open-consul/tlsutil/config.go
Ronald 71fb0a723e
Copyright headers for missing files/folders (#16708)
* copyright headers for agent folder
2023-03-28 18:48:58 -04:00

1174 lines
37 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package tlsutil
import (
"crypto/tls"
"crypto/x509"
"fmt"
"net"
"os"
"path/filepath"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/consul/logging"
"github.com/hashicorp/consul/proto/private/pbconfig"
"github.com/hashicorp/consul/types"
)
// ALPNWrapper is a function that is used to wrap a non-TLS connection and
// returns an appropriate TLS connection or error. This taks a datacenter and
// node name as argument to configure the desired SNI value and the desired
// next proto for configuring ALPN.
type ALPNWrapper func(dc, nodeName, alpnProto string, conn net.Conn) (net.Conn, error)
// DCWrapper is a function that is used to wrap a non-TLS connection
// and returns an appropriate TLS connection or error. This takes
// a datacenter as an argument.
type DCWrapper func(dc string, conn net.Conn) (net.Conn, error)
// Wrapper is a variant of DCWrapper, where the DC is provided as
// a constant value. This is usually done by currying DCWrapper.
type Wrapper func(conn net.Conn) (net.Conn, error)
// goTLSVersions maps types.TLSVersion to the Go internal value
var goTLSVersions = map[types.TLSVersion]uint16{
types.TLSVersionAuto: tls.VersionTLS12,
types.TLSv1_0: tls.VersionTLS10,
types.TLSv1_1: tls.VersionTLS11,
types.TLSv1_2: tls.VersionTLS12,
types.TLSv1_3: tls.VersionTLS13,
}
// ProtocolConfig contains configuration for a given protocol.
type ProtocolConfig struct {
// VerifyIncoming is used to verify the authenticity of incoming
// connections. This means that TCP requests are forbidden, only
// allowing for TLS. TLS connections must match a provided certificate
// authority. This can be used to force client auth.
VerifyIncoming bool
// CAFile is a path to a certificate authority file. This is used with
// VerifyIncoming or VerifyOutgoing to verify the TLS connection.
CAFile string
// CAPath is a path to a directory containing certificate authority
// files. This is used with VerifyIncoming or VerifyOutgoing to verify
// the TLS connection.
CAPath string
// CertFile is used to provide a TLS certificate that is used for
// serving TLS connections. Must be provided to serve TLS connections.
CertFile string
// KeyFile is used to provide a TLS key that is used for serving TLS
// connections. Must be provided to serve TLS connections.
KeyFile string
// TLSMinVersion is the minimum accepted TLS version that can be used.
TLSMinVersion types.TLSVersion
// CipherSuites is the list of TLS cipher suites to use.
//
// We don't support the raw 0xNNNN values from
// https://golang.org/pkg/crypto/tls/#pkg-constants
// even though they are standardized by IANA because it would increase
// the likelihood of an operator inadvertently setting an insecure configuration
CipherSuites []types.TLSCipherSuite
// VerifyOutgoing is used to verify the authenticity of outgoing
// connections. This means that TLS requests are used, and TCP
// requests are not made. TLS connections must match a provided
// certificate authority. This is used to verify authenticity of server
// nodes.
//
// Note: this setting doesn't apply to the external gRPC configuration, as Consul
// makes no outgoing connections using this protocol.
VerifyOutgoing bool
// VerifyServerHostname is used to enable hostname verification of
// servers. This ensures that the certificate presented is valid for
// server.<datacenter>.<domain>. This prevents a compromised client
// from being restarted as a server, and then intercepting request
// traffic as well as being added as a raft peer. This should be
// enabled by default with VerifyOutgoing, but for legacy reasons we
// cannot break existing clients.
//
// Note: this setting only applies to the Internal RPC configuration.
VerifyServerHostname bool
// UseAutoCert is used to enable usage of auto_encrypt/auto_config generated
// certificate & key material on external gRPC listener.
UseAutoCert bool
}
// Config configures the Configurator.
type Config struct {
// ServerMode indicates whether the configurator is attached to a server
// or client agent.
ServerMode bool
// InternalRPC is used to configure the internal multiplexed RPC protocol.
InternalRPC ProtocolConfig
// GRPC is used to configure the external (e.g. xDS) gRPC protocol.
GRPC ProtocolConfig
// HTTPS is used to configure the external HTTPS protocol.
HTTPS ProtocolConfig
// Node name is the name we use to advertise. Defaults to hostname.
NodeName string
// ServerName is used with the TLS certificate to ensure the name we
// provide matches the certificate
ServerName string
// Domain is the Consul TLD being used. Defaults to "consul."
