565 lines
18 KiB
Go
565 lines
18 KiB
Go
package consul
|
|
|
|
import (
|
|
"math"
|
|
"net/rpc"
|
|
"os"
|
|
"sort"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/hashicorp/consul/consul/structs"
|
|
"github.com/hashicorp/consul/testutil"
|
|
"github.com/hashicorp/net-rpc-msgpackrpc"
|
|
"github.com/hashicorp/serf/coordinate"
|
|
)
|
|
|
|
// generateCoordinate creates a new coordinate with the given distance from the
|
|
// origin.
|
|
func generateCoordinate(rtt time.Duration) *coordinate.Coordinate {
|
|
coord := coordinate.NewCoordinate(coordinate.DefaultConfig())
|
|
coord.Vec[0] = rtt.Seconds()
|
|
return coord
|
|
}
|
|
|
|
// verifyNodeSort makes sure the order of the nodes in the slice is the same as
|
|
// the expected order, expressed as a comma-separated string.
|
|
func verifyNodeSort(t *testing.T, nodes structs.Nodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyServiceNodeSort makes sure the order of the nodes in the slice is the
|
|
// same as the expected order, expressed as a comma-separated string.
|
|
func verifyServiceNodeSort(t *testing.T, nodes structs.ServiceNodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyHealthCheckSort makes sure the order of the nodes in the slice is the
|
|
// same as the expected order, expressed as a comma-separated string.
|
|
func verifyHealthCheckSort(t *testing.T, checks structs.HealthChecks, expected string) {
|
|
vec := make([]string, len(checks))
|
|
for i, check := range checks {
|
|
vec[i] = check.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyCheckServiceNodeSort makes sure the order of the nodes in the slice is
|
|
// the same as the expected order, expressed as a comma-separated string.
|
|
func verifyCheckServiceNodeSort(t *testing.T, nodes structs.CheckServiceNodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// seedCoordinates uses the client to set up a set of nodes with a specific
|
|
// set of distances from the origin. We also include the server so that we
|
|
// can wait for the coordinates to get committed to the Raft log.
|
|
//
|
|
// Here's the layout of the nodes:
|
|
//
|
|
// node3 node2 node5 node4 node1
|
|
// | | | | | | | | | | |
|
|
// 0 1 2 3 4 5 6 7 8 9 10 (ms)
|
|
//
|
|
func seedCoordinates(t *testing.T, codec rpc.ClientCodec, server *Server) {
|
|
updates := []structs.CoordinateUpdateRequest{
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node1",
|
|
Coord: generateCoordinate(10 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node2",
|
|
Coord: generateCoordinate(2 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node3",
|
|
Coord: generateCoordinate(1 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node4",
|
|
Coord: generateCoordinate(8 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node5",
|
|
Coord: generateCoordinate(3 * time.Millisecond),
|
|
},
|
|
}
|
|
|
|
// Apply the updates and wait a while for the batch to get committed to
|
|
// the Raft log.
|
|
for _, update := range updates {
|
|
var out struct{}
|
|
if err := msgpackrpc.CallWithCodec(codec, "Coordinate.Update", &update, &out); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
time.Sleep(2 * server.config.CoordinateUpdatePeriod)
|
|
}
|
|
|
|
func TestRtt_sortNodesByDistanceFrom(t *testing.T) {
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testutil.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.Nodes{
|
|
structs.Node{Node: "apple"},
|
|
structs.Node{Node: "node1"},
|
|
structs.Node{Node: "node2"},
|
|
structs.Node{Node: "node3"},
|
|
structs.Node{Node: "node4"},
|
|
structs.Node{Node: "node5"},
|
|
}
|
|
|
|
// The zero value for the source should not trigger any sorting.
|
|
var source structs.QuerySource
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Same for a source in some other DC.
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc2"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Same for a source node in our DC that we have no coordinate for.
|
|
source.Node = "apple"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Set source to legit values relative to node1 but disable coordinates.
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
server.config.DisableCoordinates = true
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Now enable coordinates and sort relative to node1, note that apple
|
|
// doesn't have any seeded coordinate info so it should end up at the
|
|
// end, despite its lexical hegemony.
