904 lines
25 KiB
Go
904 lines
25 KiB
Go
package consul
|
|
|
|
import (
|
|
"context"
|
|
"crypto/tls"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"strings"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/armon/go-metrics"
|
|
"github.com/hashicorp/consul/acl"
|
|
"github.com/hashicorp/consul/agent/consul/state"
|
|
"github.com/hashicorp/consul/agent/consul/wanfed"
|
|
"github.com/hashicorp/consul/agent/metadata"
|
|
"github.com/hashicorp/consul/agent/pool"
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/lib"
|
|
"github.com/hashicorp/consul/logging"
|
|
connlimit "github.com/hashicorp/go-connlimit"
|
|
"github.com/hashicorp/go-hclog"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/go-raftchunking"
|
|
"github.com/hashicorp/memberlist"
|
|
msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc"
|
|
"github.com/hashicorp/raft"
|
|
"github.com/hashicorp/yamux"
|
|
)
|
|
|
|
const (
|
|
// jitterFraction is a the limit to the amount of jitter we apply
|
|
// to a user specified MaxQueryTime. We divide the specified time by
|
|
// the fraction. So 16 == 6.25% limit of jitter. This same fraction
|
|
// is applied to the RPCHoldTimeout
|
|
jitterFraction = 16
|
|
|
|
// Warn if the Raft command is larger than this.
|
|
// If it's over 1MB something is probably being abusive.
|
|
raftWarnSize = 1024 * 1024
|
|
|
|
// enqueueLimit caps how long we will wait to enqueue
|
|
// a new Raft command. Something is probably wrong if this
|
|
// value is ever reached. However, it prevents us from blocking
|
|
// the requesting goroutine forever.
|
|
enqueueLimit = 30 * time.Second
|
|
)
|
|
|
|
var (
|
|
ErrChunkingResubmit = errors.New("please resubmit call for rechunking")
|
|
)
|
|
|
|
func (s *Server) rpcLogger() hclog.Logger {
|
|
return s.loggers.Named(logging.RPC)
|
|
}
|
|
|
|
// listen is used to listen for incoming RPC connections
|
|
func (s *Server) listen(listener net.Listener) {
|
|
for {
|
|
// Accept a connection
|
|
conn, err := listener.Accept()
|
|
if err != nil {
|
|
if s.shutdown {
|
|
return
|
|
}
|
|
s.rpcLogger().Error("failed to accept RPC conn", "error", err)
|
|
continue
|
|
}
|
|
|
|
free, err := s.rpcConnLimiter.Accept(conn)
|
|
if err != nil {
|
|
s.rpcLogger().Error("rejecting RPC conn from because rpc_max_conns_per_client exceeded", "conn", logConn(conn))
|
|
conn.Close()
|
|
continue
|
|
}
|
|
// Wrap conn so it will be auto-freed from conn limiter when it closes.
|
|
conn = connlimit.Wrap(conn, free)
|
|
|
|
go s.handleConn(conn, false)
|
|
metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1)
|
|
}
|
|
}
|
|
|
|
// logConn is a wrapper around memberlist's LogConn so that we format references
|
|
// to "from" addresses in a consistent way. This is just a shorter name.
|
|
func logConn(conn net.Conn) string {
|
|
return memberlist.LogConn(conn)
|
|
}
|
|
|
|
// handleConn is used to determine if this is a Raft or
|
|
// Consul type RPC connection and invoke the correct handler
|
|
func (s *Server) handleConn(conn net.Conn, isTLS bool) {
|
|
// Limit how long the client can hold the connection open before they send the
|
|
// magic byte (and authenticate when mTLS is enabled). If `isTLS == true` then
|
|
// this also enforces a timeout on how long it takes for the handshake to
|
|
// complete since tls.Conn.Read implicitly calls Handshake().
