99e0a124cb
This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
645 lines
17 KiB
Go
645 lines
17 KiB
Go
package memdb
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"strings"
|
|
"sync/atomic"
|
|
"unsafe"
|
|
|
|
"github.com/hashicorp/go-immutable-radix"
|
|
)
|
|
|
|
const (
|
|
id = "id"
|
|
)
|
|
|
|
var (
|
|
// ErrNotFound is returned when the requested item is not found
|
|
ErrNotFound = fmt.Errorf("not found")
|
|
)
|
|
|
|
// tableIndex is a tuple of (Table, Index) used for lookups
|
|
type tableIndex struct {
|
|
Table string
|
|
Index string
|
|
}
|
|
|
|
// Txn is a transaction against a MemDB.
|
|
// This can be a read or write transaction.
|
|
type Txn struct {
|
|
db *MemDB
|
|
write bool
|
|
rootTxn *iradix.Txn
|
|
after []func()
|
|
|
|
modified map[tableIndex]*iradix.Txn
|
|
}
|
|
|
|
// readableIndex returns a transaction usable for reading the given
|
|
// index in a table. If a write transaction is in progress, we may need
|
|
// to use an existing modified txn.
|
|
func (txn *Txn) readableIndex(table, index string) *iradix.Txn {
|
|
// Look for existing transaction
|
|
if txn.write && txn.modified != nil {
|
|
key := tableIndex{table, index}
|
|
exist, ok := txn.modified[key]
|
|
if ok {
|
|
return exist
|
|
}
|
|
}
|
|
|
|
// Create a read transaction
|
|
path := indexPath(table, index)
|
|
raw, _ := txn.rootTxn.Get(path)
|
|
indexTxn := raw.(*iradix.Tree).Txn()
|
|
return indexTxn
|
|
}
|
|
|
|
// writableIndex returns a transaction usable for modifying the
|
|
// given index in a table.
|
|
func (txn *Txn) writableIndex(table, index string) *iradix.Txn {
|
|
if txn.modified == nil {
|
|
txn.modified = make(map[tableIndex]*iradix.Txn)
|
|
}
|
|
|
|
// Look for existing transaction
|
|
key := tableIndex{table, index}
|
|
exist, ok := txn.modified[key]
|
|
if ok {
|
|
return exist
|
|
}
|
|
|
|
// Start a new transaction
|
|
path := indexPath(table, index)
|
|
raw, _ := txn.rootTxn.Get(path)
|
|
indexTxn := raw.(*iradix.Tree).Txn()
|
|
|
|
// If we are the primary DB, enable mutation tracking. Snapshots should
|
|
// not notify, otherwise we will trigger watches on the primary DB when
|
|
// the writes will not be visible.
|
|
indexTxn.TrackMutate(txn.db.primary)
|
|
|
|
// Keep this open for the duration of the txn
|
|
txn.modified[key] = indexTxn
|
|
return indexTxn
|
|
}
|
|
|
|
// Abort is used to cancel this transaction.
|
|
// This is a noop for read transactions.
|
|
func (txn *Txn) Abort() {
|
|
// Noop for a read transaction
|
|
if !txn.write {
|
|
return
|
|
}
|
|
|
|
// Check if already aborted or committed
|
|
if txn.rootTxn == nil {
|
|
return
|
|
}
|
|
|
|
// Clear the txn
|
|
txn.rootTxn = nil
|
|
txn.modified = nil
|
|
|
|
// Release the writer lock since this is invalid
|
|
txn.db.writer.Unlock()
|
|
}
|
|
|
|
// Commit is used to finalize this transaction.
|
|
// This is a noop for read transactions.
|
|
func (txn *Txn) Commit() {
|
|
// Noop for a read transaction
|
|
if !txn.write {
|
|
return
|
|
}
|
|
|
|
// Check if already aborted or committed
|
|
if txn.rootTxn == nil {
|
|
return
|
|
}
|
|
|
|
// Commit each sub-transaction scoped to (table, index)
|
|
for key, subTxn := range txn.modified {
|
|
path := indexPath(key.Table, key.Index)
|
|
final := subTxn.CommitOnly()
|
|
txn.rootTxn.Insert(path, final)
|
|
}
|
|
|
|
// Update the root of the DB
|
|
newRoot := txn.rootTxn.CommitOnly()
|
|
atomic.StorePointer(&txn.db.root, unsafe.Pointer(newRoot))
|
|
|
|
// Now issue all of the mutation updates (this is safe to call
|
|
// even if mutation tracking isn't enabled); we do this after
|
|
// the root pointer is swapped so that waking responders will
|
|
// see the new state.
