open-consul/agent/consul/rpc.go
Dan Stough e502be8c6e
[OSS] gRPC Blocking Queries (#17426)
* feat: initial grpc blocking queries

* changelog and docs update
2023-05-23 17:29:10 -04:00

1154 lines
34 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package consul
import (
"context"
"crypto/tls"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"net"
"strings"
"time"
"github.com/armon/go-metrics"
"github.com/armon/go-metrics/prometheus"
"github.com/hashicorp/go-connlimit"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-raftchunking"
"github.com/hashicorp/memberlist"
"github.com/hashicorp/raft"
"github.com/hashicorp/yamux"
"google.golang.org/grpc"
msgpackrpc "github.com/hashicorp/consul-net-rpc/net-rpc-msgpackrpc"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/blockingquery"
"github.com/hashicorp/consul/agent/consul/rate"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/consul/wanfed"
"github.com/hashicorp/consul/agent/metadata"
"github.com/hashicorp/consul/agent/pool"
"github.com/hashicorp/consul/agent/rpc/middleware"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/logging"
)
var RPCCounters = []prometheus.CounterDefinition{
{
Name: []string{"rpc", "accept_conn"},
Help: "Increments when a server accepts an RPC connection.",
},
{
Name: []string{"rpc", "raft_handoff"},
Help: "Increments when a server accepts a Raft-related RPC connection.",
},
{
Name: []string{"rpc", "request_error"},
Help: "Increments when a server returns an error from an RPC request.",
},
{
Name: []string{"rpc", "request"},
Help: "Increments when a server receives a Consul-related RPC request.",
},
{
Name: []string{"rpc", "cross-dc"},
Help: "Increments when a server sends a (potentially blocking) cross datacenter RPC query.",
},
{
Name: []string{"rpc", "query"},
Help: "Increments when a server receives a read request, indicating the rate of new read queries.",
},
}
var RPCGauges = []prometheus.GaugeDefinition{
{
Name: []string{"rpc", "queries_blocking"},
Help: "Shows the current number of in-flight blocking queries the server is handling.",
},
}
var RPCSummaries = []prometheus.SummaryDefinition{
{
Name: []string{"rpc", "consistentRead"},
Help: "Measures the time spent confirming that a consistent read can be performed.",
},
}
const (
// Warn if the Raft command is larger than this.
// If it's over 1MB something is probably being abusive.
raftWarnSize = 1024 * 1024
// enqueueLimit caps how long we will wait to enqueue
// a new Raft command. Something is probably wrong if this
// value is ever reached. However, it prevents us from blocking
// the requesting goroutine forever.
enqueueLimit = 30 * time.Second
)
var ErrChunkingResubmit = errors.New("please resubmit call for rechunking")
// partitionUnsetter is used to describe requests values that can unset their
// EnterpriseMeta.Partition value.
type partitionUnsetter interface {
// UnsetPartition is used to strip a Partition value from the request before
// it is forwarded to a remote datacenter. By unsetting the value, the server
// that handles the request can decide which partition should be used (or do nothing).
// This ensures that servers that are Partition-enabled (pre-1.11, or non-Enterprise)
// don't inadvertently cause servers that are not Partition-enabled (<= 1.10 or non-Enterprise)
// to filter their responses by Partition. In other words, this ensures upgraded servers
// remain compatible with non-upgraded servers.
UnsetPartition()
}
func (s *Server) rpcLogger() hclog.Logger {
return s.loggers.Named(logging.RPC)
}
// listen is used to listen for incoming RPC connections
func (s *Server) listen(listener net.Listener) {
for {
// Accept a connection
conn, err := listener.Accept()
if err != nil {
if s.shutdown {
return
}
s.rpcLogger().Error("failed to accept RPC conn", "error", err)
continue
}
free, err := s.rpcConnLimiter.Accept(conn)
if err != nil {
s.rpcLogger().Error("rejecting RPC conn from because rpc_max_conns_per_client exceeded", "conn", logConn(conn))
conn.Close()
continue
}
// Wrap conn so it will be auto-freed from conn limiter when it closes.
conn = connlimit.Wrap(conn, free)
go s.handleConn(conn, false)
metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1)
}
}
// logConn is a wrapper around memberlist's LogConn so that we format references
// to "from" addresses in a consistent way. This is just a shorter name.