|
|
server.config.DisableCoordinates = false
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
}
|
|
|
|
func TestRtt_sortNodesByDistanceFrom_Nodes(t *testing.T) {
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testutil.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.Nodes{
|
|
structs.Node{Node: "apple"},
|
|
structs.Node{Node: "node1"},
|
|
structs.Node{Node: "node2"},
|
|
structs.Node{Node: "node3"},
|
|
structs.Node{Node: "node4"},
|
|
structs.Node{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRtt_sortNodesByDistanceFrom_ServiceNodes(t *testing.T) {
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testutil.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.ServiceNodes{
|
|
structs.ServiceNode{Node: "apple"},
|
|
structs.ServiceNode{Node: "node1"},
|
|
structs.ServiceNode{Node: "node2"},
|
|
structs.ServiceNode{Node: "node3"},
|
|
structs.ServiceNode{Node: "node4"},
|
|
structs.ServiceNode{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRtt_sortNodesByDistanceFrom_HealthChecks(t *testing.T) {
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testutil.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
checks := structs.HealthChecks{
|
|
&structs.HealthCheck{Node: "apple"},
|
|
&structs.HealthCheck{Node: "node1"},
|
|
&structs.HealthCheck{Node: "node2"},
|
|
&structs.HealthCheck{Node: "node3"},
|
|
&structs.HealthCheck{Node: "node4"},
|
|
&structs.HealthCheck{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
checks[1], checks[2] = checks[2], checks[1]
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRtt_sortNodesByDistanceFrom_CheckServiceNodes(t *testing.T) {
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testutil.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.CheckServiceNodes{
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "apple"}},
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "node1"}},
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "node2"}},
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "node3"}},
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "node4"}},
|
|
structs.CheckServiceNode{Node: structs.Node{Node: "node5"}},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
// mockNodeMap is keyed by node name and the values are the coordinates of the
|
|
// node.
|
|
type mockNodeMap map[string]*coordinate.Coordinate
|
|
|
|
// mockServer is used to provide a serfer interface for unit tests. The key is
|
|
// DC, which selects a map from node name to coordinate for that node.
|
|
type mockServer map[string]mockNodeMap
|
|
|
|
// newMockServer is used to generate a serfer interface that presents a known DC
|
|
// topology for unit tests. The server is in dc0.
|
|
//
|
|
// Here's the layout of the nodes:
|
|
//
|
|
// /---- dc1 ----\ /- dc2 -\ /- dc0 -\
|
|
// node2 node1 node3 node1 node1
|
|
// | | | | | | | | | | |
|
|
// 0 1 2 3 4 5 6 7 8 9 10 (ms)
|
|
//
|
|
// We also include a node4 in dc1 with no known coordinate, as well as a
|
|
// mysterious dcX with no nodes with known coordinates.
|
|
//
|
|
func newMockServer() *mockServer {
|
|
s := make(mockServer)
|
|
s["dc0"] = mockNodeMap{
|
|
"dc0.node1": generateCoordinate(10 * time.Millisecond),
|
|
}
|
|
s["dc1"] = mockNodeMap{
|
|
"dc1.node1": generateCoordinate(3 * time.Millisecond),
|
|
"dc1.node2": generateCoordinate(2 * time.Millisecond),
|
|
"dc1.node3": generateCoordinate(5 * time.Millisecond),
|
|
"dc1.node4": nil, // no known coordinate
|
|
}
|
|
s["dc2"] = mockNodeMap{
|
|
"dc2.node1": generateCoordinate(8 * time.Millisecond),
|
|
}
|
|
s["dcX"] = mockNodeMap{
|
|
"dcX.node1": nil, // no known coordinate
|
|
}
|
|
return &s
|
|
}
|
|
|
|
// See serfer.
|
|
func (s *mockServer) GetDatacenter() string {
|
|
return "dc0"
|
|
}
|
|
|
|
// See serfer.
|
|
func (s *mockServer) GetCoordinate() (*coordinate.Coordinate, error) {
|
|
return (*s)["dc0"]["dc0.node1"], nil
|
|
}
|
|
|
|
// See serfer.
|
|
func (s *mockServer) GetCachedCoordinate(node string) (*coordinate.Coordinate, bool) {
|
|
for _, nodes := range *s {
|
|
for n, coord := range nodes {
|
|
if n == node && coord != nil {
|
|
return coord, true
|
|
}
|
|
}
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
// See serfer.
|
|
func (s *mockServer) GetNodesForDatacenter(dc string) []string {
|
|
nodes := make([]string, 0)
|
|
if n, ok := (*s)[dc]; ok {
|
|
for name := range n {
|
|
nodes = append(nodes, name)
|
|
}
|
|
}
|
|
sort.Strings(nodes)
|
|
return nodes
|
|
}
|
|
|
|
func TestRtt_getDatacenterDistance(t *testing.T) {
|
|
s := newMockServer()
|
|
|
|
// The serfer's own DC is always 0 ms away.
|
|
if dist, err := getDatacenterDistance(s, "dc0"); err != nil || dist != 0.0 {
|
|
t.Fatalf("bad: %v err: %v", dist, err)
|
|
}
|
|
|
|
// Check a DC with no coordinates, which should give positive infinity.