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Now().Add(s.config.RPCHandshakeTimeout))
|
|
}
|
|
|
|
if !isTLS && s.tlsConfigurator.MutualTLSCapable() {
|
|
// See if actually this is native TLS multiplexed onto the old
|
|
// "type-byte" system.
|
|
|
|
peekedConn, nativeTLS, err := pool.PeekForTLS(conn)
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error(
|
|
"failed to read first byte",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
if nativeTLS {
|
|
s.handleNativeTLS(peekedConn)
|
|
return
|
|
}
|
|
conn = peekedConn
|
|
}
|
|
|
|
// Read a single byte
|
|
buf := make([]byte, 1)
|
|
|
|
if _, err := conn.Read(buf); err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error("failed to read byte",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
typ := pool.RPCType(buf[0])
|
|
|
|
// Reset the deadline as we aren't sure what is expected next - it depends on
|
|
// the protocol.
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Time{})
|
|
}
|
|
|
|
// Enforce TLS if VerifyIncoming is set
|
|
if s.tlsConfigurator.VerifyIncomingRPC() && !isTLS && typ != pool.RPCTLS && typ != pool.RPCTLSInsecure {
|
|
s.rpcLogger().Warn("Non-TLS connection attempted with VerifyIncoming set", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Switch on the byte
|
|
switch typ {
|
|
case pool.RPCConsul:
|
|
s.handleConsulConn(conn)
|
|
|
|
case pool.RPCRaft:
|
|
metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1)
|
|
s.raftLayer.Handoff(conn)
|
|
|
|
case pool.RPCTLS:
|
|
// Don't allow malicious client to create TLS-in-TLS for ever.
|
|
if isTLS {
|
|
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingRPCConfig())
|
|
s.handleConn(conn, true)
|
|
|
|
case pool.RPCMultiplexV2:
|
|
s.handleMultiplexV2(conn)
|
|
|
|
case pool.RPCSnapshot:
|
|
s.handleSnapshotConn(conn)
|
|
|
|
case pool.RPCTLSInsecure:
|
|
// Don't allow malicious client to create TLS-in-TLS for ever.
|
|
if isTLS {
|
|
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingInsecureRPCConfig())
|
|
s.handleInsecureConn(conn)
|
|
|
|
default:
|
|
if !s.handleEnterpriseRPCConn(typ, conn, isTLS) {
|
|
s.rpcLogger().Error("unrecognized RPC byte",
|
|
"byte", typ,
|
|
"conn", logConn(conn),
|
|
)
|
|
conn.Close()
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) handleNativeTLS(conn net.Conn) {
|
|
s.rpcLogger().Trace(
|
|
"detected actual TLS over RPC port",
|
|
"conn", logConn(conn),
|
|
)
|
|
|
|
tlscfg := s.tlsConfigurator.IncomingALPNRPCConfig(pool.RPCNextProtos)
|
|
tlsConn := tls.Server(conn, tlscfg)
|
|
|
|
// Force the handshake to conclude.
|
|
if err := tlsConn.Handshake(); err != nil {
|
|
s.rpcLogger().Error(
|
|
"TLS handshake failed",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Reset the deadline as we aren't sure what is expected next - it depends on
|
|
// the protocol.
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Time{})
|
|
}
|
|
|
|
var (
|
|
cs = tlsConn.ConnectionState()
|
|
sni = cs.ServerName
|
|
nextProto = cs.NegotiatedProtocol
|
|
|
|
transport = s.memberlistTransportWAN
|
|
)
|
|
|
|
s.rpcLogger().Trace(
|
|
"accepted nativeTLS RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
)
|
|
|
|
switch nextProto {
|
|
case pool.ALPN_RPCConsul:
|
|
s.handleConsulConn(tlsConn)
|
|
|
|
case pool.ALPN_RPCRaft:
|
|
metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1)
|
|
s.raftLayer.Handoff(tlsConn)
|
|
|
|
case pool.ALPN_RPCMultiplexV2:
|
|
s.handleMultiplexV2(tlsConn)
|
|
|
|
case pool.ALPN_RPCSnapshot:
|
|
s.handleSnapshotConn(tlsConn)
|
|
|
|
case pool.ALPN_WANGossipPacket:
|
|
if err := s.handleALPN_WANGossipPacketStream(tlsConn); err != nil && err != io.EOF {
|
|
s.rpcLogger().Error(
|
|
"failed to ingest RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
|
|
case pool.ALPN_WANGossipStream:
|
|
// No need to defer the conn.Close() here, the Ingest methods do that.