func logConn(conn net.Conn) string {
return memberlist.LogConn(conn)
}
// handleConn is used to determine if this is a Raft or
// Consul type RPC connection and invoke the correct handler
func (s *Server) handleConn(conn net.Conn, isTLS bool) {
// Limit how long the client can hold the connection open before they send the
// magic byte (and authenticate when mTLS is enabled). If `isTLS == true` then
// this also enforces a timeout on how long it takes for the handshake to
// complete since tls.Conn.Read implicitly calls Handshake().
if s.config.RPCHandshakeTimeout > 0 {
conn.SetReadDeadline(time.Now().Add(s.config.RPCHandshakeTimeout))
}
if !isTLS && s.tlsConfigurator.MutualTLSCapable() {
// See if actually this is native TLS multiplexed onto the old
// "type-byte" system.
peekedConn, nativeTLS, err := pool.PeekForTLS(conn)
if err != nil {
if err != io.EOF {
s.rpcLogger().Error(
"failed to read first byte",
"conn", logConn(conn),
"error", err,
)
}
conn.Close()
return
}
if nativeTLS {
s.handleNativeTLS(peekedConn)
return
}
conn = peekedConn
}
// Read a single byte
buf := make([]byte, 1)
if _, err := conn.Read(buf); err != nil {
if err != io.EOF {
s.rpcLogger().Error("failed to read byte",
"conn", logConn(conn),
"error", err,
)
}
conn.Close()
return
}
typ := pool.RPCType(buf[0])
// Reset the deadline as we aren't sure what is expected next - it depends on
// the protocol.
if s.config.RPCHandshakeTimeout > 0 {
conn.SetReadDeadline(time.Time{})
}
// Enforce TLS if VerifyIncoming is set
if s.tlsConfigurator.VerifyIncomingRPC() && !isTLS && typ != pool.RPCTLS && typ != pool.RPCTLSInsecure {
s.rpcLogger().Warn("Non-TLS connection attempted with VerifyIncoming set", "conn", logConn(conn))
conn.Close()
return
}
// Switch on the byte
switch typ {
case pool.RPCConsul:
s.handleConsulConn(conn)
case pool.RPCRaft:
s.handleRaftRPC(conn)
case pool.RPCTLS:
// Don't allow malicious client to create TLS-in-TLS for ever.
if isTLS {
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
conn.Close()
return
}
conn = tls.Server(conn, s.tlsConfigurator.IncomingRPCConfig())
s.handleConn(conn, true)
case pool.RPCMultiplexV2:
s.handleMultiplexV2(conn)
case pool.RPCSnapshot:
s.handleSnapshotConn(conn)
case pool.RPCTLSInsecure:
// Don't allow malicious client to create TLS-in-TLS for ever.
if isTLS {
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
conn.Close()
return
}
conn = tls.Server(conn, s.tlsConfigurator.IncomingInsecureRPCConfig())
s.handleInsecureConn(conn)
case pool.RPCGRPC:
s.grpcHandler.Handle(conn)
case pool.RPCRaftForwarding:
s.handleRaftForwarding(conn)
default:
if !s.handleEnterpriseRPCConn(typ, conn, isTLS) {
s.rpcLogger().Error("unrecognized RPC byte",
"byte", typ,
"conn", logConn(conn),
)
conn.Close()
}
}
}
func (s *Server) handleNativeTLS(conn net.Conn) {
s.rpcLogger().Trace(
"detected actual TLS over RPC port",
"conn", logConn(conn),
)
tlscfg := s.tlsConfigurator.IncomingALPNRPCConfig(pool.RPCNextProtos)
tlsConn := tls.Server(conn, tlscfg)
// Force the handshake to conclude.
if err := tlsConn.Handshake(); err != nil {
s.rpcLogger().Error(
"TLS handshake failed",
"conn", logConn(conn),
"error", err,
)
conn.Close()
return
}
// Reset the deadline as we aren't sure what is expected next - it depends on
// the protocol.