|
|
for _, subTxn := range txn.modified {
|
|
subTxn.Notify()
|
|
}
|
|
txn.rootTxn.Notify()
|
|
|
|
// Clear the txn
|
|
txn.rootTxn = nil
|
|
txn.modified = nil
|
|
|
|
// Release the writer lock since this is invalid
|
|
txn.db.writer.Unlock()
|
|
|
|
// Run the deferred functions, if any
|
|
for i := len(txn.after); i > 0; i-- {
|
|
fn := txn.after[i-1]
|
|
fn()
|
|
}
|
|
}
|
|
|
|
// Insert is used to add or update an object into the given table
|
|
func (txn *Txn) Insert(table string, obj interface{}) error {
|
|
if !txn.write {
|
|
return fmt.Errorf("cannot insert in read-only transaction")
|
|
}
|
|
|
|
// Get the table schema
|
|
tableSchema, ok := txn.db.schema.Tables[table]
|
|
if !ok {
|
|
return fmt.Errorf("invalid table '%s'", table)
|
|
}
|
|
|
|
// Get the primary ID of the object
|
|
idSchema := tableSchema.Indexes[id]
|
|
idIndexer := idSchema.Indexer.(SingleIndexer)
|
|
ok, idVal, err := idIndexer.FromObject(obj)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to build primary index: %v", err)
|
|
}
|
|
if !ok {
|
|
return fmt.Errorf("object missing primary index")
|
|
}
|
|
|
|
// Lookup the object by ID first, to see if this is an update
|
|
idTxn := txn.writableIndex(table, id)
|
|
existing, update := idTxn.Get(idVal)
|
|
|
|
// On an update, there is an existing object with the given
|
|
// primary ID. We do the update by deleting the current object
|
|
// and inserting the new object.
|
|
for name, indexSchema := range tableSchema.Indexes {
|
|
indexTxn := txn.writableIndex(table, name)
|
|
|
|
// Determine the new index value
|
|
var (
|
|
ok bool
|
|
vals [][]byte
|
|
err error
|
|
)
|
|
switch indexer := indexSchema.Indexer.(type) {
|
|
case SingleIndexer:
|
|
var val []byte
|
|
ok, val, err = indexer.FromObject(obj)
|
|
vals = [][]byte{val}
|
|
case MultiIndexer:
|
|
ok, vals, err = indexer.FromObject(obj)
|
|
}
|
|
if err != nil {
|
|
return fmt.Errorf("failed to build index '%s': %v", name, err)
|
|
}
|
|
|
|
// Handle non-unique index by computing a unique index.
|
|
// This is done by appending the primary key which must
|
|
// be unique anyways.
|
|
if ok && !indexSchema.Unique {
|
|
for i := range vals {
|
|
vals[i] = append(vals[i], idVal...)
|
|
}
|
|
}
|
|
|
|
// Handle the update by deleting from the index first
|
|
if update {
|
|
var (
|
|
okExist bool
|
|
valsExist [][]byte
|
|
err error
|
|
)
|
|
switch indexer := indexSchema.Indexer.(type) {
|
|
case SingleIndexer:
|
|
var valExist []byte
|
|
okExist, valExist, err = indexer.FromObject(existing)
|
|
valsExist = [][]byte{valExist}
|
|
case MultiIndexer:
|
|
okExist, valsExist, err = indexer.FromObject(existing)
|
|
}
|
|
if err != nil {
|
|
return fmt.Errorf("failed to build index '%s': %v", name, err)
|
|
}
|
|
if okExist {
|
|
for i, valExist := range valsExist {
|
|
// Handle non-unique index by computing a unique index.
|
|
// This is done by appending the primary key which must
|
|
// be unique anyways.
|
|
if !indexSchema.Unique {
|
|
valExist = append(valExist, idVal...)
|
|
}
|
|
|
|
// If we are writing to the same index with the same value,
|
|
// we can avoid the delete as the insert will overwrite the
|
|
// value anyways.
