the bexpr filter.
// The datacenter is handled by the cache framework. The other fields are
// not, but should not be used in any cache types.
v, err := hashstructure.Hash([]interface{}{
r.NodeMetaFilters,
r.Filter,
}, nil)
if err == nil {
// If there is an error, we don't set the key. A blank key forces
// no cache for this request so the request is forwarded directly
// to the server.
info.Key = strconv.FormatUint(v, 10)
}
return info
}
func (r *DCSpecificRequest) CacheMinIndex() uint64 {
return r.QueryOptions.MinQueryIndex
}
// ServiceSpecificRequest is used to query about a specific service
type ServiceSpecificRequest struct {
Datacenter string
NodeMetaFilters map[string]string
ServiceName string
// DEPRECATED (singular-service-tag) - remove this when backwards RPC compat
// with 1.2.x is not required.
ServiceTag string
ServiceTags []string
ServiceAddress string
TagFilter bool // Controls tag filtering
Source QuerySource
// Connect if true will only search for Connect-compatible services.
Connect bool
QueryOptions
}
func (r *ServiceSpecificRequest) RequestDatacenter() string {
return r.Datacenter
}
func (r *ServiceSpecificRequest) CacheInfo() cache.RequestInfo {
info := cache.RequestInfo{
Token: r.Token,
Datacenter: r.Datacenter,
MinIndex: r.MinQueryIndex,
Timeout: r.MaxQueryTime,
MaxAge: r.MaxAge,
MustRevalidate: r.MustRevalidate,
}
// To calculate the cache key we hash over all the fields that affect the
// output other than Datacenter and Token which are dealt with in the cache
// framework already. Note the order here is important for the outcome - if we
// ever care about cache-invalidation on updates e.g. because we persist
// cached results, we need to be careful we maintain the same order of fields
// here. We could alternatively use `hash:set` struct tag on an anonymous
// struct to make it more robust if it becomes significant.
sort.Strings(r.ServiceTags)
v, err := hashstructure.Hash([]interface{}{
r.NodeMetaFilters,
r.ServiceName,
// DEPRECATED (singular-service-tag) - remove this when upgrade RPC compat
// with 1.2.x is not required. We still need this in because <1.3 agents
// might still send RPCs with singular tag set. In fact the only place we
// use this method is in agent cache so if the agent is new enough to have
// this code this should never be set, but it's safer to include it until we
// completely remove this field just in case it's erroneously used anywhere
// (e.g. until this change DNS still used it).
r.ServiceTag,
r.ServiceTags,
r.ServiceAddress,
r.TagFilter,
r.Connect,
r.Filter,
}, nil)
if err == nil {
// If there is an error, we don't set the key. A blank key forces
// no cache for this request so the request is forwarded directly
// to the server.
info.Key = strconv.FormatUint(v, 10)
}
return info
}
func (r *ServiceSpecificRequest) CacheMinIndex() uint64 {
return r.QueryOptions.MinQueryIndex
}
// NodeSpecificRequest is used to request the information about a single node
type NodeSpecificRequest struct {
Datacenter string
Node string
QueryOptions
}
func (r *NodeSpecificRequest) RequestDatacenter() string {
return r.Datacenter
}
func (r *NodeSpecificRequest) CacheInfo() cache.RequestInfo {
info := cache.RequestInfo{
Token: r.Token,
Datacenter: r.Datacenter,
MinIndex: r.MinQueryIndex,
Timeout: r.MaxQueryTime,
MaxAge: r.MaxAge,
MustRevalidate: r.MustRevalidate,
}
v, err := hashstructure.Hash([]interface{}{
r.Node,
r.Filter,
}, nil)
if err == nil {
// If there is an error, we don't set the key. A blank key forces
// no cache for this request so the request is forwarded directly
// to the server.
info.Key = strconv.FormatUint(v, 10)
}
return info
}
// ChecksInStateRequest is used to query for nodes in a state
type ChecksInStateRequest struct {
Datacenter string
NodeMetaFilters map[string]string
State string
Source QuerySource
QueryOptions
}
func (r *ChecksInStateRequest) RequestDatacenter() string {
return r.Datacenter
}
// Used to return information about a node
type Node struct {
ID types.NodeID
Node string
Address string
Datacenter string
TaggedAddresses map[string]string
Meta map[string]string
RaftIndex `bexpr:"-"`
}
type Nodes []*Node
// IsSame return whether nodes are similar without taking into account
// RaftIndex fields.