Domain string
// EnableAgentTLSForChecks is used to apply the agent's TLS settings in
// order to configure the HTTP client used for health checks. Enabling
// this allows HTTP checks to present a client certificate and verify
// the server using the same TLS configuration as the agent (CA, cert,
// and key).
EnableAgentTLSForChecks bool
// AutoTLS opts the agent into provisioning agent
// TLS certificates.
AutoTLS bool
}
// SpecificDC is used to invoke a static datacenter
// and turns a DCWrapper into a Wrapper type.
func SpecificDC(dc string, tlsWrap DCWrapper) Wrapper {
if tlsWrap == nil {
return nil
}
return func(conn net.Conn) (net.Conn, error) {
return tlsWrap(dc, conn)
}
}
// protocolConfig contains the loaded state (e.g. x509 certificates) for a given
// ProtocolConfig.
type protocolConfig struct {
// cert is the TLS certificate configured manually by the cert_file/key_file
// options in the configuration file.
cert *tls.Certificate
// manualCAPEMs contains the PEM-encoded CA certificates provided manually by
// the ca_file/ca_path options in the configuration file.
manualCAPEMs []string
// manualCAPool is a pool containing only manualCAPEM, for cases where it is
// not appropriate to trust the Connect CA (e.g. when verifying server identity
// in AuthorizeServerConn).
manualCAPool *x509.CertPool
// combinedCAPool is a pool containing both manualCAPEMs and the certificates
// received from auto-config/auto-encrypt.
combinedCAPool *x509.CertPool
// useAutoCert indicates wether we should use auto-encrypt/config data
// for TLS server/listener. NOTE: Only applies to external GRPC Server.
useAutoCert bool
}
// Configurator provides tls.Config and net.Dial wrappers to enable TLS for
// clients and servers, for internal RPC, and external gRPC and HTTPS connections.
//
// Configurator receives an initial TLS configuration from agent configuration,
// and receives updates from config reloads, auto-encrypt, and auto-config.
type Configurator struct {
// version is increased each time the Configurator is updated. Must be accessed
// using sync/atomic. Also MUST be the first field in this struct to ensure
// 64-bit alignment. See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
version uint64
// lock synchronizes access to all fields on this struct except for logger and version.
lock sync.RWMutex
base *Config
// peerDatacenterUseTLS is a map of DC name to a bool indicating if the DC
// uses TLS for RPC requests.
peerDatacenterUseTLS map[string]bool
grpc protocolConfig
https protocolConfig
internalRPC protocolConfig
// autoTLS stores configuration that is received from:
// - The auto-encrypt or auto-config features for client agents
// - The servercert.CertManager for server agents.
autoTLS struct {
extraCAPems []string
connectCAPems []string
cert *tls.Certificate
verifyServerHostname bool
peeringServerName string
}
// logger is not protected by a lock. It must never be changed after
// Configurator is created.
logger hclog.Logger
}
// NewConfigurator creates a new Configurator and sets the provided
// configuration.
func NewConfigurator(config Config, logger hclog.Logger) (*Configurator, error) {
if logger == nil {
logger = hclog.New(&hclog.LoggerOptions{
Level: hclog.Debug,
})
}
c := &Configurator{
logger: logger.Named(logging.TLSUtil),
peerDatacenterUseTLS: map[string]bool{},
}
err := c.Update(config)
if err != nil {
return nil, err
}
return c, nil
}
// ManualCAPems returns the currently loaded CAs for the internal RPC protocol
// in PEM format. It is used in the auto-config/auto-encrypt endpoints.
func (c *Configurator) ManualCAPems() []string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.internalRPC.manualCAPEMs
}
// GRPCManualCAPems returns the currently loaded CAs for the gRPC in PEM format.
func (c *Configurator) GRPCManualCAPems() []string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.grpc.manualCAPEMs
}
// Update updates the internal configuration which is used to generate
// *tls.Config.