|
|
if err := transport.IngestStream(tlsConn); err != nil {
|
|
s.rpcLogger().Error(
|
|
"failed to ingest RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
|
|
default:
|
|
if !s.handleEnterpriseNativeTLSConn(nextProto, conn) {
|
|
s.rpcLogger().Error(
|
|
"discarding RPC for unknown negotiated protocol",
|
|
"failed to ingest RPC",
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
)
|
|
conn.Close()
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleMultiplexV2 is used to multiplex a single incoming connection
|
|
// using the Yamux multiplexer
|
|
func (s *Server) handleMultiplexV2(conn net.Conn) {
|
|
defer conn.Close()
|
|
conf := yamux.DefaultConfig()
|
|
// override the default because LogOutput conflicts with Logger
|
|
conf.LogOutput = nil
|
|
// TODO: should this be created once and cached?
|
|
conf.Logger = s.logger.StandardLogger(&hclog.StandardLoggerOptions{InferLevels: true})
|
|
server, _ := yamux.Server(conn, conf)
|
|
for {
|
|
sub, err := server.Accept()
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error("multiplex conn accept failed",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
return
|
|
}
|
|
|
|
// In the beginning only RPC was supposed to be multiplexed
|
|
// with yamux. In order to add the ability to multiplex network
|
|
// area connections, this workaround was added.
|
|
// This code peeks the first byte and checks if it is
|
|
// RPCGossip, in which case this is handled by enterprise code.
|
|
// Otherwise this connection is handled like before by the RPC
|
|
// handler.
|
|
// This wouldn't work if a normal RPC could start with
|
|
// RPCGossip(6). In messagepack a 6 encodes a positive fixint:
|
|
// https://github.com/msgpack/msgpack/blob/master/spec.md.
|
|
// None of the RPCs we are doing starts with that, usually it is
|
|
// a string for datacenter.
|
|
peeked, first, err := pool.PeekFirstByte(sub)
|
|
if err != nil {
|
|
s.rpcLogger().Error("Problem peeking connection", "conn", logConn(sub), "err", err)
|
|
sub.Close()
|
|
return
|
|
}
|
|
sub = peeked
|
|
switch first {
|
|
case pool.RPCGossip:
|
|
buf := make([]byte, 1)
|
|
sub.Read(buf)
|
|
go func() {
|
|
if !s.handleEnterpriseRPCConn(pool.RPCGossip, sub, false) {
|
|
s.rpcLogger().Error("unrecognized RPC byte",
|
|
"byte", pool.RPCGossip,
|
|
"conn", logConn(conn),
|
|
)
|
|
sub.Close()
|
|
}
|
|
}()
|
|
default:
|
|
go s.handleConsulConn(sub)
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleConsulConn is used to service a single Consul RPC connection
|
|
func (s *Server) handleConsulConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.rpcServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.rpcLogger().Error("RPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleInsecureConsulConn is used to service a single Consul INSECURERPC connection
|
|
func (s *Server) handleInsecureConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.insecureRPCServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.rpcLogger().Error("INSECURERPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleSnapshotConn is used to dispatch snapshot saves and restores, which
|
|
// stream so don't use the normal RPC mechanism.
|
|
func (s *Server) handleSnapshotConn(conn net.Conn) {
|
|
go func() {
|
|
defer conn.Close()
|
|
if err := s.handleSnapshotRequest(conn); err != nil {
|
|
s.rpcLogger().Error("Snapshot RPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
}()
|
|
}
|
|
|
|
func (s *Server) handleALPN_WANGossipPacketStream(conn net.Conn) error {
|
|
defer conn.Close()
|
|
|
|
transport := s.memberlistTransportWAN
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return nil
|
|
default:
|
|
}
|
|
|
|
// Note: if we need to change this format to have additional header
|
|
// information we can just negotiate a different ALPN protocol instead
|
|
// of needing any sort of version field here.
|
|
prefixLen, err := readUint32(conn, wanfed.GossipPacketMaxIdleTime)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Avoid a memory exhaustion DOS vector here by capping how large this
|
|
// packet can be to something reasonable.