func (n *Node) IsSame(other *Node) bool {
return n.ID == other.ID &&
n.Node == other.Node &&
n.Address == other.Address &&
n.Datacenter == other.Datacenter &&
reflect.DeepEqual(n.TaggedAddresses, other.TaggedAddresses) &&
reflect.DeepEqual(n.Meta, other.Meta)
}
// ValidateMeta validates a set of key/value pairs from the agent config
func ValidateMetadata(meta map[string]string, allowConsulPrefix bool) error {
if len(meta) > metaMaxKeyPairs {
return fmt.Errorf("Node metadata cannot contain more than %d key/value pairs", metaMaxKeyPairs)
}
for key, value := range meta {
if err := validateMetaPair(key, value, allowConsulPrefix); err != nil {
return fmt.Errorf("Couldn't load metadata pair ('%s', '%s'): %s", key, value, err)
}
}
return nil
}
// ValidateWeights checks the definition of DNS weight is valid
func ValidateWeights(weights *Weights) error {
if weights == nil {
return nil
}
if weights.Passing < 1 {
return fmt.Errorf("Passing must be greater than 0")
}
if weights.Warning < 0 {
return fmt.Errorf("Warning must be greater or equal than 0")
}
if weights.Passing > 65535 || weights.Warning > 65535 {
return fmt.Errorf("DNS Weight must be between 0 and 65535")
}
return nil
}
// validateMetaPair checks that the given key/value pair is in a valid format
func validateMetaPair(key, value string, allowConsulPrefix bool) error {
if key == "" {
return fmt.Errorf("Key cannot be blank")
}
if !metaKeyFormat(key) {
return fmt.Errorf("Key contains invalid characters")
}
if len(key) > metaKeyMaxLength {
return fmt.Errorf("Key is too long (limit: %d characters)", metaKeyMaxLength)
}
if strings.HasPrefix(key, metaKeyReservedPrefix) && !allowConsulPrefix {
return fmt.Errorf("Key prefix '%s' is reserved for internal use", metaKeyReservedPrefix)
}
if len(value) > metaValueMaxLength {
return fmt.Errorf("Value is too long (limit: %d characters)", metaValueMaxLength)
}
return nil
}
// SatisfiesMetaFilters returns true if the metadata map contains the given filters
func SatisfiesMetaFilters(meta map[string]string, filters map[string]string) bool {
for key, value := range filters {
if v, ok := meta[key]; !ok || v != value {
return false
}
}
return true
}
// Used to return information about a provided services.
// Maps service name to available tags
type Services map[string][]string
// ServiceNode represents a node that is part of a service. ID, Address,
// TaggedAddresses, and NodeMeta are node-related fields that are always empty
// in the state store and are filled in on the way out by parseServiceNodes().
// This is also why PartialClone() skips them, because we know they are blank
// already so it would be a waste of time to copy them.
type ServiceNode struct {
ID types.NodeID
Node string
Address string
Datacenter string
TaggedAddresses map[string]string
NodeMeta map[string]string
ServiceKind ServiceKind
ServiceID string
ServiceName string
ServiceTags []string
ServiceAddress string
ServiceWeights Weights
ServiceMeta map[string]string
ServicePort int
ServiceEnableTagOverride bool
// DEPRECATED (ProxyDestination) - remove this when removing ProxyDestination
ServiceProxyDestination string `bexpr:"-"`
ServiceProxy ConnectProxyConfig
ServiceConnect ServiceConnect
RaftIndex `bexpr:"-"`
}
// PartialClone() returns a clone of the given service node, minus the node-
// related fields that get filled in later, Address and TaggedAddresses.
func (s *ServiceNode) PartialClone() *ServiceNode {
tags := make([]string, len(s.ServiceTags))
copy(tags, s.ServiceTags)
nsmeta := make(map[string]string)
for k, v := range s.ServiceMeta {
nsmeta[k] = v
}
return &ServiceNode{
// Skip ID, see above.
Node: s.Node,
// Skip Address, see above.
// Skip TaggedAddresses, see above.
ServiceKind: s.ServiceKind,
ServiceID: s.ServiceID,
ServiceName: s.ServiceName,
ServiceTags: tags,
ServiceAddress: s.ServiceAddress,
ServicePort: s.ServicePort,
ServiceMeta: nsmeta,
ServiceWeights: s.ServiceWeights,
ServiceEnableTagOverride: s.ServiceEnableTagOverride,
// DEPRECATED (ProxyDestination) - remove this when removing ProxyDestination
ServiceProxyDestination: s.ServiceProxyDestination,
ServiceProxy: s.ServiceProxy,
ServiceConnect: s.ServiceConnect,
RaftIndex: RaftIndex{
CreateIndex: s.CreateIndex,
ModifyIndex: s.ModifyIndex,
},
}
}
// ToNodeService converts the given service node to a node service.
func (s *ServiceNode) ToNodeService() *NodeService {
return &NodeService{
Kind: s.ServiceKind,
ID: s.ServiceID,
Service: s.ServiceName,
Tags: s.ServiceTags,
Address: s.ServiceAddress,
Port: s.ServicePort,
Meta: s.ServiceMeta,
Weights: &s.ServiceWeights,
EnableTagOverride: s.ServiceEnableTagOverride,
Proxy: s.ServiceProxy,
Connect: s.ServiceConnect,
RaftIndex: RaftIndex{
CreateIndex: s.CreateIndex,
ModifyIndex: s.ModifyIndex,
},
}
}
// Weights represent the weight used by DNS for a given status
type Weights struct {
Passing int
Warning int
}
type ServiceNodes []*ServiceNode
// ServiceKind is the kind of service being registered.
type ServiceKind string
const (
// ServiceKindTypical is a typical, classic Consul service. This is
// represented by the absence of a value. This was chosen for ease of
// backwards compatibility: existing services in the catalog would
// default to the typical service.