// This function acquires a write lock because it writes the new config.
func (c *Configurator) Update(config Config) error {
c.lock.Lock()
defer c.lock.Unlock()
grpc, err := c.loadProtocolConfig(config, config.GRPC)
if err != nil {
return err
}
https, err := c.loadProtocolConfig(config, config.HTTPS)
if err != nil {
return err
}
internalRPC, err := c.loadProtocolConfig(config, config.InternalRPC)
if err != nil {
return err
}
c.base = &config
c.grpc = *grpc
c.https = *https
c.internalRPC = *internalRPC
atomic.AddUint64(&c.version, 1)
c.log("Update")
return nil
}
// loadProtocolConfig loads the certificates etc. for a given ProtocolConfig
// and performs validation.
func (c *Configurator) loadProtocolConfig(base Config, pc ProtocolConfig) (*protocolConfig, error) {
cert, err := loadKeyPair(pc.CertFile, pc.KeyFile)
if err != nil {
return nil, err
}
pems, err := LoadCAs(pc.CAFile, pc.CAPath)
if err != nil {
return nil, err
}
manualPool, err := newX509CertPool(pems)
if err != nil {
return nil, err
}
combinedPool, err := newX509CertPool(pems, c.autoTLS.connectCAPems, c.autoTLS.extraCAPems)
if err != nil {
return nil, err
}
if pc.VerifyIncoming {
// Both auto-config and auto-encrypt require verifying the connection from the
// client to the server for secure operation. In order to be able to verify the
// server's certificate we must have some CA certs already provided. Therefore,
// even though both of those features can push down extra CA certificates which
// could be used to verify incoming connections, we still must consider it an
// error if none are provided in the initial configuration as those features
// cannot be successfully enabled without providing CA certificates to use those
// features.
if combinedPool == nil {
return nil, fmt.Errorf("VerifyIncoming set but no CA certificates were provided")
}
// We will use the auto_encrypt/auto_config cert for TLS in the incoming APIs
// when available. Therefore the check here will ensure that either we enabled
// one of those two features or a certificate and key were provided manually
if cert == nil && !base.AutoTLS {
return nil, fmt.Errorf("VerifyIncoming requires either a Cert and Key pair in the configuration file, or auto_encrypt/auto_config be enabled")
}
}
// Ensure we have a CA if VerifyOutgoing is set.
if pc.VerifyOutgoing && combinedPool == nil {
return nil, fmt.Errorf("VerifyOutgoing set but no CA certificates were provided")
}
return &protocolConfig{
cert: cert,
manualCAPEMs: pems,
manualCAPool: manualPool,
combinedCAPool: combinedPool,
useAutoCert: pc.UseAutoCert,
}, nil
}
// UpdateAutoTLSCA updates the autoEncrypt.caPems. This is supposed to be called
// from the server in order to be able to accept TLS connections with TLS
// certificates.
// Or it is being called on the client side when CA changes are detected.
func (c *Configurator) UpdateAutoTLSCA(connectCAPems []string) error {
c.lock.Lock()
defer c.lock.Unlock()
makePool := func(l protocolConfig) (*x509.CertPool, error) {
return newX509CertPool(l.manualCAPEMs, c.autoTLS.extraCAPems, connectCAPems)
}
// Make all of the pools up-front (before assigning anything) so that if any of
// them fails, we aren't left in a half-applied state.
internalRPCPool, err := makePool(c.internalRPC)
if err != nil {
return err
}
grpcPool, err := makePool(c.grpc)
if err != nil {
return err
}
httpsPool, err := makePool(c.https)
if err != nil {
return err
}
c.autoTLS.connectCAPems = connectCAPems
c.internalRPC.combinedCAPool = internalRPCPool
c.grpc.combinedCAPool = grpcPool
c.https.combinedCAPool = httpsPool
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLSCA")
return nil
}
// UpdateAutoTLSCert receives the updated automatically-provisioned certificate.
func (c *Configurator) UpdateAutoTLSCert(pub, priv string) error {
cert, err := tls.X509KeyPair([]byte(pub), []byte(priv))
if err != nil {
return fmt.Errorf("Failed to load cert/key pair: %v", err)
}
c.lock.Lock()
defer c.lock.Unlock()
c.autoTLS.cert = &cert
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLSCert")
return nil
}
// UpdateAutoTLSPeeringServerName receives the updated automatically-provisioned certificate.
func (c *Configurator) UpdateAutoTLSPeeringServerName(name string) {
c.lock.Lock()
defer c.lock.Unlock()
c.autoTLS.peeringServerName = name
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLSPeeringServerName")
}
// UpdateAutoTLS receives updates from Auto-Config, only expected to be called on
// client agents.
func (c *Configurator) UpdateAutoTLS(manualCAPems, connectCAPems []string, pub, priv string, verifyServerHostname bool) error {
cert, err := tls.X509KeyPair([]byte(pub), []byte(priv))
if err != nil {
return fmt.Errorf("Failed to load cert/key pair: %v", err)
}
c.lock.Lock()
defer c.lock.Unlock()
makePool := func(l protocolConfig) (*x509.CertPool, error) {
return newX509CertPool(l.manualCAPEMs, manualCAPems, connectCAPems)
}
// Make all of the pools up-front (before assigning anything) so that if any of
// them fails, we aren't left in a half-applied state.
