open-consul/consul/rtt_test.go
2015-10-23 15:23:01 -07:00

565 lines
18 KiB
Go

package consul
import (
"math"
"net/rpc"
"os"
"sort"
"strings"
"testing"
"time"
"github.com/hashicorp/consul/consul/structs"
"github.com/hashicorp/consul/testutil"
"github.com/hashicorp/net-rpc-msgpackrpc"
"github.com/hashicorp/serf/coordinate"
)
// generateCoordinate creates a new coordinate with the given distance from the
// origin.
func generateCoordinate(rtt time.Duration) *coordinate.Coordinate {
coord := coordinate.NewCoordinate(coordinate.DefaultConfig())
coord.Vec[0] = rtt.Seconds()
return coord
}
// verifyNodeSort makes sure the order of the nodes in the slice is the same as
// the expected order, expressed as a comma-separated string.
func verifyNodeSort(t *testing.T, nodes structs.Nodes, expected string) {
vec := make([]string, len(nodes))
for i, node := range nodes {
vec[i] = node.Node
}
actual := strings.Join(vec, ",")
if actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
}
// verifyServiceNodeSort makes sure the order of the nodes in the slice is the
// same as the expected order, expressed as a comma-separated string.
func verifyServiceNodeSort(t *testing.T, nodes structs.ServiceNodes, expected string) {
vec := make([]string, len(nodes))
for i, node := range nodes {
vec[i] = node.Node
}
actual := strings.Join(vec, ",")
if actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
}
// verifyHealthCheckSort makes sure the order of the nodes in the slice is the
// same as the expected order, expressed as a comma-separated string.
func verifyHealthCheckSort(t *testing.T, checks structs.HealthChecks, expected string) {
vec := make([]string, len(checks))
for i, check := range checks {
vec[i] = check.Node
}
actual := strings.Join(vec, ",")
if actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
}
// verifyCheckServiceNodeSort makes sure the order of the nodes in the slice is
// the same as the expected order, expressed as a comma-separated string.
func verifyCheckServiceNodeSort(t *testing.T, nodes structs.CheckServiceNodes, expected string) {
vec := make([]string, len(nodes))
for i, node := range nodes {
vec[i] = node.Node.Node
}
actual := strings.Join(vec, ",")
if actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
}
// seedCoordinates uses the client to set up a set of nodes with a specific
// set of distances from the origin. We also include the server so that we
// can wait for the coordinates to get committed to the Raft log.
//
// Here's the layout of the nodes:
//
// node3 node2 node5 node4 node1
// | | | | | | | | | | |
// 0 1 2 3 4 5 6 7 8 9 10 (ms)
//
func seedCoordinates(t *testing.T, codec rpc.ClientCodec, server *Server) {
updates := []structs.CoordinateUpdateRequest{
structs.CoordinateUpdateRequest{
Datacenter: "dc1",
Node: "node1",
Coord: generateCoordinate(10 * time.Millisecond),
},
structs.CoordinateUpdateRequest{
Datacenter: "dc1",
Node: "node2",
Coord: generateCoordinate(2 * time.Millisecond),
},
structs.CoordinateUpdateRequest{
Datacenter: "dc1",
Node: "node3",
Coord: generateCoordinate(1 * time.Millisecond),
},
structs.CoordinateUpdateRequest{
Datacenter: "dc1",
Node: "node4",
Coord: generateCoordinate(8 * time.Millisecond),
},
structs.CoordinateUpdateRequest{
Datacenter: "dc1",
Node: "node5",
Coord: generateCoordinate(3 * time.Millisecond),
},
}
// Apply the updates and wait a while for the batch to get committed to
// the Raft log.
for _, update := range updates {
var out struct{}
if err := msgpackrpc.CallWithCodec(codec, "Coordinate.Update", &update, &out); err != nil {
t.Fatalf("err: %v", err)
}
}
time.Sleep(2 * server.config.CoordinateUpdatePeriod)
}
func TestRtt_sortNodesByDistanceFrom(t *testing.T) {
dir, server := testServer(t)
defer os.RemoveAll(dir)
defer server.Shutdown()
codec := rpcClient(t, server)
defer codec.Close()
testutil.WaitForLeader(t, server.RPC, "dc1")
seedCoordinates(t, codec, server)
nodes := structs.Nodes{
structs.Node{Node: "apple"},
structs.Node{Node: "node1"},
structs.Node{Node: "node2"},
structs.Node{Node: "node3"},
structs.Node{Node: "node4"},
structs.Node{Node: "node5"},
}
// The zero value for the source should not trigger any sorting.