if s.config.RPCHandshakeTimeout > 0 {
conn.SetReadDeadline(time.Time{})
}
var (
cs = tlsConn.ConnectionState()
sni = cs.ServerName
nextProto = cs.NegotiatedProtocol
transport = s.memberlistTransportWAN
)
s.rpcLogger().Trace(
"accepted nativeTLS RPC",
"sni", sni,
"protocol", nextProto,
"conn", logConn(conn),
)
switch nextProto {
case pool.ALPN_RPCConsul:
s.handleConsulConn(tlsConn)
case pool.ALPN_RPCRaft:
s.handleRaftRPC(tlsConn)
case pool.ALPN_RPCMultiplexV2:
s.handleMultiplexV2(tlsConn)
case pool.ALPN_RPCSnapshot:
s.handleSnapshotConn(tlsConn)
case pool.ALPN_RPCGRPC:
s.grpcHandler.Handle(tlsConn)
case pool.ALPN_RPCRaftForwarding:
s.handleRaftForwarding(tlsConn)
case pool.ALPN_WANGossipPacket:
if err := s.handleALPN_WANGossipPacketStream(tlsConn); err != nil && err != io.EOF {
s.rpcLogger().Error(
"failed to ingest RPC",
"sni", sni,
"protocol", nextProto,
"conn", logConn(conn),
"error", err,
)
}
case pool.ALPN_WANGossipStream:
// No need to defer the conn.Close() here, the Ingest methods do that.
if err := transport.IngestStream(tlsConn); err != nil {
s.rpcLogger().Error(
"failed to ingest RPC",
"sni", sni,
"protocol", nextProto,
"conn", logConn(conn),
"error", err,
)
}
default:
if !s.handleEnterpriseNativeTLSConn(nextProto, conn) {
s.rpcLogger().Error(
"discarding RPC for unknown negotiated protocol",
"failed to ingest RPC",
"protocol", nextProto,
"conn", logConn(conn),
)
conn.Close()
}
}
}
// handleMultiplexV2 is used to multiplex a single incoming connection
// using the Yamux multiplexer
func (s *Server) handleMultiplexV2(conn net.Conn) {
defer conn.Close()
conf := yamux.DefaultConfig()
// override the default because LogOutput conflicts with Logger
conf.LogOutput = nil
// TODO: should this be created once and cached?
conf.Logger = s.logger.StandardLogger(&hclog.StandardLoggerOptions{InferLevels: true})
server, _ := yamux.Server(conn, conf)
for {
sub, err := server.Accept()
if err != nil {
if err != io.EOF {
s.rpcLogger().Error("multiplex conn accept failed",
"conn", logConn(conn),
"error", err,
)
}
return
}
// In the beginning only RPC was supposed to be multiplexed
// with yamux. In order to add the ability to multiplex network
// area connections, this workaround was added.
// This code peeks the first byte and checks if it is
// RPCGossip, in which case this is handled by enterprise code.
// Otherwise this connection is handled like before by the RPC
// handler.
// This wouldn't work if a normal RPC could start with
// RPCGossip(6). In messagepack a 6 encodes a positive fixint:
// https://github.com/msgpack/msgpack/blob/master/spec.md.
// None of the RPCs we are doing starts with that, usually it is
// a string for datacenter.
peeked, first, err := pool.PeekFirstByte(sub)
if err != nil {
s.rpcLogger().Error("Problem peeking connection", "conn", logConn(sub), "err", err)
sub.Close()
return
}
sub = peeked
switch first {
case byte(pool.RPCGossip):
buf := make([]byte, 1)
sub.Read(buf)
go func() {
if !s.handleEnterpriseRPCConn(pool.RPCGossip, sub, false) {
s.rpcLogger().Error("unrecognized RPC byte",
"byte", pool.RPCGossip,
"conn", logConn(conn),
)
sub.Close()
}
}()
default:
go s.handleConsulConn(sub)
}
}
}
// handleConsulConn is used to service a single Consul RPC connection
func (s *Server) handleConsulConn(conn net.Conn) {
defer conn.Close()
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
for {
select {
case <-s.shutdownCh:
return
default:
}
if err := s.rpcServer.ServeRequest(rpcCodec); err != nil {
//EOF or closed are not considered as errors.
if err == io.EOF || strings.Contains(err.Error(), "closed") {
return
}
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
// When a rate-limiting error is returned, it's already logged, so skip logging.
if errors.Is(err, rate.ErrRetryLater) || errors.Is(err, rate.ErrRetryElsewhere) {
return
}
s.rpcLogger().Error("RPC error",
"conn", logConn(conn),
"error", err,
)
return
}
metrics.IncrCounter([]string{"rpc", "request"}, 1)
}
}
// handleInsecureConsulConn is used to service a single Consul INSECURERPC connection
func (s *Server) handleInsecureConn(conn net.Conn) {
defer conn.Close()
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
for {
select {
case <-s.shutdownCh:
return
default:
}
if err := s.insecureRPCServer.ServeRequest(rpcCodec); err != nil {
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
s.rpcLogger().Error("INSECURERPC error",
"conn", logConn(conn),
"error", err,
)
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
}
return
}
metrics.IncrCounter([]string{"rpc", "request"}, 1)
}
}
// handleSnapshotConn is used to dispatch snapshot saves and restores, which
// stream so don't use the normal RPC mechanism.