internalRPCPool, err := makePool(c.internalRPC)
if err != nil {
return err
}
grpcPool, err := makePool(c.grpc)
if err != nil {
return err
}
httpsPool, err := makePool(c.https)
if err != nil {
return err
}
c.autoTLS.extraCAPems = manualCAPems
c.autoTLS.connectCAPems = connectCAPems
c.autoTLS.cert = &cert
c.autoTLS.verifyServerHostname = verifyServerHostname
c.internalRPC.combinedCAPool = internalRPCPool
c.grpc.combinedCAPool = grpcPool
c.https.combinedCAPool = httpsPool
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLS")
return nil
}
func (c *Configurator) UpdateAreaPeerDatacenterUseTLS(peerDatacenter string, useTLS bool) {
c.lock.Lock()
defer c.lock.Unlock()
atomic.AddUint64(&c.version, 1)
c.log("UpdateAreaPeerDatacenterUseTLS")
c.peerDatacenterUseTLS[peerDatacenter] = useTLS
}
func (c *Configurator) getAreaForPeerDatacenterUseTLS(peerDatacenter string) bool {
c.lock.RLock()
defer c.lock.RUnlock()
if v, ok := c.peerDatacenterUseTLS[peerDatacenter]; ok {
return v
}
return true
}
func (c *Configurator) Base() Config {
c.lock.RLock()
defer c.lock.RUnlock()
return *c.base
}
// newX509CertPool loads all the groups of PEM encoded certificates into a
// single x509.CertPool.
//
// The groups argument is a varargs of slices so that callers do not need to
// append slices together. In some cases append can modify the backing array
// of the first slice passed to append, which will often result in hard to
// find bugs. By accepting a varargs of slices we remove the need for the
// caller to append the groups, which should prevent any such bugs.
func newX509CertPool(groups ...[]string) (*x509.CertPool, error) {
var haveCerts bool
pool := x509.NewCertPool()
for _, group := range groups {
for _, pem := range group {
if !pool.AppendCertsFromPEM([]byte(pem)) {
return nil, fmt.Errorf("failed to parse PEM %s", pem)
}
if len(pem) > 0 {
haveCerts = true
}
}
}
if !haveCerts {
return nil, nil
}
return pool, nil
}
func loadKeyPair(certFile, keyFile string) (*tls.Certificate, error) {
if certFile == "" || keyFile == "" {
return nil, nil
}
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return nil, fmt.Errorf("Failed to load cert/key pair: %v", err)
}
return &cert, nil
}
func LoadCAs(caFile, caPath string) ([]string, error) {
if caFile == "" && caPath == "" {
return nil, nil
}
pems := []string{}
readFn := func(path string) error {
pem, err := os.ReadFile(path)
if err != nil {
return fmt.Errorf("Error loading from %s: %s", path, err)
}
pems = append(pems, string(pem))
return nil
}
walkFn := func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
if !info.IsDir() {
if err := readFn(path); err != nil {
return err
}
}
return nil
}
if caFile != "" {
err := readFn(caFile)
if err != nil {
return pems, err
}
} else if caPath != "" {
err := filepath.Walk(caPath, walkFn)
if err != nil {
return pems, err
}
if len(pems) == 0 {
return pems, fmt.Errorf("Error loading from CAPath: no CAs found")
}
}
return pems, nil
}
// internalRPCTLSConfig generates a *tls.Config for the internal RPC protocol.
//
// This function acquires a read lock because it reads from the config.
func (c *Configurator) internalRPCTLSConfig(verifyIncoming bool) *tls.Config {
c.lock.RLock()
defer c.lock.RUnlock()
config := c.commonTLSConfig(
c.internalRPC,
c.base.InternalRPC,
verifyIncoming,
)
config.InsecureSkipVerify = !c.base.InternalRPC.VerifyServerHostname
return config
}
// commonTLSConfig generates a *tls.Config from the base configuration the
// Configurator has. It accepts an additional flag in case a config is needed
// for incoming TLS connections.
func (c *Configurator) commonTLSConfig(state protocolConfig, cfg ProtocolConfig, verifyIncoming bool) *tls.Config {
var tlsConfig tls.Config
// Set the cipher suites
if len(cfg.CipherSuites) != 0 {
// TLS cipher suites are validated on input in agent config builder,
// so it's safe to ignore the error case here.
