open-consul/agent/consul/state/tombstone_gc.go

175 lines
5.0 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package state
import (
"fmt"
"sync"
"time"
)
// TombstoneGC is used to track creation of tombstones so that they can be
// garbage collected after their TTL expires. The tombstones allow queries to
// provide monotonic index values within the TTL window. The GC is used to
// prevent monotonic growth in storage usage. This is a trade off between the
// length of the TTL and the storage overhead.
//
// In practice, this is required to fix the issue of delete visibility. When
// data is deleted from the KV store, the "latest" row can go backwards if the
// newest row is removed. The tombstones provide a way to ensure time doesn't
// move backwards within some interval.
type TombstoneGC struct {
// ttl sets the TTL for tombstones.
ttl time.Duration
// granularity determines how we bin TTLs into timers.
granularity time.Duration
// enabled controls if we actually setup any timers.
enabled bool
// expires maps the time of expiration to the highest tombstone value
// that should be expired.
expires map[time.Time]*expireInterval
// expireCh is used to stream expiration to the leader for processing.
expireCh chan uint64
sync.Mutex
}
// expireInterval is used to track the maximum index to expire in a given
// interval with a timer.
type expireInterval struct {
// maxIndex has the highest tombstone index that should be GC-d.
maxIndex uint64
// timer is the timer tracking this bin.
timer *time.Timer
}
// NewTombstoneGC is used to construct a new TombstoneGC given a TTL for
// tombstones and a tracking granularity. Longer TTLs ensure correct behavior
// for more time, but use more storage. A shorter granularity increases the
// number of Raft transactions and reduce how far past the TTL we perform GC.
func NewTombstoneGC(ttl, granularity time.Duration) (*TombstoneGC, error) {
// Sanity check the inputs
if ttl <= 0 || granularity <= 0 {
return nil, fmt.Errorf("Tombstone TTL and granularity must be positive")
}
t := &TombstoneGC{
ttl: ttl,
granularity: granularity,
expires: make(map[time.Time]*expireInterval),
expireCh: make(chan uint64, 1),
}
return t, nil
}
// ExpireCh is used to return a channel that streams the next index that should
// be expired.
func (t *TombstoneGC) ExpireCh() <-chan uint64 {
return t.expireCh
}
// SetEnabled is used to control if the tombstone GC is
// enabled. Should only be enabled by the leader node.
func (t *TombstoneGC) SetEnabled(enabled bool) {
t.Lock()
defer t.Unlock()
if enabled == t.enabled {
return
}
// Stop all the timers and clear
if !enabled {
for _, exp := range t.expires {
exp.timer.Stop()
}
t.expires = make(map[time.Time]*expireInterval)
}
// Update the status
t.enabled = enabled
}
// Hint is used to indicate that keys at the given index have been
// deleted, and that their GC should be scheduled.
func (t *TombstoneGC) Hint(index uint64) {
expires := t.nextExpires()
t.Lock()
defer t.Unlock()
if !t.enabled {
return
}
// Check for an existing expiration timer and bump its index if we
// find one.
exp, ok := t.expires[expires]
if ok {
if index > exp.maxIndex {
exp.maxIndex = index
}
return
}
// Create a new expiration timer.
t.expires[expires] = &expireInterval{
maxIndex: index,
timer: time.AfterFunc(expires.Sub(time.Now()), func() {
t.expireTime(expires)
}),
}
}
// PendingExpiration is used to check if any expirations are pending.
func (t *TombstoneGC) PendingExpiration() bool {
t.Lock()
defer t.Unlock()
return len(t.expires) > 0
}
// nextExpires is used to calculate the next expiration time, based on the
// granularity that is set. This allows us to bin expirations and avoid a ton
// of timers.
func (t *TombstoneGC) nextExpires() time.Time {
// The Round(0) call here is to shed the monotonic time so that we
// can safely use these as map keys. See #3670 for more details.
expires := time.Now().Add(t.ttl).Round(0)
remain := expires.UnixNano() % int64(t.granularity)
adj := expires.Add(t.granularity - time.Duration(remain))
return adj
}
// purgeBin gets the index for the given bin and then deletes the bin. If there
// is no bin then this will return 0 for the index, which is ok.
func (t *TombstoneGC) purgeBin(expires time.Time) uint64 {
t.Lock()
defer t.Unlock()
// Get the maximum index and clear the entry. It's possible that the GC
// has been shut down while this timer fired and got blocked on the lock,
// so if there's nothing in the map for us we just exit out since there
// is no work to do.
exp, ok := t.expires[expires]
if !ok {
return 0
}
delete(t.expires, expires)
return exp.maxIndex
}
// expireTime is used to expire the entries at the given time.
func (t *TombstoneGC) expireTime(expires time.Time) {
// This is careful to take the lock only while we are fetching the index
// since the channel write might get blocked for reasons that could also
// need to hint GC (see #3700).
if index := t.purgeBin(expires); index > 0 {
t.expireCh <- index
}
}