|
|
if prefixLen > wanfed.GossipPacketMaxByteSize {
|
|
return fmt.Errorf("gossip packet size %d exceeds threshold of %d", prefixLen, wanfed.GossipPacketMaxByteSize)
|
|
}
|
|
|
|
lc := &limitedConn{
|
|
Conn: conn,
|
|
lr: io.LimitReader(conn, int64(prefixLen)),
|
|
}
|
|
|
|
if err := transport.IngestPacket(lc, conn.RemoteAddr(), time.Now(), false); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
func readUint32(conn net.Conn, timeout time.Duration) (uint32, error) {
|
|
// Since requests are framed we can easily just set a deadline on
|
|
// reading that frame and then disable it for the rest of the body.
|
|
if err := conn.SetReadDeadline(time.Now().Add(timeout)); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
var v uint32
|
|
if err := binary.Read(conn, binary.BigEndian, &v); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
if err := conn.SetReadDeadline(time.Time{}); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
return v, nil
|
|
}
|
|
|
|
type limitedConn struct {
|
|
net.Conn
|
|
lr io.Reader
|
|
}
|
|
|
|
func (c *limitedConn) Read(b []byte) (n int, err error) {
|
|
return c.lr.Read(b)
|
|
}
|
|
|
|
// canRetry returns true if the given situation is safe for a retry.
|
|
func canRetry(args interface{}, err error) bool {
|
|
// No leader errors are always safe to retry since no state could have
|
|
// been changed.
|
|
if structs.IsErrNoLeader(err) {
|
|
return true
|
|
}
|
|
|
|
// If we are chunking and it doesn't seem to have completed, try again
|
|
intErr, ok := args.(error)
|
|
if ok && strings.Contains(intErr.Error(), ErrChunkingResubmit.Error()) {
|
|
return true
|
|
}
|
|
|
|
// Reads are safe to retry for stream errors, such as if a server was
|
|
// being shut down.
|
|
info, ok := args.(structs.RPCInfo)
|
|
if ok && info.IsRead() && lib.IsErrEOF(err) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// ForwardRPC is used to forward an RPC request to a remote DC or to the local leader
|
|
// Returns a bool of if forwarding was performed, as well as any error
|
|
func (s *Server) ForwardRPC(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) {
|
|
var firstCheck time.Time
|
|
|
|
// Handle DC forwarding
|
|
dc := info.RequestDatacenter()
|
|
if dc != s.config.Datacenter {
|
|
// Local tokens only work within the current datacenter. Check to see
|
|
// if we are attempting to forward one to a remote datacenter and strip
|
|
// it, falling back on the anonymous token on the other end.
|
|
if token := info.TokenSecret(); token != "" {
|
|
done, ident, err := s.ResolveIdentityFromToken(token)
|
|
if done {
|
|
if err != nil && !acl.IsErrNotFound(err) {
|
|
return false, err
|
|
}
|
|
if ident != nil && ident.IsLocal() {
|
|
// Strip it from the request.
|
|
info.SetTokenSecret("")
|
|
defer info.SetTokenSecret(token)
|
|
}
|
|
}
|
|
}
|
|
|
|
err := s.forwardDC(method, dc, args, reply)
|
|
return true, err
|
|
}
|
|
|
|
// Check if we can allow a stale read, ensure our local DB is initialized
|
|
if info.IsRead() && info.AllowStaleRead() && !s.raft.LastContact().IsZero() {
|
|
return false, nil
|
|
}
|
|
|
|
CHECK_LEADER:
|
|
// Fail fast if we are in the process of leaving
|
|
select {
|
|
case <-s.leaveCh:
|
|
return true, structs.ErrNoLeader
|
|
default:
|
|
}
|
|
|
|
// Find the leader
|
|
isLeader, leader := s.getLeader()
|
|
|
|
// Handle the case we are the leader
|
|
if isLeader {
|
|
return false, nil
|
|
}
|
|
|
|
// Handle the case of a known leader
|
|
rpcErr := structs.ErrNoLeader
|
|
if leader != nil {
|
|
rpcErr = s.connPool.RPC(s.config.Datacenter, leader.ShortName, leader.Addr,
|
|
method, args, reply)
|
|
if rpcErr != nil && canRetry(info, rpcErr) {
|
|
goto RETRY
|
|
}
|
|
return true, rpcErr
|
|
}
|
|
|
|
RETRY:
|
|
// Gate the request until there is a leader
|
|
if firstCheck.IsZero() {
|
|
firstCheck = time.Now()
|
|
}
|
|
if time.Since(firstCheck) < s.config.RPCHoldTimeout {
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction)
|
|
select {
|
|
case <-time.After(jitter):
|
|
goto CHECK_LEADER
|
|
case <-s.leaveCh:
|
|
case <-s.shutdownCh:
|
|
}
|
|
}
|
|
|
|
// No leader found and hold time exceeded
|
|
return true, rpcErr
|
|
}
|
|
|
|
// getLeader returns if the current node is the leader, and if not then it
|
|
// returns the leader which is potentially nil if the cluster has not yet
|
|
// elected a leader.