ServiceKindTypical ServiceKind = ""
// ServiceKindConnectProxy is a proxy for the Connect feature. This
// service proxies another service within Consul and speaks the connect
// protocol.
ServiceKindConnectProxy ServiceKind = "connect-proxy"
)
// NodeService is a service provided by a node
type NodeService struct {
// Kind is the kind of service this is. Different kinds of services may
// have differing validation, DNS behavior, etc. An empty kind will default
// to the Default kind. See ServiceKind for the full list of kinds.
Kind ServiceKind `json:",omitempty"`
ID string
Service string
Tags []string
Address string
Meta map[string]string
Port int
Weights *Weights
EnableTagOverride bool
// ProxyDestination is DEPRECATED in favor of Proxy.DestinationServiceName.
// It's retained since this struct is used to parse input for
// /catalog/register but nothing else internal should use it - once
// request/config definitions are passes all internal uses of NodeService
// should have this empty and use the Proxy.DestinationServiceNames field
// below.
//
// It used to store the name of the service that this service is a Connect
// proxy for. This is only valid if Kind is "connect-proxy". The destination
// may be a service that isn't present in the catalog. This is expected and
// allowed to allow for proxies to come up earlier than their target services.
// DEPRECATED (ProxyDestination) - remove this when removing ProxyDestination
ProxyDestination string `bexpr:"-"`
// Proxy is the configuration set for Kind = connect-proxy. It is mandatory in
// that case and an error to be set for any other kind. This config is part of
// a proxy service definition and is distinct from but shares some fields with
// the Connect.Proxy which configures a managed proxy as part of the actual
// service's definition. This duplication is ugly but seemed better than the
// alternative which was to re-use the same struct fields for both cases even
// though the semantics are different and the non-shred fields make no sense
// in the other case. ProxyConfig may be a more natural name here, but it's
// confusing for the UX because one of the fields in ConnectProxyConfig is
// also called just "Config"
Proxy ConnectProxyConfig
// Connect are the Connect settings for a service. This is purposely NOT
// a pointer so that we never have to nil-check this.
Connect ServiceConnect
// LocallyRegisteredAsSidecar is private as it is only used by a local agent
// state to track if the service was registered from a nested sidecar_service
// block. We need to track that so we can know whether we need to deregister
// it automatically too if it's removed from the service definition or if the
// parent service is deregistered. Relying only on ID would cause us to
// deregister regular services if they happen to be registered using the same
// ID scheme as our sidecars do by default. We could use meta but that gets
// unpleasant because we can't use the consul- prefix from an agent (reserved
// for use internally but in practice that means within the state store or in
// responses only), and it leaks the detail publicly which people might rely
// on which is a bit unpleasant for something that is meant to be config-file
// syntax sugar. Note this is not translated to ServiceNode and friends and
// may not be set on a NodeService that isn't the one the agent registered and
// keeps in it's local state. We never want this rendered in JSON as it's
// internal only. Right now our agent endpoints return api structs which don't
// include it but this is a safety net incase we change that or there is
// somewhere this is used in API output.
LocallyRegisteredAsSidecar bool `json:"-" bexpr:"-"`
RaftIndex `bexpr:"-"`
}
// ServiceConnect are the shared Connect settings between all service
// definitions from the agent to the state store.
type ServiceConnect struct {
// Native is true when this service can natively understand Connect.
Native bool `json:",omitempty"`
// Proxy configures a connect proxy instance for the service. This is
// only used for agent service definitions and is invalid for non-agent
// (catalog API) definitions.
Proxy *ServiceDefinitionConnectProxy `json:",omitempty" bexpr:"-"`
// SidecarService is a nested Service Definition to register at the same time.
// It's purely a convenience mechanism to allow specifying a sidecar service
// along with the application service definition. It's nested nature allows
// all of the fields to be defaulted which can reduce the amount of
// boilerplate needed to register a sidecar service separately, but the end
// result is identical to just making a second service registration via any
// other means.