cipherSuites, _ := cipherSuiteLookup(cfg.CipherSuites)
tlsConfig.CipherSuites = cipherSuites
}
// GetCertificate is used when acting as a server and responding to
// client requests. Default to the manually configured cert, but allow
// autoEncrypt cert too so that a client can encrypt incoming
// connections without having a manual cert configured.
tlsConfig.GetCertificate = func(*tls.ClientHelloInfo) (*tls.Certificate, error) {
if state.cert != nil {
return state.cert, nil
}
return c.autoTLS.cert, nil
}
// GetClientCertificate is used when acting as a client and responding
// to a server requesting a certificate. Return the autoEncrypt certificate
// if possible, otherwise default to the manually provisioned one.
tlsConfig.GetClientCertificate = func(*tls.CertificateRequestInfo) (*tls.Certificate, error) {
cert := state.cert
// In the general case we only prefer to dial out with the autoTLS cert if we are a client.
// The server's autoTLS cert is exclusively for peering control plane traffic.
if !c.base.ServerMode && c.autoTLS.cert != nil {
cert = c.autoTLS.cert
}
if cert == nil {
// the return value MUST not be nil but an empty certificate will be
// treated the same as having no client certificate
cert = &tls.Certificate{}
}
return cert, nil
}
tlsConfig.ClientCAs = state.combinedCAPool
tlsConfig.RootCAs = state.combinedCAPool
// Error handling is not needed here because agent config builder handles ""
// or a nil value as TLSVersionAuto with goTLSVersions mapping TLSVersionAuto
// to TLS 1.2 and because the initial check makes sure a specified version is
// not invalid.
tlsConfig.MinVersion = goTLSVersions[cfg.TLSMinVersion]
// Set ClientAuth if necessary
if verifyIncoming {
tlsConfig.ClientAuth = tls.RequireAndVerifyClientCert
}
return &tlsConfig
}
// Cert returns the certificate used for connections on the internal RPC protocol.
//
// This function acquires a read lock because it reads from the config.
func (c *Configurator) Cert() *tls.Certificate {
c.lock.RLock()
defer c.lock.RUnlock()
cert := c.internalRPC.cert
if cert == nil {
cert = c.autoTLS.cert
}
return cert
}
// GRPCServerUseTLS returns whether there's a TLS certificate configured for
// (external) gRPC (either manually or by auto-config/auto-encrypt), and use
// of TLS for gRPC has not been explicitly disabled at auto-encrypt.
//
// This function acquires a read lock because it reads from the config.
func (c *Configurator) GRPCServerUseTLS() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.grpc.cert != nil || (c.grpc.useAutoCert && c.autoTLS.cert != nil)
}
// VerifyIncomingRPC returns true if we should verify incoming connnections to
// the internal RPC protocol.
func (c *Configurator) VerifyIncomingRPC() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.InternalRPC.VerifyIncoming
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) outgoingRPCTLSEnabled() bool {
c.lock.RLock()
defer c.lock.RUnlock()
// use TLS if AutoEncrypt or VerifyOutgoing are enabled.
return c.base.AutoTLS || c.base.InternalRPC.VerifyOutgoing
}
// MutualTLSCapable returns true if Configurator has a CA and a local TL
// certificate configured on the internal RPC protocol.
func (c *Configurator) MutualTLSCapable() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.internalRPC.combinedCAPool != nil && (c.autoTLS.cert != nil || c.internalRPC.cert != nil)
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) verifyOutgoing() bool {
c.lock.RLock()
defer c.lock.RUnlock()
// If AutoEncryptTLS is enabled and there is a CA, then verify
// outgoing.
if c.base.AutoTLS && c.internalRPC.combinedCAPool != nil {
return true
}
return c.base.InternalRPC.VerifyOutgoing
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) ServerSNI(dc, nodeName string) string {
// Strip the trailing '.' from the domain if any
domain := strings.TrimSuffix(c.domain(), ".")
if nodeName == "" || nodeName == "*" {
return "server." + dc + "." + domain
}
return nodeName + ".server." + dc + "." + domain
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) domain() string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.Domain
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) serverNameOrNodeName() string {
c.lock.RLock()
defer c.lock.RUnlock()
if c.base.ServerName != "" {
return c.base.ServerName
}
return c.base.NodeName
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) VerifyServerHostname() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.InternalRPC.VerifyServerHostname || c.autoTLS.verifyServerHostname
}
// AutoConfigTLSSettings constructs the pbconfig.TLS that will be returned by
// servers in the auto-config endpoint.
func (c *Configurator) AutoConfigTLSSettings() (*pbconfig.TLS, error) {
c.lock.RLock()
defer c.lock.RUnlock()
cfg := c.base.InternalRPC
cipherString, err := CipherString(cfg.CipherSuites)
if err != nil {
return nil, err
}
return &pbconfig.TLS{
VerifyOutgoing: cfg.VerifyOutgoing,
VerifyServerHostname: cfg.VerifyServerHostname || c.autoTLS.verifyServerHostname,
MinVersion: types.ConsulAutoConfigTLSVersionStrings[cfg.TLSMinVersion],
CipherSuites: cipherString,
}, nil
}
// IncomingGRPCConfig generates a *tls.Config for incoming external (e.g. xDS)
// GRPC connections.