|
|
func (s *Server) getLeader() (bool, *metadata.Server) {
|
|
// Check if we are the leader
|
|
if s.IsLeader() {
|
|
return true, nil
|
|
}
|
|
|
|
// Get the leader
|
|
leader := s.raft.Leader()
|
|
if leader == "" {
|
|
return false, nil
|
|
}
|
|
|
|
// Lookup the server
|
|
server := s.serverLookup.Server(leader)
|
|
|
|
// Server could be nil
|
|
return false, server
|
|
}
|
|
|
|
// forwardDC is used to forward an RPC call to a remote DC, or fail if no servers
|
|
func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error {
|
|
manager, server, ok := s.router.FindRoute(dc)
|
|
if !ok {
|
|
if s.router.HasDatacenter(dc) {
|
|
s.rpcLogger().Warn("RPC request to DC is currently failing as no server can be reached", "datacenter", dc)
|
|
return structs.ErrDCNotAvailable
|
|
}
|
|
s.rpcLogger().Warn("RPC request for DC is currently failing as no path was found",
|
|
"datacenter", dc,
|
|
"method", method,
|
|
)
|
|
return structs.ErrNoDCPath
|
|
}
|
|
|
|
metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1,
|
|
[]metrics.Label{{Name: "datacenter", Value: dc}})
|
|
if err := s.connPool.RPC(dc, server.ShortName, server.Addr, method, args, reply); err != nil {
|
|
manager.NotifyFailedServer(server)
|
|
s.rpcLogger().Error("RPC failed to server in DC",
|
|
"server", server.Addr,
|
|
"datacenter", dc,
|
|
"method", method,
|
|
"error", err,
|
|
)
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// globalRPC is used to forward an RPC request to one server in each datacenter.
|
|
// This will only error for RPC-related errors. Otherwise, application-level
|
|
// errors can be sent in the response objects.
|
|
func (s *Server) globalRPC(method string, args interface{},
|
|
reply structs.CompoundResponse) error {
|
|
|
|
// Make a new request into each datacenter
|
|
dcs := s.router.GetDatacenters()
|
|
|
|
replies, total := 0, len(dcs)
|
|
errorCh := make(chan error, total)
|
|
respCh := make(chan interface{}, total)
|
|
|
|
for _, dc := range dcs {
|
|
go func(dc string) {
|
|
rr := reply.New()
|
|
if err := s.forwardDC(method, dc, args, &rr); err != nil {
|
|
errorCh <- err
|
|
return
|
|
}
|
|
respCh <- rr
|
|
}(dc)
|
|
}
|
|
|
|
for replies < total {
|
|
select {
|
|
case err := <-errorCh:
|
|
return err
|
|
case rr := <-respCh:
|
|
reply.Add(rr)
|
|
replies++
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type raftEncoder func(structs.MessageType, interface{}) ([]byte, error)
|
|
|
|
// raftApply is used to encode a message, run it through raft, and return
|
|
// the FSM response along with any errors
|
|
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyMsgpack(t, msg)
|
|
}
|
|
|
|
// raftApplyMsgpack will msgpack encode the request and then run it through raft,
|
|
// then return the FSM response along with any errors.
|
|
func (s *Server) raftApplyMsgpack(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyWithEncoder(t, msg, structs.Encode)
|
|
}
|
|
|
|
// raftApplyProtobuf will protobuf encode the request and then run it through raft,
|
|
// then return the FSM response along with any errors.
|
|
func (s *Server) raftApplyProtobuf(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyWithEncoder(t, msg, structs.EncodeProtoInterface)
|
|
}
|
|
|
|
// raftApplyWithEncoder is used to encode a message, run it through raft,
|
|
// and return the FSM response along with any errors. Unlike raftApply this
|
|
// takes the encoder to use as an argument.