|
|
if i >= len(vals) || !bytes.Equal(valExist, vals[i]) {
|
|
indexTxn.Delete(valExist)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is no index value, either this is an error or an expected
|
|
// case and we can skip updating
|
|
if !ok {
|
|
if indexSchema.AllowMissing {
|
|
continue
|
|
} else {
|
|
return fmt.Errorf("missing value for index '%s'", name)
|
|
}
|
|
}
|
|
|
|
// Update the value of the index
|
|
for _, val := range vals {
|
|
indexTxn.Insert(val, obj)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Delete is used to delete a single object from the given table
|
|
// This object must already exist in the table
|
|
func (txn *Txn) Delete(table string, obj interface{}) error {
|
|
if !txn.write {
|
|
return fmt.Errorf("cannot delete in read-only transaction")
|
|
}
|
|
|
|
// Get the table schema
|
|
tableSchema, ok := txn.db.schema.Tables[table]
|
|
if !ok {
|
|
return fmt.Errorf("invalid table '%s'", table)
|
|
}
|
|
|
|
// Get the primary ID of the object
|
|
idSchema := tableSchema.Indexes[id]
|
|
idIndexer := idSchema.Indexer.(SingleIndexer)
|
|
ok, idVal, err := idIndexer.FromObject(obj)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to build primary index: %v", err)
|
|
}
|
|
if !ok {
|
|
return fmt.Errorf("object missing primary index")
|
|
}
|
|
|
|
// Lookup the object by ID first, check fi we should continue
|
|
idTxn := txn.writableIndex(table, id)
|
|
existing, ok := idTxn.Get(idVal)
|
|
if !ok {
|
|
return ErrNotFound
|
|
}
|
|
|
|
// Remove the object from all the indexes
|
|
for name, indexSchema := range tableSchema.Indexes {
|
|
indexTxn := txn.writableIndex(table, name)
|
|
|
|
// Handle the update by deleting from the index first
|
|
var (
|
|
ok bool
|
|
vals [][]byte
|
|
err error
|
|
)
|
|
switch indexer := indexSchema.Indexer.(type) {
|
|
case SingleIndexer:
|
|
var val []byte
|
|
ok, val, err = indexer.FromObject(existing)
|
|
vals = [][]byte{val}
|
|
case MultiIndexer:
|
|
ok, vals, err = indexer.FromObject(existing)
|
|
}
|
|
if err != nil {
|
|
return fmt.Errorf("failed to build index '%s': %v", name, err)
|
|
}
|
|
if ok {
|
|
// Handle non-unique index by computing a unique index.
|
|
// This is done by appending the primary key which must
|
|
// be unique anyways.
|
|
for _, val := range vals {
|
|
if !indexSchema.Unique {
|
|
val = append(val, idVal...)
|
|
}
|
|
indexTxn.Delete(val)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DeletePrefix is used to delete an entire subtree based on a prefix.
|
|
// The given index must be a prefix index, and will be used to perform a scan and enumerate the set of objects to delete.
|
|
// These will be removed from all other indexes, and then a special prefix operation will delete the objects from the given index in an efficient subtree delete operation.
|
|
// This is useful when you have a very large number of objects indexed by the given index, along with a much smaller number of entries in the other indexes for those objects.
|
|
func (txn *Txn) DeletePrefix(table string, prefix_index string, prefix string) (bool, error) {
|
|
if !txn.write {
|
|
return false, fmt.Errorf("cannot delete in read-only transaction")
|
|
}
|
|
|
|
if !strings.HasSuffix(prefix_index, "_prefix") {
|
|
return false, fmt.Errorf("Index name for DeletePrefix must be a prefix index, Got %v ", prefix_index)
|
|
}
|
|
|
|
deletePrefixIndex := strings.TrimSuffix(prefix_index, "_prefix")
|
|
|
|
// Get an iterator over all of the keys with the given prefix.
|
|
entries, err := txn.Get(table, prefix_index, prefix)
|
|
if err != nil {
|
|
return false, fmt.Errorf("failed kvs lookup: %s", err)
|
|
}
|
|
// Get the table schema
|
|
tableSchema, ok := txn.db.schema.Tables[table]
|
|
if !ok {
|
|
return false, fmt.Errorf("invalid table '%s'", table)
|
|
}
|
|
|
|
foundAny := false
|
|
for entry := entries.Next(); entry != nil; entry = entries.Next() {
|
|
if !foundAny {
|
|
foundAny = true
|
|
}
|
|
// Get the primary ID of the object
|
|
idSchema := tableSchema.Indexes[id]
|
|
idIndexer := idSchema.Indexer.(SingleIndexer)
|
|
ok, idVal, err := idIndexer.FromObject(entry)
|
|
if err != nil {
|
|
return false, fmt.Errorf("failed to build primary index: %v", err)
|
|
}
|
|
if !ok {
|
|
return false, fmt.Errorf("object missing primary index")
|
|
}
|
|
// Remove the object from all the indexes except the given prefix index
|
|
for name, indexSchema := range tableSchema.Indexes {
|
|
if name == deletePrefixIndex {
|
|
continue
|
|
}
|
|
indexTxn := txn.writableIndex(table, name)
|
|
|
|
// Handle the update by deleting from the index first
|
|
var (
|
|
ok bool
|
|
vals [][]byte
|
|
err error
|
|
)
|
|
switch indexer := indexSchema.Indexer.(type) {
|
|
case SingleIndexer:
|
|
var val []byte
|
|
ok, val, err = indexer.FromObject(entry)
|
|
vals = [][]byte{val}
|
|
case MultiIndexer:
|
|
ok, vals, err = indexer.FromObject(entry)
|
|
}
|
|
if err != nil {
|
|
return false, fmt.Errorf("failed to build index '%s': %v", name, err)
|
|
}
|
|
|
|
if ok {
|
|
// Handle non-unique index by computing a unique index.