func (s *Server) handleSnapshotConn(conn net.Conn) {
go func() {
defer conn.Close()
if err := s.handleSnapshotRequest(conn); err != nil {
s.rpcLogger().Error("Snapshot RPC error",
"conn", logConn(conn),
"error", err,
)
}
}()
}
func (s *Server) handleRaftRPC(conn net.Conn) {
if tlsConn, ok := conn.(*tls.Conn); ok {
err := s.tlsConfigurator.AuthorizeServerConn(s.config.Datacenter, tlsConn)
if err != nil {
s.rpcLogger().Warn(err.Error(), "from", conn.RemoteAddr(), "operation", "raft RPC")
conn.Close()
return
}
}
metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1)
s.raftLayer.Handoff(conn)
}
func (s *Server) handleRaftForwarding(conn net.Conn) {
if tlsConn, ok := conn.(*tls.Conn); ok {
err := s.tlsConfigurator.AuthorizeServerConn(s.config.Datacenter, tlsConn)
if err != nil {
s.rpcLogger().Warn(err.Error(), "from", conn.RemoteAddr(), "operation", "raft forwarding")
conn.Close()
return
}
}
s.raftStorageBackend.HandleConnection(conn)
}
func (s *Server) handleALPN_WANGossipPacketStream(conn net.Conn) error {
defer conn.Close()
transport := s.memberlistTransportWAN
for {
select {
case <-s.shutdownCh:
return nil
default:
}
// Note: if we need to change this format to have additional header
// information we can just negotiate a different ALPN protocol instead
// of needing any sort of version field here.
prefixLen, err := readUint32(conn, wanfed.GossipPacketMaxIdleTime)
if err != nil {
return err
}
// Avoid a memory exhaustion DOS vector here by capping how large this
// packet can be to something reasonable.
if prefixLen > wanfed.GossipPacketMaxByteSize {
return fmt.Errorf("gossip packet size %d exceeds threshold of %d", prefixLen, wanfed.GossipPacketMaxByteSize)
}
lc := &limitedConn{
Conn: conn,
lr: io.LimitReader(conn, int64(prefixLen)),
}
if err := transport.IngestPacket(lc, conn.RemoteAddr(), time.Now(), false); err != nil {
return err
}
}
}
func readUint32(conn net.Conn, timeout time.Duration) (uint32, error) {
// Since requests are framed we can easily just set a deadline on
// reading that frame and then disable it for the rest of the body.
if err := conn.SetReadDeadline(time.Now().Add(timeout)); err != nil {
return 0, err
}
var v uint32
if err := binary.Read(conn, binary.BigEndian, &v); err != nil {
return 0, err
}
if err := conn.SetReadDeadline(time.Time{}); err != nil {
return 0, err
}
return v, nil
}
type limitedConn struct {
net.Conn
lr io.Reader
}
func (c *limitedConn) Read(b []byte) (n int, err error) {
return c.lr.Read(b)
}
func getWaitTime(rpcHoldTimeout time.Duration, retryCount int) time.Duration {
const backoffMultiplier = 2.0
rpcHoldTimeoutInMilli := int(rpcHoldTimeout.Milliseconds())
initialBackoffInMilli := rpcHoldTimeoutInMilli / structs.JitterFraction
if initialBackoffInMilli < 1 {
initialBackoffInMilli = 1
}
waitTimeInMilli := initialBackoffInMilli * int(math.Pow(backoffMultiplier, float64(retryCount-1)))
return time.Duration(waitTimeInMilli) * time.Millisecond
}
// canRetry returns true if the request and error indicate that a retry is safe.
func canRetry(info structs.RPCInfo, err error, start time.Time, config *Config, retryableMessages []error) bool {
if info != nil {
timedOut, timeoutError := info.HasTimedOut(start, config.RPCHoldTimeout, config.MaxQueryTime, config.DefaultQueryTime)
if timeoutError != nil {
return false
}
if timedOut {
return false
}
}
if info == nil && time.Since(start) > config.RPCHoldTimeout {
// When not RPCInfo, timeout is only RPCHoldTimeout
return false
}
// No leader errors are always safe to retry since no state could have
// been changed.
if structs.IsErrNoLeader(err) {
return true
}
for _, m := range retryableMessages {
if err != nil && strings.Contains(err.Error(), m.Error()) {
return true
}
}
// Reads are safe to retry for stream errors, such as if a server was
// being shut down.
return info != nil && info.IsRead() && lib.IsErrEOF(err)
}
// ForwardRPC is used to potentially forward an RPC request to a remote DC or
// to the local leader depending upon the request.