|
|
func (s *Server) raftApplyWithEncoder(t structs.MessageType, msg interface{}, encoder raftEncoder) (interface{}, error) {
|
|
if encoder == nil {
|
|
return nil, fmt.Errorf("Failed to encode request: nil encoder")
|
|
}
|
|
buf, err := encoder(t, msg)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Failed to encode request: %v", err)
|
|
}
|
|
|
|
// Warn if the command is very large
|
|
if n := len(buf); n > raftWarnSize {
|
|
s.rpcLogger().Warn("Attempting to apply large raft entry", "size_in_bytes", n)
|
|
}
|
|
|
|
var chunked bool
|
|
var future raft.ApplyFuture
|
|
switch {
|
|
case len(buf) <= raft.SuggestedMaxDataSize || t != structs.KVSRequestType:
|
|
future = s.raft.Apply(buf, enqueueLimit)
|
|
default:
|
|
chunked = true
|
|
future = raftchunking.ChunkingApply(buf, nil, enqueueLimit, s.raft.ApplyLog)
|
|
}
|
|
|
|
if err := future.Error(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resp := future.Response()
|
|
|
|
if chunked {
|
|
// In this case we didn't apply all chunks successfully, possibly due
|
|
// to a term change; resubmit
|
|
if resp == nil {
|
|
// This returns the error in the interface because the raft library
|
|
// returns errors from the FSM via the future, not via err from the
|
|
// apply function. Downstream client code expects to see any error
|
|
// from the FSM (as opposed to the apply itself) and decide whether
|
|
// it can retry in the future's response.
|
|
return ErrChunkingResubmit, nil
|
|
}
|
|
// We expect that this conversion should always work
|
|
chunkedSuccess, ok := resp.(raftchunking.ChunkingSuccess)
|
|
if !ok {
|
|
return nil, errors.New("unknown type of response back from chunking FSM")
|
|
}
|
|
// Return the inner wrapped response
|
|
return chunkedSuccess.Response, nil
|
|
}
|
|
|
|
return resp, nil
|
|
}
|
|
|
|
// queryFn is used to perform a query operation. If a re-query is needed, the
|
|
// passed-in watch set will be used to block for changes. The passed-in state
|
|
// store should be used (vs. calling fsm.State()) since the given state store
|
|
// will be correctly watched for changes if the state store is restored from
|
|
// a snapshot.
|
|
type queryFn func(memdb.WatchSet, *state.Store) error
|
|
|
|
// blockingQuery is used to process a potentially blocking query operation.
|
|
func (s *Server) blockingQuery(queryOpts structs.QueryOptionsCompat, queryMeta structs.QueryMetaCompat, fn queryFn) error {
|
|
var cancel func()
|
|
var ctx context.Context = &lib.StopChannelContext{StopCh: s.shutdownCh}
|
|
|
|
var queriesBlocking uint64
|
|
var queryTimeout time.Duration
|
|
|
|
// Instrument all queries run
|
|
metrics.IncrCounter([]string{"rpc", "query"}, 1)
|
|
|
|
minQueryIndex := queryOpts.GetMinQueryIndex()
|
|
// Fast path right to the non-blocking query.
|
|
if minQueryIndex == 0 {
|
|
goto RUN_QUERY
|
|
}
|
|
|
|
queryTimeout = queryOpts.GetMaxQueryTime()
|
|
// Restrict the max query time, and ensure there is always one.
|
|
if queryTimeout > s.config.MaxQueryTime {
|
|
queryTimeout = s.config.MaxQueryTime
|
|
} else if queryTimeout <= 0 {
|
|
queryTimeout = s.config.DefaultQueryTime
|
|
}
|
|
|
|
// Apply a small amount of jitter to the request.