SidecarService *ServiceDefinition `json:",omitempty" bexpr:"-"`
}
// Merge overlays any non-empty fields of other onto s. Tags, metadata and proxy
// config are unioned together instead of overwritten. The Connect field and the
// non-config proxy fields are taken from other.
func (s *NodeService) Merge(other *NodeService) {
if other.Kind != "" {
s.Kind = other.Kind
}
if other.ID != "" {
s.ID = other.ID
}
if other.Service != "" {
s.Service = other.Service
}
if s.Tags == nil {
s.Tags = other.Tags
} else if other.Tags != nil {
// Both nodes have tags, so deduplicate and merge them.
tagSet := make(map[string]struct{})
for _, tag := range s.Tags {
tagSet[tag] = struct{}{}
}
for _, tag := range other.Tags {
tagSet[tag] = struct{}{}
}
tags := make([]string, 0, len(tagSet))
for tag, _ := range tagSet {
tags = append(tags, tag)
}
sort.Strings(tags)
s.Tags = tags
}
if other.Address != "" {
s.Address = other.Address
}
if s.Meta == nil {
s.Meta = other.Meta
} else {
for k, v := range other.Meta {
s.Meta[k] = v
}
}
if other.Port != 0 {
s.Port = other.Port
}
if other.Weights != nil {
s.Weights = other.Weights
}
s.EnableTagOverride = other.EnableTagOverride
if other.ProxyDestination != "" {
s.ProxyDestination = other.ProxyDestination
}
// Take the incoming service's proxy fields and merge the config map.
proxyConf := s.Proxy.Config
s.Proxy = other.Proxy
if proxyConf == nil {
proxyConf = other.Proxy.Config
} else {
for k, v := range other.Proxy.Config {
proxyConf[k] = v
}
}
s.Proxy.Config = proxyConf
// Just take the entire Connect block from the other node.
// We can revisit this when adding more fields to centralized config.
s.Connect = other.Connect
s.LocallyRegisteredAsSidecar = other.LocallyRegisteredAsSidecar
}
// Validate validates the node service configuration.
//
// NOTE(mitchellh): This currently only validates fields for a ConnectProxy.
// Historically validation has been directly in the Catalog.Register RPC.
// ConnectProxy validation was moved here for easier table testing, but
// other validation still exists in Catalog.Register.
func (s *NodeService) Validate() error {
var result error
// ConnectProxy validation
if s.Kind == ServiceKindConnectProxy {
// DEPRECATED (ProxyDestination) - remove this when removing ProxyDestination
// Fixup legacy requests that specify the ProxyDestination still
if s.ProxyDestination != "" && s.Proxy.DestinationServiceName == "" {
s.Proxy.DestinationServiceName = s.ProxyDestination
s.ProxyDestination = ""
}
if strings.TrimSpace(s.Proxy.DestinationServiceName) == "" {
result = multierror.Append(result, fmt.Errorf(
"Proxy.DestinationServiceName must be non-empty for Connect proxy "+
"services"))
}
if s.Port == 0 {
result = multierror.Append(result, fmt.Errorf(
"Port must be set for a Connect proxy"))
}
if s.Connect.Native {
result = multierror.Append(result, fmt.Errorf(
"A Proxy cannot also be Connect Native, only typical services"))
}
}
// Nested sidecar validation
if s.Connect.SidecarService != nil {
if s.Connect.SidecarService.ID != "" {
result = multierror.Append(result, fmt.Errorf(
"A SidecarService cannot specify an ID as this is managed by the "+
"agent"))
}
if s.Connect.SidecarService.Connect != nil {
if s.Connect.SidecarService.Connect.SidecarService != nil {
result = multierror.Append(result, fmt.Errorf(
"A SidecarService cannot have a nested SidecarService"))
}
if s.Connect.SidecarService.Connect.Proxy != nil {
result = multierror.Append(result, fmt.Errorf(
"A SidecarService cannot have a managed proxy"))
}
}
}
return result
}
// IsSame checks if one NodeService is the same as another, without looking
// at the Raft information (that's why we didn't call it IsEqual). This is
// useful for seeing if an update would be idempotent for all the functional
// parts of the structure.
func (s *NodeService) IsSame(other *NodeService) bool {
if s.ID != other.ID ||
s.Service != other.Service ||
!reflect.DeepEqual(s.Tags, other.Tags) ||
s.Address != other.Address ||
s.Port != other.Port ||
!reflect.DeepEqual(s.Weights, other.Weights) ||
!reflect.DeepEqual(s.Meta, other.Meta) ||
s.EnableTagOverride != other.EnableTagOverride ||
s.Kind != other.Kind ||
!reflect.DeepEqual(s.Proxy, other.Proxy) ||
s.Connect != other.Connect {
return false
}
return true
}
// IsSameService checks if one Service of a ServiceNode is the same as another,
// without looking at the Raft information or Node information (that's why we
// didn't call it IsEqual).
// This is useful for seeing if an update would be idempotent for all the functional
// parts of the structure.