//
// This function acquires a read lock because it reads from the config.
func (c *Configurator) IncomingGRPCConfig() *tls.Config {
c.log("IncomingGRPConfig")
c.lock.RLock()
defer c.lock.RUnlock()
config := c.commonTLSConfig(
c.grpc,
c.base.GRPC,
c.base.GRPC.VerifyIncoming,
)
config.GetConfigForClient = func(info *tls.ClientHelloInfo) (*tls.Config, error) {
conf := c.IncomingGRPCConfig()
// Do not enforce mutualTLS for peering SNI entries. This is necessary, because
// there is no way to specify an mTLS cert when establishing a peering connection.
// This bypass is only safe because the `grpc-middleware.AuthInterceptor` explicitly
// restricts the list of endpoints that can be called when peering SNI is present.
if c.autoTLS.peeringServerName != "" && info.ServerName == c.autoTLS.peeringServerName {
conf.ClientAuth = tls.NoClientCert
}
return conf, nil
}
config.GetCertificate = func(info *tls.ClientHelloInfo) (*tls.Certificate, error) {
if c.autoTLS.peeringServerName != "" && info.ServerName == c.autoTLS.peeringServerName {
// For peering control plane traffic we exclusively use the internally managed certificate.
// For all other traffic it is only a fallback if no manual certificate is provisioned.
return c.autoTLS.cert, nil
}
if c.grpc.cert != nil {
return c.grpc.cert, nil
}
return c.autoTLS.cert, nil
}
return config
}
// IncomingRPCConfig generates a *tls.Config for incoming RPC connections.
func (c *Configurator) IncomingRPCConfig() *tls.Config {
c.log("IncomingRPCConfig")
config := c.internalRPCTLSConfig(c.base.InternalRPC.VerifyIncoming)
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingRPCConfig(), nil
}
return config
}
// IncomingALPNRPCConfig generates a *tls.Config for incoming RPC connections
// directly using TLS with ALPN instead of the older byte-prefixed protocol.
func (c *Configurator) IncomingALPNRPCConfig(alpnProtos []string) *tls.Config {
c.log("IncomingALPNRPCConfig")
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full server name verification.
config := c.internalRPCTLSConfig(true)
config.InsecureSkipVerify = false
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingALPNRPCConfig(alpnProtos), nil
}
config.NextProtos = alpnProtos
return config
}
// IncomingInsecureRPCConfig means that it doesn't verify incoming even thought
// it might have been configured. This is only supposed to be used by the
// servers for the insecure RPC server. At the time of writing only the
// AutoEncrypt.Sign call is supported on that server. And it might be the only
// usecase ever.
func (c *Configurator) IncomingInsecureRPCConfig() *tls.Config {
c.log("IncomingInsecureRPCConfig")
config := c.internalRPCTLSConfig(false)
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingInsecureRPCConfig(), nil
}
return config
}
// IncomingHTTPSConfig generates a *tls.Config for incoming HTTPS connections.
func (c *Configurator) IncomingHTTPSConfig() *tls.Config {
c.log("IncomingHTTPSConfig")
c.lock.RLock()
defer c.lock.RUnlock()
config := c.commonTLSConfig(
c.https,
c.base.HTTPS,
c.base.HTTPS.VerifyIncoming,
)
config.NextProtos = []string{"h2", "http/1.1"}
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingHTTPSConfig(), nil
}
return config
}
// OutgoingTLSConfigForCheck generates a *tls.Config for outgoing TLS connections
// for checks. This function is separated because there is an extra flag to
// consider for checks. EnableAgentTLSForChecks and InsecureSkipVerify has to
// be checked for checks.