var source structs.QuerySource
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
// Same for a source in some other DC.
source.Node = "node1"
source.Datacenter = "dc2"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
// Same for a source node in our DC that we have no coordinate for.
source.Node = "apple"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
// Set source to legit values relative to node1 but disable coordinates.
source.Node = "node1"
source.Datacenter = "dc1"
server.config.DisableCoordinates = true
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
// Now enable coordinates and sort relative to node1, note that apple
// doesn't have any seeded coordinate info so it should end up at the
// end, despite its lexical hegemony.
server.config.DisableCoordinates = false
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
}
func TestRtt_sortNodesByDistanceFrom_Nodes(t *testing.T) {
dir, server := testServer(t)
defer os.RemoveAll(dir)
defer server.Shutdown()
codec := rpcClient(t, server)
defer codec.Close()
testutil.WaitForLeader(t, server.RPC, "dc1")
seedCoordinates(t, codec, server)
nodes := structs.Nodes{
structs.Node{Node: "apple"},
structs.Node{Node: "node1"},
structs.Node{Node: "node2"},
structs.Node{Node: "node3"},
structs.Node{Node: "node4"},
structs.Node{Node: "node5"},
}
// Now sort relative to node1, note that apple doesn't have any
// seeded coordinate info so it should end up at the end, despite
// its lexical hegemony.
var source structs.QuerySource
source.Node = "node1"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
// Try another sort from node2. Note that node5 and node3 are the
// same distance away so the stable sort should preserve the order
// they were in from the previous sort.
source.Node = "node2"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
// Let's exercise the stable sort explicitly to make sure we didn't
// just get lucky.
nodes[1], nodes[2] = nodes[2], nodes[1]
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
}
func TestRtt_sortNodesByDistanceFrom_ServiceNodes(t *testing.T) {
dir, server := testServer(t)
defer os.RemoveAll(dir)
defer server.Shutdown()
codec := rpcClient(t, server)
defer codec.Close()
testutil.WaitForLeader(t, server.RPC, "dc1")
seedCoordinates(t, codec, server)
nodes := structs.ServiceNodes{
structs.ServiceNode{Node: "apple"},
structs.ServiceNode{Node: "node1"},
structs.ServiceNode{Node: "node2"},
structs.ServiceNode{Node: "node3"},
structs.ServiceNode{Node: "node4"},
structs.ServiceNode{Node: "node5"},
}
// Now sort relative to node1, note that apple doesn't have any
// seeded coordinate info so it should end up at the end, despite
// its lexical hegemony.
var source structs.QuerySource
source.Node = "node1"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
// Try another sort from node2. Note that node5 and node3 are the
// same distance away so the stable sort should preserve the order
// they were in from the previous sort.
source.Node = "node2"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
// Let's exercise the stable sort explicitly to make sure we didn't
// just get lucky.
nodes[1], nodes[2] = nodes[2], nodes[1]
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
}
func TestRtt_sortNodesByDistanceFrom_HealthChecks(t *testing.T) {
dir, server := testServer(t)
defer os.RemoveAll(dir)
defer server.Shutdown()
codec := rpcClient(t, server)
defer codec.Close()
testutil.WaitForLeader(t, server.RPC, "dc1")
seedCoordinates(t, codec, server)
checks := structs.HealthChecks{
&structs.HealthCheck{Node: "apple"},
&structs.HealthCheck{Node: "node1"},
&structs.HealthCheck{Node: "node2"},
&structs.HealthCheck{Node: "node3"},
&structs.HealthCheck{Node: "node4"},
&structs.HealthCheck{Node: "node5"},
}
// Now sort relative to node1, note that apple doesn't have any
// seeded coordinate info so it should end up at the end, despite
// its lexical hegemony.
var source structs.QuerySource
source.Node = "node1"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
t.Fatalf("err: %v", err)
}
verifyHealthCheckSort(t, checks, "node1,node4,node5,node2,node3,apple")
// Try another sort from node2. Note that node5 and node3 are the
// same distance away so the stable sort should preserve the order
// they were in from the previous sort.