// In a similar fashion as ToNodeService(), fields related to Node are ignored
// see ServiceNode for more information.
func (s *ServiceNode) IsSameService(other *ServiceNode) bool {
// Skip the following fields, see ServiceNode definition
// Address string
// Datacenter string
// TaggedAddresses map[string]string
// NodeMeta map[string]string
if s.ID != other.ID ||
s.Node != other.Node ||
s.ServiceKind != other.ServiceKind ||
s.ServiceID != other.ServiceID ||
s.ServiceName != other.ServiceName ||
!reflect.DeepEqual(s.ServiceTags, other.ServiceTags) ||
s.ServiceAddress != other.ServiceAddress ||
s.ServicePort != other.ServicePort ||
!reflect.DeepEqual(s.ServiceMeta, other.ServiceMeta) ||
!reflect.DeepEqual(s.ServiceWeights, other.ServiceWeights) ||
s.ServiceEnableTagOverride != other.ServiceEnableTagOverride ||
s.ServiceProxyDestination != other.ServiceProxyDestination ||
!reflect.DeepEqual(s.ServiceProxy, other.ServiceProxy) ||
!reflect.DeepEqual(s.ServiceConnect, other.ServiceConnect) {
return false
}
return true
}
// ToServiceNode converts the given node service to a service node.
func (s *NodeService) ToServiceNode(node string) *ServiceNode {
theWeights := Weights{
Passing: 1,
Warning: 1,
}
if s.Weights != nil {
if err := ValidateWeights(s.Weights); err == nil {
theWeights = *s.Weights
}
}
// DEPRECATED (ProxyDestination) - remove this when removing ProxyDestination
legacyProxyDest := s.Proxy.DestinationServiceName
if legacyProxyDest == "" {
legacyProxyDest = s.ProxyDestination
}
return &ServiceNode{
// Skip ID, see ServiceNode definition.
Node: node,
// Skip Address, see ServiceNode definition.
// Skip TaggedAddresses, see ServiceNode definition.
ServiceKind: s.Kind,
ServiceID: s.ID,
ServiceName: s.Service,
ServiceTags: s.Tags,
ServiceAddress: s.Address,
ServicePort: s.Port,
ServiceMeta: s.Meta,
ServiceWeights: theWeights,
ServiceEnableTagOverride: s.EnableTagOverride,
ServiceProxy: s.Proxy,
ServiceProxyDestination: legacyProxyDest,
ServiceConnect: s.Connect,
RaftIndex: RaftIndex{
CreateIndex: s.CreateIndex,
ModifyIndex: s.ModifyIndex,
},
}
}
type NodeServices struct {
Node *Node
Services map[string]*NodeService
}
// HealthCheck represents a single check on a given node
type HealthCheck struct {
Node string
CheckID types.CheckID // Unique per-node ID
Name string // Check name
Status string // The current check status
Notes string // Additional notes with the status
Output string // Holds output of script runs
ServiceID string // optional associated service
ServiceName string // optional service name
ServiceTags []string // optional service tags
Definition HealthCheckDefinition `bexpr:"-"`
RaftIndex `bexpr:"-"`
}
type HealthCheckDefinition struct {
HTTP string `json:",omitempty"`
TLSSkipVerify bool `json:",omitempty"`
Header map[string][]string `json:",omitempty"`
Method string `json:",omitempty"`
TCP string `json:",omitempty"`
Interval time.Duration `json:",omitempty"`
Timeout time.Duration `json:",omitempty"`
DeregisterCriticalServiceAfter time.Duration `json:",omitempty"`
}
func (d *HealthCheckDefinition) MarshalJSON() ([]byte, error) {
type Alias HealthCheckDefinition
exported := &struct {
Interval string `json:",omitempty"`
Timeout string `json:",omitempty"`
DeregisterCriticalServiceAfter string `json:",omitempty"`
*Alias
}{
Interval: d.Interval.String(),
Timeout: d.Timeout.String(),
DeregisterCriticalServiceAfter: d.DeregisterCriticalServiceAfter.String(),
Alias: (*Alias)(d),
}
if d.Interval == 0 {
exported.Interval = ""
}
if d.Timeout == 0 {
exported.Timeout = ""
}
if d.DeregisterCriticalServiceAfter == 0 {
exported.DeregisterCriticalServiceAfter = ""
}
return json.Marshal(exported)
}
func (d *HealthCheckDefinition) UnmarshalJSON(data []byte) error {
type Alias HealthCheckDefinition
aux := &struct {
Interval string
Timeout string
DeregisterCriticalServiceAfter string
*Alias
}{
Alias: (*Alias)(d),
}
if err := json.Unmarshal(data, &aux); err != nil {
return err
}
var err error
if aux.Interval != "" {
if d.Interval, err = time.ParseDuration(aux.Interval); err != nil {
return err
}
}
if aux.Timeout != "" {
if d.Timeout, err = time.ParseDuration(aux.Timeout); err != nil {
return err
}
}
if aux.DeregisterCriticalServiceAfter != "" {
if d.DeregisterCriticalServiceAfter, err = time.ParseDuration(aux.DeregisterCriticalServiceAfter); err != nil {
return err
}
}
return nil
}
// IsSame checks if one HealthCheck is the same as another, without looking
// at the Raft information (that's why we didn't call it IsEqual). This is
// useful for seeing if an update would be idempotent for all the functional
// parts of the structure.