func (c *Configurator) OutgoingTLSConfigForCheck(skipVerify bool, serverName string) *tls.Config {
c.log("OutgoingTLSConfigForCheck")
c.lock.RLock()
useAgentTLS := c.base.EnableAgentTLSForChecks
c.lock.RUnlock()
if !useAgentTLS {
return &tls.Config{
InsecureSkipVerify: skipVerify,
ServerName: serverName,
}
}
if serverName == "" {
serverName = c.serverNameOrNodeName()
}
config := c.internalRPCTLSConfig(false)
config.InsecureSkipVerify = skipVerify
config.ServerName = serverName
return config
}
// OutgoingRPCConfig generates a *tls.Config for outgoing internal RPC
// connections. If there is a CA or VerifyOutgoing is set, a *tls.Config
// will be provided, otherwise we assume that no TLS should be used.
func (c *Configurator) OutgoingRPCConfig() *tls.Config {
c.log("OutgoingRPCConfig")
if !c.outgoingRPCTLSEnabled() {
return nil
}
return c.internalRPCTLSConfig(false)
}
// outgoingALPNRPCConfig generates a *tls.Config for outgoing RPC connections
// directly using TLS with ALPN instead of the older byte-prefixed protocol.
// If there is a CA or VerifyOutgoing is set, a *tls.Config will be provided,
// otherwise we assume that no TLS should be used which completely disables the
// ALPN variation.
func (c *Configurator) outgoingALPNRPCConfig() *tls.Config {
c.log("outgoingALPNRPCConfig")
if !c.MutualTLSCapable() {
return nil // ultimately this will hard-fail as TLS is required
}
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full server name verification.
config := c.internalRPCTLSConfig(true)
config.InsecureSkipVerify = false
return config
}
// OutgoingRPCWrapper wraps the result of OutgoingRPCConfig in a DCWrapper. It
// decides if verify server hostname should be used.
func (c *Configurator) OutgoingRPCWrapper() DCWrapper {
c.log("OutgoingRPCWrapper")
// Generate the wrapper based on dc
return func(dc string, conn net.Conn) (net.Conn, error) {
if c.UseTLS(dc) {
return c.wrapTLSClient(dc, conn)
}
return conn, nil
}
}
// UseTLS returns true if the outgoing RPC requests have been explicitly configured
// to use TLS (via VerifyOutgoing or AutoTLS, and the target DC supports TLS.
func (c *Configurator) UseTLS(dc string) bool {
return c.outgoingRPCTLSEnabled() && c.getAreaForPeerDatacenterUseTLS(dc)
}
// OutgoingALPNRPCWrapper wraps the result of outgoingALPNRPCConfig in an
// ALPNWrapper. It configures all of the negotiation plumbing.
func (c *Configurator) OutgoingALPNRPCWrapper() ALPNWrapper {
c.log("OutgoingALPNRPCWrapper")
if !c.MutualTLSCapable() {
return nil
}
return c.wrapALPNTLSClient
}
// AutoEncryptCert returns the TLS certificate received from auto-encrypt.
func (c *Configurator) AutoEncryptCert() *x509.Certificate {
c.lock.RLock()
defer c.lock.RUnlock()
tlsCert := c.autoTLS.cert
if tlsCert == nil || tlsCert.Certificate == nil {
return nil
}
cert, err := x509.ParseCertificate(tlsCert.Certificate[0])
if err != nil {
return nil
}
return cert
}
func (c *Configurator) PeeringServerName() string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.autoTLS.peeringServerName
}
func (c *Configurator) log(name string) {
if c.logger != nil && c.logger.IsTrace() {
c.logger.Trace(name, "version", atomic.LoadUint64(&c.version))
}
}
// Wrap a net.Conn into a client tls connection, performing any
// additional verification as needed.
//
// As of go 1.3, crypto/tls only supports either doing no certificate
// verification, or doing full verification including of the peer's
// DNS name. For consul, we want to validate that the certificate is
// signed by a known CA, but because consul doesn't use DNS names for
// node names, we don't verify the certificate DNS names. Since go 1.3
// no longer supports this mode of operation, we have to do it
// manually.
func (c *Configurator) wrapTLSClient(dc string, conn net.Conn) (net.Conn, error) {
config := c.OutgoingRPCConfig()
verifyServerHostname := c.VerifyServerHostname()
verifyOutgoing := c.verifyOutgoing()
domain := c.domain()
if verifyServerHostname {
// Strip the trailing '.' from the domain if any
domain = strings.TrimSuffix(domain, ".")
config.ServerName = "server." + dc + "." + domain
}
tlsConn := tls.Client(conn, config)
// If crypto/tls is doing verification, there's no need to do
// our own.
if !config.InsecureSkipVerify {
return tlsConn, nil
}
// If verification is not turned on, don't do it.