source.Node = "node2"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
t.Fatalf("err: %v", err)
}
verifyHealthCheckSort(t, checks, "node2,node5,node3,node4,node1,apple")
// Let's exercise the stable sort explicitly to make sure we didn't
// just get lucky.
checks[1], checks[2] = checks[2], checks[1]
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
t.Fatalf("err: %v", err)
}
verifyHealthCheckSort(t, checks, "node2,node3,node5,node4,node1,apple")
}
func TestRtt_sortNodesByDistanceFrom_CheckServiceNodes(t *testing.T) {
dir, server := testServer(t)
defer os.RemoveAll(dir)
defer server.Shutdown()
codec := rpcClient(t, server)
defer codec.Close()
testutil.WaitForLeader(t, server.RPC, "dc1")
seedCoordinates(t, codec, server)
nodes := structs.CheckServiceNodes{
structs.CheckServiceNode{Node: structs.Node{Node: "apple"}},
structs.CheckServiceNode{Node: structs.Node{Node: "node1"}},
structs.CheckServiceNode{Node: structs.Node{Node: "node2"}},
structs.CheckServiceNode{Node: structs.Node{Node: "node3"}},
structs.CheckServiceNode{Node: structs.Node{Node: "node4"}},
structs.CheckServiceNode{Node: structs.Node{Node: "node5"}},
}
// Now sort relative to node1, note that apple doesn't have any
// seeded coordinate info so it should end up at the end, despite
// its lexical hegemony.
var source structs.QuerySource
source.Node = "node1"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyCheckServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
// Try another sort from node2. Note that node5 and node3 are the
// same distance away so the stable sort should preserve the order
// they were in from the previous sort.
source.Node = "node2"
source.Datacenter = "dc1"
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyCheckServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
// Let's exercise the stable sort explicitly to make sure we didn't
// just get lucky.
nodes[1], nodes[2] = nodes[2], nodes[1]
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
t.Fatalf("err: %v", err)
}
verifyCheckServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
}
// mockNodeMap is keyed by node name and the values are the coordinates of the
// node.
type mockNodeMap map[string]*coordinate.Coordinate
// mockServer is used to provide a serfer interface for unit tests. The key is
// DC, which selects a map from node name to coordinate for that node.
type mockServer map[string]mockNodeMap
// newMockServer is used to generate a serfer interface that presents a known DC
// topology for unit tests. The server is in dc0.
//
// Here's the layout of the nodes:
//
// /---- dc1 ----\ /- dc2 -\ /- dc0 -\
// node2 node1 node3 node1 node1
// | | | | | | | | | | |
// 0 1 2 3 4 5 6 7 8 9 10 (ms)
//
// We also include a node4 in dc1 with no known coordinate, as well as a
// mysterious dcX with no nodes with known coordinates.
//
func newMockServer() *mockServer {
s := make(mockServer)
s["dc0"] = mockNodeMap{
"dc0.node1": generateCoordinate(10 * time.Millisecond),
}
s["dc1"] = mockNodeMap{
"dc1.node1": generateCoordinate(3 * time.Millisecond),
"dc1.node2": generateCoordinate(2 * time.Millisecond),
"dc1.node3": generateCoordinate(5 * time.Millisecond),
"dc1.node4": nil, // no known coordinate
}
s["dc2"] = mockNodeMap{
"dc2.node1": generateCoordinate(8 * time.Millisecond),
}
s["dcX"] = mockNodeMap{
"dcX.node1": nil, // no known coordinate
}
return &s
}
// See serfer.
func (s *mockServer) GetDatacenter() string {
return "dc0"
}
// See serfer.
func (s *mockServer) GetCoordinate() (*coordinate.Coordinate, error) {
return (*s)["dc0"]["dc0.node1"], nil
}
// See serfer.
func (s *mockServer) GetCachedCoordinate(node string) (*coordinate.Coordinate, bool) {
for _, nodes := range *s {
for n, coord := range nodes {
if n == node && coord != nil {
return coord, true
}
}
}
return nil, false
}
// See serfer.
func (s *mockServer) GetNodesForDatacenter(dc string) []string {
nodes := make([]string, 0)
if n, ok := (*s)[dc]; ok {
for name := range n {
nodes = append(nodes, name)
}
}
sort.Strings(nodes)
return nodes
}
func TestRtt_getDatacenterDistance(t *testing.T) {
s := newMockServer()
// The serfer's own DC is always 0 ms away.