|
|
if dist, err := getDatacenterDistance(s, "dcX"); err != nil || dist != math.Inf(1.0) {
|
|
t.Fatalf("bad: %v err: %v", dist, err)
|
|
}
|
|
|
|
// Similar for a totally unknown DC.
|
|
if dist, err := getDatacenterDistance(s, "acdc"); err != nil || dist != math.Inf(1.0) {
|
|
t.Fatalf("bad: %v err: %v", dist, err)
|
|
}
|
|
|
|
// Check the trivial median case (just one node).
|
|
if dist, err := getDatacenterDistance(s, "dc2"); err != nil || dist != 0.002 {
|
|
t.Fatalf("bad: %v err: %v", dist, err)
|
|
}
|
|
|
|
// Check the more interesting median case, note that there's a mystery
|
|
// node4 in there that should be excluded to make the distances sort
|
|
// like this:
|
|
//
|
|
// [0] node3 (0.005), [1] node1 (0.007), [2] node2 (0.008)
|
|
//
|
|
// So the median should be at index 3 / 2 = 1 -> 0.007.
|
|
if dist, err := getDatacenterDistance(s, "dc1"); err != nil || dist != 0.007 {
|
|
t.Fatalf("bad: %v err: %v", dist, err)
|
|
}
|
|
}
|
|
|
|
func TestRtt_sortDatacentersByDistance(t *testing.T) {
|
|
s := newMockServer()
|
|
|
|
dcs := []string{"acdc", "dc0", "dc1", "dc2", "dcX"}
|
|
if err := sortDatacentersByDistance(s, dcs); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
|
|
expected := "dc0,dc2,dc1,acdc,dcX"
|
|
if actual := strings.Join(dcs, ","); actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
|
|
// Make sure the sort is stable and we didn't just get lucky.
|
|
dcs = []string{"dcX", "dc0", "dc1", "dc2", "acdc"}
|
|
if err := sortDatacentersByDistance(s, dcs); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
|
|
expected = "dc0,dc2,dc1,dcX,acdc"
|
|
if actual := strings.Join(dcs, ","); actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
func TestRtt_getDatacenterMaps(t *testing.T) {
|
|
s := newMockServer()
|
|
|
|
dcs := []string{"dc0", "acdc", "dc1", "dc2", "dcX"}
|
|
maps := getDatacenterMaps(s, dcs)
|
|
|
|
if len(maps) != 5 {
|
|
t.Fatalf("bad: %v", maps)
|
|
}
|
|
|
|
if maps[0].Datacenter != "dc0" || len(maps[0].Coordinates) != 1 ||
|
|
maps[0].Coordinates[0].Node != "dc0.node1" {
|
|
t.Fatalf("bad: %v", maps[0])
|
|
}
|
|
verifyCoordinatesEqual(t, maps[0].Coordinates[0].Coord,
|
|
generateCoordinate(10*time.Millisecond))
|
|
|
|
if maps[1].Datacenter != "acdc" || len(maps[1].Coordinates) != 0 {
|
|
t.Fatalf("bad: %v", maps[1])
|
|
}
|
|
|
|
if maps[2].Datacenter != "dc1" || len(maps[2].Coordinates) != 3 ||
|
|
maps[2].Coordinates[0].Node != "dc1.node1" ||
|
|
maps[2].Coordinates[1].Node != "dc1.node2" ||
|
|
maps[2].Coordinates[2].Node != "dc1.node3" {
|
|
t.Fatalf("bad: %v", maps[2])
|
|
}
|
|
verifyCoordinatesEqual(t, maps[2].Coordinates[0].Coord,
|
|
generateCoordinate(3*time.Millisecond))
|
|
verifyCoordinatesEqual(t, maps[2].Coordinates[1].Coord,
|
|
generateCoordinate(2*time.Millisecond))
|
|
verifyCoordinatesEqual(t, maps[2].Coordinates[2].Coord,
|
|
generateCoordinate(5*time.Millisecond))
|
|
|
|
if maps[3].Datacenter != "dc2" || len(maps[3].Coordinates) != 1 ||
|
|
maps[3].Coordinates[0].Node != "dc2.node1" {
|
|
t.Fatalf("bad: %v", maps[3])
|
|
}
|
|
verifyCoordinatesEqual(t, maps[3].Coordinates[0].Coord,
|
|
generateCoordinate(8*time.Millisecond))
|
|
|
|
if maps[4].Datacenter != "dcX" || len(maps[4].Coordinates) != 0 {
|
|
t.Fatalf("bad: %v", maps[4])
|
|
}
|
|
}
|