func (c *HealthCheck) IsSame(other *HealthCheck) bool {
if c.Node != other.Node ||
c.CheckID != other.CheckID ||
c.Name != other.Name ||
c.Status != other.Status ||
c.Notes != other.Notes ||
c.Output != other.Output ||
c.ServiceID != other.ServiceID ||
c.ServiceName != other.ServiceName ||
!reflect.DeepEqual(c.ServiceTags, other.ServiceTags) ||
!reflect.DeepEqual(c.Definition, other.Definition) {
return false
}
return true
}
// Clone returns a distinct clone of the HealthCheck.
func (c *HealthCheck) Clone() *HealthCheck {
clone := new(HealthCheck)
*clone = *c
return clone
}
// HealthChecks is a collection of HealthCheck structs.
type HealthChecks []*HealthCheck
// CheckServiceNode is used to provide the node, its service
// definition, as well as a HealthCheck that is associated.
type CheckServiceNode struct {
Node *Node
Service *NodeService
Checks HealthChecks
}
type CheckServiceNodes []CheckServiceNode
// Shuffle does an in-place random shuffle using the Fisher-Yates algorithm.
func (nodes CheckServiceNodes) Shuffle() {
for i := len(nodes) - 1; i > 0; i-- {
j := rand.Int31n(int32(i + 1))
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// Filter removes nodes that are failing health checks (and any non-passing
// check if that option is selected). Note that this returns the filtered
// results AND modifies the receiver for performance.
func (nodes CheckServiceNodes) Filter(onlyPassing bool) CheckServiceNodes {
return nodes.FilterIgnore(onlyPassing, nil)
}
// FilterIgnore removes nodes that are failing health checks just like Filter.
// It also ignores the status of any check with an ID present in ignoreCheckIDs
// as if that check didn't exist. Note that this returns the filtered results
// AND modifies the receiver for performance.
func (nodes CheckServiceNodes) FilterIgnore(onlyPassing bool,
ignoreCheckIDs []types.CheckID) CheckServiceNodes {
n := len(nodes)
OUTER:
for i := 0; i < n; i++ {
node := nodes[i]
INNER:
for _, check := range node.Checks {
for _, ignore := range ignoreCheckIDs {
if check.CheckID == ignore {
// Skip this _check_ but keep looking at other checks for this node.
continue INNER
}
}
if check.Status == api.HealthCritical ||
(onlyPassing && check.Status != api.HealthPassing) {
nodes[i], nodes[n-1] = nodes[n-1], CheckServiceNode{}
n--
i--
// Skip this _node_ now we've swapped it off the end of the list.
continue OUTER
}
}
}
return nodes[:n]
}
// NodeInfo is used to dump all associated information about
// a node. This is currently used for the UI only, as it is
// rather expensive to generate.
type NodeInfo struct {
ID types.NodeID
Node string
Address string
TaggedAddresses map[string]string
Meta map[string]string
Services []*NodeService
Checks HealthChecks
}
// NodeDump is used to dump all the nodes with all their
// associated data. This is currently used for the UI only,
// as it is rather expensive to generate.
type NodeDump []*NodeInfo
type IndexedNodes struct {
Nodes Nodes
QueryMeta
}
type IndexedServices struct {
Services Services
QueryMeta
}
type IndexedServiceNodes struct {
ServiceNodes ServiceNodes
QueryMeta
}
type IndexedNodeServices struct {
// TODO: This should not be a pointer, see comments in
// agent/catalog_endpoint.go.
NodeServices *NodeServices
QueryMeta
}
type IndexedHealthChecks struct {
HealthChecks HealthChecks
QueryMeta
}
type IndexedCheckServiceNodes struct {
Nodes CheckServiceNodes
QueryMeta
}
type IndexedNodeDump struct {
Dump NodeDump
QueryMeta
}
// IndexedConfigEntries has its own encoding logic which differs from
// ConfigEntryRequest as it has to send a slice of ConfigEntry.
type IndexedConfigEntries struct {
Kind string
Entries []ConfigEntry
QueryMeta
}
func (c *IndexedConfigEntries) MarshalBinary() (data []byte, err error) {
// bs will grow if needed but allocate enough to avoid reallocation in common
// case.
bs := make([]byte, 128)
enc := codec.NewEncoderBytes(&bs, msgpackHandle)
// Encode length.
err = enc.Encode(len(c.Entries))
if err != nil {
return nil, err
}
// Encode kind.