|
|
queryTimeout += lib.RandomStagger(queryTimeout / jitterFraction)
|
|
|
|
// wrap the base context with a deadline
|
|
ctx, cancel = context.WithDeadline(ctx, time.Now().Add(queryTimeout))
|
|
defer cancel()
|
|
|
|
// instrument blockingQueries
|
|
// atomic inc our server's count of in-flight blockingQueries and store the new value
|
|
queriesBlocking = atomic.AddUint64(&s.queriesBlocking, 1)
|
|
// atomic dec when we return from blockingQuery()
|
|
defer atomic.AddUint64(&s.queriesBlocking, ^uint64(0))
|
|
// set the gauge directly to the new value of s.blockingQueries
|
|
metrics.SetGauge([]string{"rpc", "queries_blocking"}, float32(queriesBlocking))
|
|
|
|
RUN_QUERY:
|
|
// Setup blocking loop
|
|
// Update the query metadata.
|
|
s.setQueryMeta(queryMeta)
|
|
|
|
// Validate
|
|
// If the read must be consistent we verify that we are still the leader.
|
|
if queryOpts.GetRequireConsistent() {
|
|
if err := s.consistentRead(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Run query
|
|
|
|
// Operate on a consistent set of state. This makes sure that the
|
|
// abandon channel goes with the state that the caller is using to
|
|
// build watches.
|
|
state := s.fsm.State()
|
|
|
|
// We can skip all watch tracking if this isn't a blocking query.
|
|
var ws memdb.WatchSet
|
|
if minQueryIndex > 0 {
|
|
ws = memdb.NewWatchSet()
|
|
|
|
// This channel will be closed if a snapshot is restored and the
|
|
// whole state store is abandoned.
|
|
ws.Add(state.AbandonCh())
|
|
}
|
|
|
|
// Execute the queryFn
|
|
err := fn(ws, state)
|
|
// Note we check queryOpts.MinQueryIndex is greater than zero to determine if
|
|
// blocking was requested by client, NOT meta.Index since the state function
|
|
// might return zero if something is not initialized and care wasn't taken to
|
|
// handle that special case (in practice this happened a lot so fixing it
|
|
// systematically here beats trying to remember to add zero checks in every
|
|
// state method). We also need to ensure that unless there is an error, we
|
|
// return an index > 0 otherwise the client will never block and burn CPU and
|
|
// requests.
|
|
if err == nil && queryMeta.GetIndex() < 1 {
|
|
queryMeta.SetIndex(1)
|
|
}
|
|
// block up to the timeout if we don't see anything fresh.
|
|
if err == nil && minQueryIndex > 0 && queryMeta.GetIndex() <= minQueryIndex {
|
|
if err := ws.WatchCtx(ctx); err == nil {
|
|
// a non-nil error only occurs when the context is cancelled
|
|
|
|
// If a restore may have woken us up then bail out from
|
|
// the query immediately. This is slightly race-ey since
|
|
// this might have been interrupted for other reasons,
|
|
// but it's OK to kick it back to the caller in either
|
|
// case.
|
|
select {
|
|
case <-state.AbandonCh():
|
|
default:
|
|
// loop back and look for an update again
|
|
goto RUN_QUERY
|
|
}
|
|
}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// setQueryMeta is used to populate the QueryMeta data for an RPC call
|
|
func (s *Server) setQueryMeta(m structs.QueryMetaCompat) {
|
|
if s.IsLeader() {
|
|
m.SetLastContact(0)
|
|
m.SetKnownLeader(true)
|
|
} else {
|
|
m.SetLastContact(time.Since(s.raft.LastContact()))
|
|
m.SetKnownLeader(s.raft.Leader() != "")
|
|
}
|
|
}
|
|
|
|
// consistentRead is used to ensure we do not perform a stale
|
|
// read. This is done by verifying leadership before the read.
|
|
func (s *Server) consistentRead() error {
|
|
defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now())
|
|
future := s.raft.VerifyLeader()
|
|
if err := future.Error(); err != nil {
|
|
return err //fail fast if leader verification fails
|
|
}
|
|
// poll consistent read readiness, wait for up to RPCHoldTimeout milliseconds
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction)
|
|
deadline := time.Now().Add(s.config.RPCHoldTimeout)
|
|
|
|
for time.Now().Before(deadline) {
|
|
|
|
select {
|
|
case <-time.After(jitter):
|
|
// Drop through and check before we loop again.
|
|
|
|
case <-s.shutdownCh:
|
|
return fmt.Errorf("shutdown waiting for leader")
|
|
}
|
|
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
return structs.ErrNotReadyForConsistentReads
|
|
}
|