//
// Returns a bool of if forwarding was performed, as well as any error. If
// false is returned (with no error) it is assumed that the current server
// should handle the request.
func (s *Server) ForwardRPC(method string, info structs.RPCInfo, reply interface{}) (bool, error) {
forwardToDC := func(dc string) error {
return s.forwardDC(method, dc, info, reply)
}
forwardToLeader := func(leader *metadata.Server) error {
return s.connPool.RPC(s.config.Datacenter, leader.ShortName, leader.Addr,
method, info, reply)
}
return s.forwardRPC(info, forwardToDC, forwardToLeader)
}
// ForwardGRPC is used to potentially forward an RPC request to a remote DC or
// to the local leader depending upon the request.
//
// Returns a bool of if forwarding was performed, as well as any error. If
// false is returned (with no error) it is assumed that the current server
// should handle the request.
func (s *Server) ForwardGRPC(connPool GRPCClientConner, info structs.RPCInfo, f func(*grpc.ClientConn) error) (handled bool, err error) {
forwardToDC := func(dc string) error {
conn, err := connPool.ClientConn(dc)
if err != nil {
return err
}
return f(conn)
}
forwardToLeader := func(leader *metadata.Server) error {
conn, err := connPool.ClientConnLeader()
if err != nil {
return err
}
return f(conn)
}
return s.forwardRPC(info, forwardToDC, forwardToLeader)
}
// forwardRPC is used to potentially forward an RPC request to a remote DC or
// to the local leader depending upon the request.
//
// If info.RequestDatacenter() does not match the local datacenter, then the
// request will be forwarded to the DC using forwardToDC.
//
// Stale read requests will be handled locally if the current node has an
// initialized raft database, otherwise requests will be forwarded to the local
// leader using forwardToLeader.
//
// Returns a bool of if forwarding was performed, as well as any error. If
// false is returned (with no error) it is assumed that the current server
// should handle the request.
func (s *Server) forwardRPC(
info structs.RPCInfo,
forwardToDC func(dc string) error,
forwardToLeader func(leader *metadata.Server) error,
) (handled bool, err error) {
// Forward the request to the requested datacenter.
if handled, err := s.forwardRequestToOtherDatacenter(info, forwardToDC); handled || err != nil {
return handled, err
}
// See if we should let this server handle the read request without
// shipping the request to the leader.
if s.canServeReadRequest(info) {
return false, nil
}
return s.forwardRequestToLeader(info, forwardToLeader)
}
// forwardRequestToOtherDatacenter is an implementation detail of forwardRPC.
// See the comment for forwardRPC for more details.
func (s *Server) forwardRequestToOtherDatacenter(info structs.RPCInfo, forwardToDC func(dc string) error) (handled bool, err error) {
// Handle DC forwarding
dc := info.RequestDatacenter()
if dc == "" {
dc = s.config.Datacenter
}
if dc != s.config.Datacenter {
// Local tokens only work within the current datacenter. Check to see
// if we are attempting to forward one to a remote datacenter and strip
// it, falling back on the anonymous token on the other end.
if token := info.TokenSecret(); token != "" {
done, ident, err := s.ResolveIdentityFromToken(token)
if done {
if err != nil && !acl.IsErrNotFound(err) {
return false, err
}
if ident != nil && ident.IsLocal() {
// Strip it from the request.
info.SetTokenSecret("")
defer info.SetTokenSecret(token)
}
}
}
// In order to interoperate with servers that can interpret Partition, but
// may not handle it correctly (eg. 1.10 servers), we need to unset the value.
// Unsetting the Partition ensures that the server that handles the request
// uses its Partition, or an empty value (aka doing nothing).
// For requests that are not Partition-aware, this is a no-op.
if v, ok := info.(partitionUnsetter); ok {
v.UnsetPartition()
}
return true, forwardToDC(dc)
}
return false, nil
}
// canServeReadRequest determines if the request is a stale read request and
// the current node can safely process that request.
func (s *Server) canServeReadRequest(info structs.RPCInfo) bool {
// Check if we can allow a stale read, ensure our local DB is initialized
return info.IsRead() && info.AllowStaleRead() && !s.raft.LastContact().IsZero()
}
// forwardRequestToLeader is an implementation detail of forwardRPC.