err = enc.Encode(c.Kind)
if err != nil {
return nil, err
}
// Then actual value using alias trick to avoid infinite recursion
type Alias IndexedConfigEntries
err = enc.Encode(struct {
*Alias
}{
Alias: (*Alias)(c),
})
if err != nil {
return nil, err
}
return bs, nil
}
func (c *IndexedConfigEntries) UnmarshalBinary(data []byte) error {
// First decode the number of entries.
var numEntries int
dec := codec.NewDecoderBytes(data, msgpackHandle)
if err := dec.Decode(&numEntries); err != nil {
return err
}
// Next decode the kind.
var kind string
if err := dec.Decode(&kind); err != nil {
return err
}
// Then decode the slice of ConfigEntries
c.Entries = make([]ConfigEntry, numEntries)
for i := 0; i < numEntries; i++ {
entry, err := MakeConfigEntry(kind, "")
if err != nil {
return err
}
c.Entries[i] = entry
}
// Alias juggling to prevent infinite recursive calls back to this decode
// method.
type Alias IndexedConfigEntries
as := struct {
*Alias
}{
Alias: (*Alias)(c),
}
if err := dec.Decode(&as); err != nil {
return err
}
return nil
}
type IndexedGenericConfigEntries struct {
Entries []ConfigEntry
QueryMeta
}
func (c *IndexedGenericConfigEntries) MarshalBinary() (data []byte, err error) {
// bs will grow if needed but allocate enough to avoid reallocation in common
// case.
bs := make([]byte, 128)
enc := codec.NewEncoderBytes(&bs, msgpackHandle)
if err := enc.Encode(len(c.Entries)); err != nil {
return nil, err
}
for _, entry := range c.Entries {
if err := enc.Encode(entry.GetKind()); err != nil {
return nil, err
}
if err := enc.Encode(entry); err != nil {
return nil, err
}
}
if err := enc.Encode(c.QueryMeta); err != nil {
return nil, err
}
return bs, nil
}
func (c *IndexedGenericConfigEntries) UnmarshalBinary(data []byte) error {
// First decode the number of entries.
var numEntries int
dec := codec.NewDecoderBytes(data, msgpackHandle)
if err := dec.Decode(&numEntries); err != nil {
return err
}
// Then decode the slice of ConfigEntries
c.Entries = make([]ConfigEntry, numEntries)
for i := 0; i < numEntries; i++ {
var kind string
if err := dec.Decode(&kind); err != nil {
return err
}
entry, err := MakeConfigEntry(kind, "")
if err != nil {
return err
}
if err := dec.Decode(entry); err != nil {
return err
}
c.Entries[i] = entry
}
if err := dec.Decode(&c.QueryMeta); err != nil {
return err
}
return nil
}
// DirEntry is used to represent a directory entry. This is
// used for values in our Key-Value store.
type DirEntry struct {
LockIndex uint64
Key string
Flags uint64
Value []byte
Session string `json:",omitempty"`
RaftIndex
}
// Returns a clone of the given directory entry.
func (d *DirEntry) Clone() *DirEntry {
return &DirEntry{
LockIndex: d.LockIndex,
Key: d.Key,
Flags: d.Flags,
Value: d.Value,
Session: d.Session,
RaftIndex: RaftIndex{
CreateIndex: d.CreateIndex,
ModifyIndex: d.ModifyIndex,
},
}
}
type DirEntries []*DirEntry
// KVSRequest is used to operate on the Key-Value store
type KVSRequest struct {
Datacenter string
Op api.KVOp // Which operation are we performing
DirEnt DirEntry // Which directory entry
WriteRequest
}
func (r *KVSRequest) RequestDatacenter() string {
return r.Datacenter
}
// KeyRequest is used to request a key, or key prefix
type KeyRequest struct {
Datacenter string
Key string
QueryOptions
}
func (r *KeyRequest) RequestDatacenter() string {
return r.Datacenter
}
// KeyListRequest is used to list keys
type KeyListRequest struct {
Datacenter string
Prefix string
Seperator string
QueryOptions
}
func (r *KeyListRequest) RequestDatacenter() string {
return r.Datacenter
}
type IndexedDirEntries struct {
Entries DirEntries
QueryMeta
}
type IndexedKeyList struct {
Keys []string
QueryMeta
}
type SessionBehavior string
const (
SessionKeysRelease SessionBehavior = "release"
SessionKeysDelete = "delete"
)
const (
SessionTTLMax = 24 * time.Hour
SessionTTLMultiplier = 2
)
// Session is used to represent an open session in the KV store.