|
|
// This is done by appending the primary key which must
|
|
// be unique anyways.
|
|
for _, val := range vals {
|
|
if !indexSchema.Unique {
|
|
val = append(val, idVal...)
|
|
}
|
|
indexTxn.Delete(val)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if foundAny {
|
|
indexTxn := txn.writableIndex(table, deletePrefixIndex)
|
|
ok = indexTxn.DeletePrefix([]byte(prefix))
|
|
if !ok {
|
|
panic(fmt.Errorf("prefix %v matched some entries but DeletePrefix did not delete any ", prefix))
|
|
}
|
|
return true, nil
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
// DeleteAll is used to delete all the objects in a given table
|
|
// matching the constraints on the index
|
|
func (txn *Txn) DeleteAll(table, index string, args ...interface{}) (int, error) {
|
|
if !txn.write {
|
|
return 0, fmt.Errorf("cannot delete in read-only transaction")
|
|
}
|
|
|
|
// Get all the objects
|
|
iter, err := txn.Get(table, index, args...)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Put them into a slice so there are no safety concerns while actually
|
|
// performing the deletes
|
|
var objs []interface{}
|
|
for {
|
|
obj := iter.Next()
|
|
if obj == nil {
|
|
break
|
|
}
|
|
|
|
objs = append(objs, obj)
|
|
}
|
|
|
|
// Do the deletes
|
|
num := 0
|
|
for _, obj := range objs {
|
|
if err := txn.Delete(table, obj); err != nil {
|
|
return num, err
|
|
}
|
|
num++
|
|
}
|
|
return num, nil
|
|
}
|
|
|
|
// FirstWatch is used to return the first matching object for
|
|
// the given constraints on the index along with the watch channel
|
|
func (txn *Txn) FirstWatch(table, index string, args ...interface{}) (<-chan struct{}, interface{}, error) {
|
|
// Get the index value
|
|
indexSchema, val, err := txn.getIndexValue(table, index, args...)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Get the index itself
|
|
indexTxn := txn.readableIndex(table, indexSchema.Name)
|
|
|
|
// Do an exact lookup
|
|
if indexSchema.Unique && val != nil && indexSchema.Name == index {
|
|
watch, obj, ok := indexTxn.GetWatch(val)
|
|
if !ok {
|
|
return watch, nil, nil
|
|
}
|
|
return watch, obj, nil
|
|
}
|
|
|
|
// Handle non-unique index by using an iterator and getting the first value
|
|
iter := indexTxn.Root().Iterator()
|
|
watch := iter.SeekPrefixWatch(val)
|
|
_, value, _ := iter.Next()
|
|
return watch, value, nil
|
|
}
|
|
|
|
// First is used to return the first matching object for
|
|
// the given constraints on the index
|
|
func (txn *Txn) First(table, index string, args ...interface{}) (interface{}, error) {
|
|
_, val, err := txn.FirstWatch(table, index, args...)
|
|
return val, err
|
|
}
|
|
|
|
// LongestPrefix is used to fetch the longest prefix match for the given
|
|
// constraints on the index. Note that this will not work with the memdb
|
|
// StringFieldIndex because it adds null terminators which prevent the
|
|
// algorithm from correctly finding a match (it will get to right before the
|
|
// null and fail to find a leaf node). This should only be used where the prefix
|
|
// given is capable of matching indexed entries directly, which typically only
|
|
// applies to a custom indexer. See the unit test for an example.
|
|
func (txn *Txn) LongestPrefix(table, index string, args ...interface{}) (interface{}, error) {
|
|
// Enforce that this only works on prefix indexes.
|
|
if !strings.HasSuffix(index, "_prefix") {
|
|
return nil, fmt.Errorf("must use '%s_prefix' on index", index)
|
|
}
|
|
|
|
// Get the index value.
|
|
indexSchema, val, err := txn.getIndexValue(table, index, args...)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// This algorithm only makes sense against a unique index, otherwise the
|
|
// index keys will have the IDs appended to them.