// See the comment for forwardRPC for more details.
func (s *Server) forwardRequestToLeader(info structs.RPCInfo, forwardToLeader func(leader *metadata.Server) error) (handled bool, err error) {
firstCheck := time.Now()
retryCount := 0
previousJitter := time.Duration(0)
CHECK_LEADER:
retryCount++
// Fail fast if we are in the process of leaving
select {
case <-s.leaveCh:
return true, structs.ErrNoLeader
default:
}
// Find the leader
isLeader, leader, rpcErr := s.getLeader()
// Handle the case we are the leader
if isLeader {
return false, nil
}
// Handle the case of a known leader
if leader != nil {
rpcErr = forwardToLeader(leader)
if rpcErr == nil {
return true, nil
}
}
retryableMessages := []error{
// If we are chunking and it doesn't seem to have completed, try again.
ErrChunkingResubmit,
rate.ErrRetryLater,
}
if retry := canRetry(info, rpcErr, firstCheck, s.config, retryableMessages); retry {
// Gate the request until there is a leader
jitter := lib.RandomStaggerWithRange(previousJitter, getWaitTime(s.config.RPCHoldTimeout, retryCount))
previousJitter = jitter
select {
case <-time.After(jitter):
goto CHECK_LEADER
case <-s.leaveCh:
case <-s.shutdownCh:
}
}
// No leader found and hold time exceeded
return true, rpcErr
}
// getLeader returns if the current node is the leader, and if not then it
// returns the leader which is potentially nil if the cluster has not yet
// elected a leader. In the case of not having a leader elected yet
// then a NoClusterLeader error gets returned. In the case of Raft having
// a leader but out internal tracking failing to find the leader we
// return a LeaderNotTracked error. Therefore if the err is nil AND
// the bool is false then the Server will be non-nil
func (s *Server) getLeader() (bool, *metadata.Server, error) {
// Check if we are the leader
if s.IsLeader() {
return true, nil, nil
}
// Get the leader
leader := s.raft.Leader()
if leader == "" {
return false, nil, structs.ErrNoLeader
}
// Lookup the server
server := s.serverLookup.Server(leader)
// if server is nil this indicates that while we have a Raft leader
// something has caused that node to be considered unhealthy which
// cascades into its removal from the serverLookup struct. In this case
// we should not report no cluster leader but instead report a different
// error so as not to confuse our users as to the what the root cause of
// an issue might be.
if server == nil {
s.logger.Warn("Raft has a leader but other tracking of the node would indicate that the node is unhealthy or does not exist. The network may be misconfigured.", "leader", leader)
return false, nil, structs.ErrLeaderNotTracked
}
return false, server, nil
}
// forwardDC is used to forward an RPC call to a remote DC, or fail if no servers
func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error {
manager, server, ok := s.router.FindRoute(dc)
if !ok {
if s.router.HasDatacenter(dc) {
s.rpcLogger().Warn("RPC request to DC is currently failing as no server can be reached", "datacenter", dc)
return structs.ErrDCNotAvailable
}
s.rpcLogger().Warn("RPC request for DC is currently failing as no path was found",
"datacenter", dc,
"method", method,
)
return structs.ErrNoDCPath
}
metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1,
[]metrics.Label{{Name: "datacenter", Value: dc}})
if err := s.connPool.RPC(dc, server.ShortName, server.Addr, method, args, reply); err != nil {
manager.NotifyFailedServer(server)
s.rpcLogger().Error("RPC failed to server in DC",
"server", server.Addr,
"datacenter", dc,
"method", method,
"error", err,
)
return err
}
return nil
}
// keyringRPCs is used to forward an RPC request to a server in each dc. This
// will only error for RPC-related errors. Otherwise, application-level errors
// can be sent in the response objects.
func (s *Server) keyringRPCs(method string, args interface{}, dcs []string) (*structs.KeyringResponses, error) {
errorCh := make(chan error, len(dcs))
respCh := make(chan *structs.KeyringResponses, len(dcs))
for _, dc := range dcs {
go func(dc string) {
rr := &structs.KeyringResponses{}
if err := s.forwardDC(method, dc, args, &rr); err != nil {
errorCh <- err
return
}
respCh <- rr
}(dc)
}
responses := &structs.KeyringResponses{}
for i := 0; i < len(dcs); i++ {
select {
case err := <-errorCh:
return nil, err
case rr := <-respCh:
responses.Add(rr)
}
}
return responses, nil
}
type raftEncoder func(structs.MessageType, interface{}) ([]byte, error)
// leaderRaftApply is used by the leader to persist data to Raft for internal cluster management activities.