// This issued to associate node checks with acquired locks.
type Session struct {
ID string
Name string
Node string
Checks []types.CheckID
LockDelay time.Duration
Behavior SessionBehavior // What to do when session is invalidated
TTL string
RaftIndex
}
type Sessions []*Session
type SessionOp string
const (
SessionCreate SessionOp = "create"
SessionDestroy = "destroy"
)
// SessionRequest is used to operate on sessions
type SessionRequest struct {
Datacenter string
Op SessionOp // Which operation are we performing
Session Session // Which session
WriteRequest
}
func (r *SessionRequest) RequestDatacenter() string {
return r.Datacenter
}
// SessionSpecificRequest is used to request a session by ID
type SessionSpecificRequest struct {
Datacenter string
Session string
QueryOptions
}
func (r *SessionSpecificRequest) RequestDatacenter() string {
return r.Datacenter
}
type IndexedSessions struct {
Sessions Sessions
QueryMeta
}
// Coordinate stores a node name with its associated network coordinate.
type Coordinate struct {
Node string
Segment string
Coord *coordinate.Coordinate
}
type Coordinates []*Coordinate
// IndexedCoordinate is used to represent a single node's coordinate from the state
// store.
type IndexedCoordinate struct {
Coord *coordinate.Coordinate
QueryMeta
}
// IndexedCoordinates is used to represent a list of nodes and their
// corresponding raw coordinates.
type IndexedCoordinates struct {
Coordinates Coordinates
QueryMeta
}
// DatacenterMap is used to represent a list of nodes with their raw coordinates,
// associated with a datacenter. Coordinates are only compatible between nodes in
// the same area.
type DatacenterMap struct {
Datacenter string
AreaID types.AreaID
Coordinates Coordinates
}
// CoordinateUpdateRequest is used to update the network coordinate of a given
// node.
type CoordinateUpdateRequest struct {
Datacenter string
Node string
Segment string
Coord *coordinate.Coordinate
WriteRequest
}
// RequestDatacenter returns the datacenter for a given update request.
func (c *CoordinateUpdateRequest) RequestDatacenter() string {
return c.Datacenter
}
// EventFireRequest is used to ask a server to fire
// a Serf event. It is a bit odd, since it doesn't depend on
// the catalog or leader. Any node can respond, so it's not quite
// like a standard write request. This is used only internally.
type EventFireRequest struct {
Datacenter string
Name string
Payload []byte
// Not using WriteRequest so that any server can process
// the request. It is a bit unusual...
QueryOptions
}
func (r *EventFireRequest) RequestDatacenter() string {
return r.Datacenter
}
// EventFireResponse is used to respond to a fire request.
type EventFireResponse struct {
QueryMeta
}
type TombstoneOp string
const (
TombstoneReap TombstoneOp = "reap"
)
// TombstoneRequest is used to trigger a reaping of the tombstones
type TombstoneRequest struct {
Datacenter string
Op TombstoneOp
ReapIndex uint64
WriteRequest
}
func (r *TombstoneRequest) RequestDatacenter() string {
return r.Datacenter
}
// msgpackHandle is a shared handle for encoding/decoding of structs
var msgpackHandle = &codec.MsgpackHandle{}
// Decode is used to decode a MsgPack encoded object
func Decode(buf []byte, out interface{}) error {
return codec.NewDecoder(bytes.NewReader(buf), msgpackHandle).Decode(out)
}
// Encode is used to encode a MsgPack object with type prefix
func Encode(t MessageType, msg interface{}) ([]byte, error) {
var buf bytes.Buffer
buf.WriteByte(uint8(t))
err := codec.NewEncoder(&buf, msgpackHandle).Encode(msg)
return buf.Bytes(), err
}
// CompoundResponse is an interface for gathering multiple responses. It is
// used in cross-datacenter RPC calls where more than 1 datacenter is
// expected to reply.
type CompoundResponse interface {
// Add adds a new response to the compound response
Add(interface{})
// New returns an empty response object which can be passed around by
// reference, and then passed to Add() later on.
New() interface{}
}
type KeyringOp string
const (
KeyringList KeyringOp = "list"
KeyringInstall = "install"
KeyringUse = "use"
KeyringRemove = "remove"
)
// KeyringRequest encapsulates a request to modify an encryption keyring.
// It can be used for install, remove, or use key type operations.
type KeyringRequest struct {
Operation KeyringOp
Key string
Datacenter string
Forwarded bool
RelayFactor uint8
QueryOptions
}
func (r *KeyringRequest) RequestDatacenter() string {
return r.Datacenter
}
// KeyringResponse is a unified key response and can be used for install,
// remove, use, as well as listing key queries.
type KeyringResponse struct {
WAN bool
Datacenter string
Segment string
Messages map[string]string `json:",omitempty"`
Keys map[string]int
NumNodes int
Error string `json:",omitempty"`
}
// KeyringResponses holds multiple responses to keyring queries. Each
// datacenter replies independently, and KeyringResponses is used as a
// container for the set of all responses.
type KeyringResponses struct {
Responses []*KeyringResponse
QueryMeta
}
func (r *KeyringResponses) Add(v interface{}) {
val := v.(*KeyringResponses)
r.Responses = append(r.Responses, val.Responses...)
}
func (r *KeyringResponses) New() interface{} {
return new(KeyringResponses)
}