if dist, err := getDatacenterDistance(s, "dc0"); err != nil || dist != 0.0 {
t.Fatalf("bad: %v err: %v", dist, err)
}
// Check a DC with no coordinates, which should give positive infinity.
if dist, err := getDatacenterDistance(s, "dcX"); err != nil || dist != math.Inf(1.0) {
t.Fatalf("bad: %v err: %v", dist, err)
}
// Similar for a totally unknown DC.
if dist, err := getDatacenterDistance(s, "acdc"); err != nil || dist != math.Inf(1.0) {
t.Fatalf("bad: %v err: %v", dist, err)
}
// Check the trivial median case (just one node).
if dist, err := getDatacenterDistance(s, "dc2"); err != nil || dist != 0.002 {
t.Fatalf("bad: %v err: %v", dist, err)
}
// Check the more interesting median case, note that there's a mystery
// node4 in there that should be excluded to make the distances sort
// like this:
//
// [0] node3 (0.005), [1] node1 (0.007), [2] node2 (0.008)
//
// So the median should be at index 3 / 2 = 1 -> 0.007.
if dist, err := getDatacenterDistance(s, "dc1"); err != nil || dist != 0.007 {
t.Fatalf("bad: %v err: %v", dist, err)
}
}
func TestRtt_sortDatacentersByDistance(t *testing.T) {
s := newMockServer()
dcs := []string{"acdc", "dc0", "dc1", "dc2", "dcX"}
if err := sortDatacentersByDistance(s, dcs); err != nil {
t.Fatalf("err: %v", err)
}
expected := "dc0,dc2,dc1,acdc,dcX"
if actual := strings.Join(dcs, ","); actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
// Make sure the sort is stable and we didn't just get lucky.
dcs = []string{"dcX", "dc0", "dc1", "dc2", "acdc"}
if err := sortDatacentersByDistance(s, dcs); err != nil {
t.Fatalf("err: %v", err)
}
expected = "dc0,dc2,dc1,dcX,acdc"
if actual := strings.Join(dcs, ","); actual != expected {
t.Fatalf("bad sort: %s != %s", actual, expected)
}
}
func TestRtt_getDatacenterMaps(t *testing.T) {
s := newMockServer()
dcs := []string{"dc0", "acdc", "dc1", "dc2", "dcX"}
maps := getDatacenterMaps(s, dcs)
if len(maps) != 5 {
t.Fatalf("bad: %v", maps)
}
if maps[0].Datacenter != "dc0" || len(maps[0].Coordinates) != 1 ||
maps[0].Coordinates[0].Node != "dc0.node1" {
t.Fatalf("bad: %v", maps[0])
}
verifyCoordinatesEqual(t, maps[0].Coordinates[0].Coord,
generateCoordinate(10*time.Millisecond))
if maps[1].Datacenter != "acdc" || len(maps[1].Coordinates) != 0 {
t.Fatalf("bad: %v", maps[1])
}
if maps[2].Datacenter != "dc1" || len(maps[2].Coordinates) != 3 ||
maps[2].Coordinates[0].Node != "dc1.node1" ||
maps[2].Coordinates[1].Node != "dc1.node2" ||
maps[2].Coordinates[2].Node != "dc1.node3" {
t.Fatalf("bad: %v", maps[2])
}
verifyCoordinatesEqual(t, maps[2].Coordinates[0].Coord,
generateCoordinate(3*time.Millisecond))
verifyCoordinatesEqual(t, maps[2].Coordinates[1].Coord,
generateCoordinate(2*time.Millisecond))
verifyCoordinatesEqual(t, maps[2].Coordinates[2].Coord,
generateCoordinate(5*time.Millisecond))
if maps[3].Datacenter != "dc2" || len(maps[3].Coordinates) != 1 ||
maps[3].Coordinates[0].Node != "dc2.node1" {
t.Fatalf("bad: %v", maps[3])
}
verifyCoordinatesEqual(t, maps[3].Coordinates[0].Coord,
generateCoordinate(8*time.Millisecond))
if maps[4].Datacenter != "dcX" || len(maps[4].Coordinates) != 0 {
t.Fatalf("bad: %v", maps[4])
}
}