|
|
if !indexSchema.Unique {
|
|
return nil, fmt.Errorf("index '%s' is not unique", index)
|
|
}
|
|
|
|
// Find the longest prefix match with the given index.
|
|
indexTxn := txn.readableIndex(table, indexSchema.Name)
|
|
if _, value, ok := indexTxn.Root().LongestPrefix(val); ok {
|
|
return value, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// getIndexValue is used to get the IndexSchema and the value
|
|
// used to scan the index given the parameters. This handles prefix based
|
|
// scans when the index has the "_prefix" suffix. The index must support
|
|
// prefix iteration.
|
|
func (txn *Txn) getIndexValue(table, index string, args ...interface{}) (*IndexSchema, []byte, error) {
|
|
// Get the table schema
|
|
tableSchema, ok := txn.db.schema.Tables[table]
|
|
if !ok {
|
|
return nil, nil, fmt.Errorf("invalid table '%s'", table)
|
|
}
|
|
|
|
// Check for a prefix scan
|
|
prefixScan := false
|
|
if strings.HasSuffix(index, "_prefix") {
|
|
index = strings.TrimSuffix(index, "_prefix")
|
|
prefixScan = true
|
|
}
|
|
|
|
// Get the index schema
|
|
indexSchema, ok := tableSchema.Indexes[index]
|
|
if !ok {
|
|
return nil, nil, fmt.Errorf("invalid index '%s'", index)
|
|
}
|
|
|
|
// Hot-path for when there are no arguments
|
|
if len(args) == 0 {
|
|
return indexSchema, nil, nil
|
|
}
|
|
|
|
// Special case the prefix scanning
|
|
if prefixScan {
|
|
prefixIndexer, ok := indexSchema.Indexer.(PrefixIndexer)
|
|
if !ok {
|
|
return indexSchema, nil,
|
|
fmt.Errorf("index '%s' does not support prefix scanning", index)
|
|
}
|
|
|
|
val, err := prefixIndexer.PrefixFromArgs(args...)
|
|
if err != nil {
|
|
return indexSchema, nil, fmt.Errorf("index error: %v", err)
|
|
}
|
|
return indexSchema, val, err
|
|
}
|
|
|
|
// Get the exact match index
|
|
val, err := indexSchema.Indexer.FromArgs(args...)
|
|
if err != nil {
|
|
return indexSchema, nil, fmt.Errorf("index error: %v", err)
|
|
}
|
|
return indexSchema, val, err
|
|
}
|
|
|
|
// ResultIterator is used to iterate over a list of results
|
|
// from a Get query on a table.
|
|
type ResultIterator interface {
|
|
WatchCh() <-chan struct{}
|
|
Next() interface{}
|
|
}
|
|
|
|
// Get is used to construct a ResultIterator over all the
|
|
// rows that match the given constraints of an index.
|
|
func (txn *Txn) Get(table, index string, args ...interface{}) (ResultIterator, error) {
|
|
// Get the index value to scan
|
|
indexSchema, val, err := txn.getIndexValue(table, index, args...)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Get the index itself
|
|
indexTxn := txn.readableIndex(table, indexSchema.Name)
|
|
indexRoot := indexTxn.Root()
|
|
|
|
// Get an interator over the index
|
|
indexIter := indexRoot.Iterator()
|
|
|
|
// Seek the iterator to the appropriate sub-set
|
|
watchCh := indexIter.SeekPrefixWatch(val)
|
|
|
|
// Create an iterator
|
|
iter := &radixIterator{
|
|
iter: indexIter,
|
|
watchCh: watchCh,
|
|
}
|
|
return iter, nil
|
|
}
|
|
|
|
// Defer is used to push a new arbitrary function onto a stack which
|
|
// gets called when a transaction is committed and finished. Deferred
|
|
// functions are called in LIFO order, and only invoked at the end of
|
|
// write transactions.
|
|
func (txn *Txn) Defer(fn func()) {
|
|
txn.after = append(txn.after, fn)
|
|
}
|
|
|
|
// radixIterator is used to wrap an underlying iradix iterator.
|
|
// This is much more efficient than a sliceIterator as we are not
|
|
// materializing the entire view.
|
|
type radixIterator struct {
|
|
iter *iradix.Iterator
|
|
watchCh <-chan struct{}
|
|
}
|
|
|
|
func (r *radixIterator) WatchCh() <-chan struct{} {
|
|
return r.watchCh
|
|
}
|
|
|
|
func (r *radixIterator) Next() interface{} {
|
|
_, value, ok := r.iter.Next()
|
|
if !ok {
|
|
return nil
|
|
}
|
|
return value
|
|
}
|