if !verifyOutgoing {
return tlsConn, nil
}
err := tlsConn.Handshake()
if err != nil {
tlsConn.Close()
return nil, err
}
// The following is lightly-modified from the doFullHandshake
// method in crypto/tls's handshake_client.go.
opts := x509.VerifyOptions{
Roots: config.RootCAs,
CurrentTime: time.Now(),
DNSName: "",
Intermediates: x509.NewCertPool(),
}
cs := tlsConn.ConnectionState()
for _, cert := range cs.PeerCertificates[1:] {
opts.Intermediates.AddCert(cert)
}
_, err = cs.PeerCertificates[0].Verify(opts)
if err != nil {
tlsConn.Close()
return nil, err
}
return tlsConn, err
}
// Wrap a net.Conn into a client tls connection suitable for secure ALPN-RPC,
// performing any additional verification as needed.
func (c *Configurator) wrapALPNTLSClient(dc, nodeName, alpnProto string, conn net.Conn) (net.Conn, error) {
if dc == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target datacenter")
} else if nodeName == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target node")
} else if alpnProto == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target alpn protocol")
}
config := c.outgoingALPNRPCConfig()
if config == nil {
return nil, fmt.Errorf("cannot dial via a mesh gateway when outgoing TLS is disabled")
}
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full hostname validation (forcing
// verify_server_hostname and verify_outgoing to be effectively true).
config.ServerName = c.ServerSNI(dc, nodeName)
config.NextProtos = []string{alpnProto}
tlsConn := tls.Client(conn, config)
// NOTE: For this handshake to succeed the server must have key material
// for either "<nodename>.server.<datacenter>.<domain>" or
// "*.server.<datacenter>.<domain>" in addition to the
// "server.<datacenter>.<domain>" required for standard TLS'd RPC.
if err := tlsConn.Handshake(); err != nil {
tlsConn.Close()
return nil, err
}
return tlsConn, nil
}
type TLSConn interface {
ConnectionState() tls.ConnectionState
}
// AuthorizeServerConn is used to validate that the connection is being established
// by a Consul server in the same datacenter.
//
// The identity of the connection is checked by verifying that the certificate
// presented is signed by the Agent TLS CA, and has a DNSName that matches the
// local ServerSNI name.
//
// Note this check is only performed if VerifyServerHostname and VerifyIncomingRPC
// are both enabled, otherwise it does no authorization.
func (c *Configurator) AuthorizeServerConn(dc string, conn TLSConn) error {
if !c.VerifyIncomingRPC() || !c.VerifyServerHostname() {
return nil
}
c.lock.RLock()
caPool := c.internalRPC.manualCAPool
c.lock.RUnlock()
expected := c.ServerSNI(dc, "")
cs := conn.ConnectionState()
var errs error
for _, chain := range cs.VerifiedChains {
if len(chain) == 0 {
continue
}
opts := x509.VerifyOptions{
DNSName: expected,
Intermediates: x509.NewCertPool(),
Roots: caPool,
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
}
for _, cert := range cs.PeerCertificates[1:] {
opts.Intermediates.AddCert(cert)
}
_, err := cs.PeerCertificates[0].Verify(opts)
if err == nil {
return nil
}
errs = multierror.Append(errs, err)
}
if errs == nil {
errs = fmt.Errorf("no verified chains")
}
return fmt.Errorf("AuthorizeServerConn failed certificate validation for certificate with a SAN.DNSName of %v: %w", expected, errs)
}
// NOTE: any new cipher suites will also need to be added in types/tls.go
// TODO: should this be moved into types/tls.go? Would importing Go's tls
// package in there be acceptable?
var goTLSCipherSuites = map[types.TLSCipherSuite]uint16{
types.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
types.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
types.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
types.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
types.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
types.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
types.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
types.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
types.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
types.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
}
func cipherSuiteLookup(ciphers []types.TLSCipherSuite) ([]uint16, error) {
suites := []uint16{}
if len(ciphers) == 0 {
return []uint16{}, nil
}
for _, cipher := range ciphers {
if v, ok := goTLSCipherSuites[cipher]; ok {
suites = append(suites, v)
} else {
return suites, fmt.Errorf("unsupported cipher %q", cipher)
}
}
return suites, nil
}
// CipherString performs the inverse operation of types.ParseCiphers
func CipherString(ciphers []types.TLSCipherSuite) (string, error) {
err := types.ValidateConsulAgentCipherSuites(ciphers)
if err != nil {
return "", err
}
cipherStrings := make([]string, len(ciphers))
for i, cipher := range ciphers {
cipherStrings[i] = string(cipher)
}
return strings.Join(cipherStrings, ","), nil
}