// This method MUST not be called from RPC endpoints, since it would result in duplicated RPC metrics.
func (s *Server) leaderRaftApply(method string, t structs.MessageType, msg interface{}) (interface{}, error) {
start := time.Now()
resp, err := s.raftApplyMsgpack(t, msg)
s.rpcRecorder.Record(method, middleware.RPCTypeInternal, start, &msg, err != nil)
return resp, err
}
// raftApplyMsgpack encodes the msg using msgpack and calls raft.Apply. See
// raftApplyWithEncoder.
// Deprecated: use raftApplyMsgpack
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) {
return s.raftApplyMsgpack(t, msg)
}
// raftApplyMsgpack encodes the msg using msgpack and calls raft.Apply. See
// raftApplyEncoded.
func (s *Server) raftApplyMsgpack(t structs.MessageType, msg interface{}) (interface{}, error) {
return s.raftApplyWithEncoder(t, msg, structs.Encode)
}
// raftApplyProtobuf encodes the msg using protobuf and calls raft.Apply. See
// raftApplyEncoded.
func (s *Server) raftApplyProtobuf(t structs.MessageType, msg interface{}) (interface{}, error) {
return s.raftApplyWithEncoder(t, msg, structs.EncodeProtoInterface)
}
// raftApplyWithEncoder encodes a message, and then calls raft.Apply with the
// encoded message. See raftApplyEncoded.
func (s *Server) raftApplyWithEncoder(
t structs.MessageType,
msg interface{},
encoder raftEncoder,
) (response interface{}, err error) {
if encoder == nil {
return nil, fmt.Errorf("Failed to encode request: nil encoder")
}
buf, err := encoder(t, msg)
if err != nil {
return nil, fmt.Errorf("Failed to encode request: %v", err)
}
return s.raftApplyEncoded(t, buf)
}
// raftApplyEncoded calls raft.Apply with the encoded message. Returns the FSM
// response along with any errors. If the FSM.Apply response is an error it will
// be returned as the error return value with a nil response.
func (s *Server) raftApplyEncoded(t structs.MessageType, buf []byte) (any, error) {
// Warn if the command is very large
if n := len(buf); n > raftWarnSize {
s.rpcLogger().Warn("Attempting to apply large raft entry", "size_in_bytes", n)
}
var chunked bool
var future raft.ApplyFuture
switch {
case len(buf) <= raft.SuggestedMaxDataSize || t != structs.KVSRequestType:
future = s.raft.Apply(buf, enqueueLimit)
default:
chunked = true
future = raftchunking.ChunkingApply(buf, nil, enqueueLimit, s.raft.ApplyLog)
}
if err := future.Error(); err != nil {
return nil, err
}
resp := future.Response()
if chunked {
// In this case we didn't apply all chunks successfully, possibly due
// to a term change; resubmit
if resp == nil {
return nil, ErrChunkingResubmit
}
// We expect that this conversion should always work
chunkedSuccess, ok := resp.(raftchunking.ChunkingSuccess)
if !ok {
return nil, errors.New("unknown type of response back from chunking FSM")
}
resp = chunkedSuccess.Response
}
if err, ok := resp.(error); ok {
return nil, err
}
return resp, nil
}
// queryFn is used to perform a query operation. See Server.blockingQuery for
// the requirements of this function.
type queryFn func(memdb.WatchSet, *state.Store) error
// blockingQueryOptions are options used by Server.blockingQuery to modify the
// behaviour of the query operation, or to populate response metadata.
type blockingQueryOptions interface {
GetToken() string
GetMinQueryIndex() uint64
GetMaxQueryTime() (time.Duration, error)
GetRequireConsistent() bool
}
// blockingQueryResponseMeta is an interface used to populate the response struct
// with metadata about the query and the state of the server.
type blockingQueryResponseMeta interface {
SetLastContact(time.Duration)
SetKnownLeader(bool)
GetIndex() uint64
SetIndex(uint64)
SetResultsFilteredByACLs(bool)
}
// blockingQuery is a passthrough to blockingquery.Query that keeps API
// compatibility with Server. That has RPC and FSM machinery mixed in the same consul
// package.
func (s *Server) blockingQuery(
requestOpts blockingquery.RequestOptions,
responseMeta blockingquery.ResponseMeta,
query blockingquery.QueryFn,
) error {
return blockingquery.Query(s, requestOpts, responseMeta, query)
}
var (
errNotFound = blockingquery.ErrNotFound
errNotChanged = blockingquery.ErrNotChanged
)
// SetQueryMeta is used to populate the QueryMeta data for an RPC call
//
// Note: This method must be called *after* filtering query results with ACLs.
func (s *Server) SetQueryMeta(m blockingquery.ResponseMeta, token string) {
if s.IsLeader() {
m.SetLastContact(0)
m.SetKnownLeader(true)
} else {
m.SetLastContact(time.Since(s.raft.LastContact()))
m.SetKnownLeader(s.raft.Leader() != "")
}
maskResultsFilteredByACLs(token, m)
// Always set a non-zero QueryMeta.Index. Generally we expect the
// QueryMeta.Index to be set to structs.RaftIndex.ModifyIndex. If the query
// returned no results we expect it to be set to the max index of the table,
// however we can't guarantee this always happens.
// To prevent a client from accidentally performing many non-blocking queries
// (which causes lots of unnecessary load), we always set a default value of 1.
// This is sufficient to prevent the unnecessary load in most cases.
if m.GetIndex() < 1 {
m.SetIndex(1)
}
}
func (s *Server) consistentReadWithContext(ctx context.Context) error {
defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now())
future := s.raft.VerifyLeader()
if err := future.Error(); err != nil {
return err // fail fast if leader verification fails
}
if s.isReadyForConsistentReads() {
return nil
}
// Poll until the context reaches its deadline, or for RPCHoldTimeout if the
// context has no deadline.
pollFor := s.config.RPCHoldTimeout
if deadline, ok := ctx.Deadline(); ok {
pollFor = time.Until(deadline)
}
interval := pollFor / structs.JitterFraction
if interval <= 0 {
return structs.ErrNotReadyForConsistentReads
}
ticker := time.NewTicker(interval)
defer ticker.Stop()
for {
select {
case <-ticker.C:
if s.isReadyForConsistentReads() {
return nil
}
case <-ctx.Done():
return structs.ErrNotReadyForConsistentReads
case <-s.shutdownCh:
return fmt.Errorf("shutdown waiting for leader")
}
}
}
// ConsistentRead is used to ensure we do not perform a stale
// read. This is done by verifying leadership before the read.
func (s *Server) ConsistentRead() error {
ctx, cancel := context.WithTimeout(context.Background(), s.config.RPCHoldTimeout)
defer cancel()
return s.consistentReadWithContext(ctx)
}
// RPCQueryTimeout calculates the timeout for the query, ensures it is
// constrained to the configured limit, and adds jitter to prevent multiple
// blocking queries from all timing out at the same time.
func (s *Server) RPCQueryTimeout(queryTimeout time.Duration) time.Duration {
// Restrict the max query time, and ensure there is always one.
if queryTimeout > s.config.MaxQueryTime {
queryTimeout = s.config.MaxQueryTime
} else if queryTimeout <= 0 {
queryTimeout = s.config.DefaultQueryTime
}
// Apply a small amount of jitter to the request.
queryTimeout += lib.RandomStagger(queryTimeout / structs.JitterFraction)
return queryTimeout
}
// maskResultsFilteredByACLs blanks out the ResultsFilteredByACLs flag if the
// request is unauthenticated, to limit information leaking.
//
// Endpoints that support bexpr filtering could be used in combination with
// this flag/header to discover the existence of resources to which the user
// does not have access, therefore we only expose it when the user presents
// a valid ACL token. This doesn't completely remove the risk (by nature the
// purpose of this flag is to let the user know there are resources they can
// not access) but it prevents completely unauthenticated users from doing so.
//
// Notes:
//
// - The definition of "unauthenticated" here is incomplete, as it doesn't
// account for the fact that operators can modify the anonymous token with
// custom policies, or set namespace default policies. As these scenarios
// are less common and this flag is a best-effort UX improvement, we think
// the trade-off for reduced complexity is acceptable.
//
// - This method assumes that the given token has already been validated (and
// will only check whether it is blank or not). It's a safe assumption because
// ResultsFilteredByACLs is only set to try when applying the already-resolved
// token's policies.
func maskResultsFilteredByACLs(token string, meta blockingQueryResponseMeta) {
if token == "" {
meta.SetResultsFilteredByACLs(false)
}
}