99e0a124cb
This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
411 lines
11 KiB
Go
411 lines
11 KiB
Go
package consul
|
|
|
|
import (
|
|
"bytes"
|
|
"os"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/hashicorp/consul/acl"
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/api"
|
|
"github.com/hashicorp/consul/testrpc"
|
|
"github.com/hashicorp/consul/testutil/retry"
|
|
"github.com/hashicorp/net-rpc-msgpackrpc"
|
|
)
|
|
|
|
// verifySnapshot is a helper that does a snapshot and restore.
|
|
func verifySnapshot(t *testing.T, s *Server, dc, token string) {
|
|
codec := rpcClient(t, s)
|
|
defer codec.Close()
|
|
|
|
// Set a key to a before value.
|
|
{
|
|
args := structs.KVSRequest{
|
|
Datacenter: dc,
|
|
Op: api.KVSet,
|
|
DirEnt: structs.DirEntry{
|
|
Key: "test",
|
|
Value: []byte("hello"),
|
|
},
|
|
WriteRequest: structs.WriteRequest{
|
|
Token: token,
|
|
},
|
|
}
|
|
var out bool
|
|
if err := msgpackrpc.CallWithCodec(codec, "KVS.Apply", &args, &out); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Take a snapshot.
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: dc,
|
|
Token: token,
|
|
Op: structs.SnapshotSave,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
snap, err := SnapshotRPC(s.connPool, s.config.Datacenter, s.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
defer snap.Close()
|
|
|
|
// Read back the before value.
|
|
{
|
|
getR := structs.KeyRequest{
|
|
Datacenter: dc,
|
|
Key: "test",
|
|
QueryOptions: structs.QueryOptions{
|
|
Token: token,
|
|
},
|
|
}
|
|
var dirent structs.IndexedDirEntries
|
|
if err := msgpackrpc.CallWithCodec(codec, "KVS.Get", &getR, &dirent); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
if len(dirent.Entries) != 1 {
|
|
t.Fatalf("Bad: %v", dirent)
|
|
}
|
|
d := dirent.Entries[0]
|
|
if string(d.Value) != "hello" {
|
|
t.Fatalf("bad: %v", d)
|
|
}
|
|
}
|
|
|
|
// Set a key to an after value.
|
|
{
|
|
args := structs.KVSRequest{
|
|
Datacenter: dc,
|
|
Op: api.KVSet,
|
|
DirEnt: structs.DirEntry{
|
|
Key: "test",
|
|
Value: []byte("goodbye"),
|
|
},
|
|
WriteRequest: structs.WriteRequest{
|
|
Token: token,
|
|
},
|
|
}
|
|
var out bool
|
|
if err := msgpackrpc.CallWithCodec(codec, "KVS.Apply", &args, &out); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Read back the before value. We do this with a retry and stale mode so
|
|
// we can query the server we are working with, which might not be the
|
|
// leader.
|
|
retry.Run(t, func(r *retry.R) {
|
|
getR := structs.KeyRequest{
|
|
Datacenter: dc,
|
|
Key: "test",
|
|
QueryOptions: structs.QueryOptions{
|
|
Token: token,
|
|
AllowStale: true,
|
|
},
|
|
}
|
|
var dirent structs.IndexedDirEntries
|
|
if err := msgpackrpc.CallWithCodec(codec, "KVS.Get", &getR, &dirent); err != nil {
|
|
r.Fatalf("err: %v", err)
|
|
}
|
|
if len(dirent.Entries) != 1 {
|
|
r.Fatalf("Bad: %v", dirent)
|
|
}
|
|
d := dirent.Entries[0]
|
|
if string(d.Value) != "goodbye" {
|
|
r.Fatalf("bad: %v", d)
|
|
}
|
|
})
|
|
|
|
// Restore the snapshot.
|
|
args.Op = structs.SnapshotRestore
|
|
restore, err := SnapshotRPC(s.connPool, s.config.Datacenter, s.config.RPCAddr, false,
|
|
&args, snap, &reply)
|
|
if err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
defer restore.Close()
|
|
|
|
// Read back the before value post-snapshot. Similar rationale here; use
|
|
// stale to query the server we are working with.
|
|
retry.Run(t, func(r *retry.R) {
|
|
getR := structs.KeyRequest{
|
|
Datacenter: dc,
|
|
Key: "test",
|
|
QueryOptions: structs.QueryOptions{
|
|
Token: token,
|
|
AllowStale: true,
|
|
},
|
|
}
|
|
var dirent structs.IndexedDirEntries
|
|
if err := msgpackrpc.CallWithCodec(codec, "KVS.Get", &getR, &dirent); err != nil {
|
|
r.Fatalf("err: %v", err)
|
|
}
|
|
if len(dirent.Entries) != 1 {
|
|
r.Fatalf("Bad: %v", dirent)
|
|
}
|
|
d := dirent.Entries[0]
|
|
if string(d.Value) != "hello" {
|
|
r.Fatalf("bad: %v", d)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestSnapshot(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServer(t)
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
|
|
testrpc.WaitForLeader(t, s1.RPC, "dc1")
|
|
verifySnapshot(t, s1, "dc1", "")
|
|
}
|
|
|
|
func TestSnapshot_LeaderState(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServer(t)
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
|
|
testrpc.WaitForLeader(t, s1.RPC, "dc1")
|
|
|
|
codec := rpcClient(t, s1)
|
|
defer codec.Close()
|
|
|
|
// Make a before session.
|
|
var before string
|
|
{
|
|
args := structs.SessionRequest{
|
|
Datacenter: s1.config.Datacenter,
|
|
Op: structs.SessionCreate,
|
|
Session: structs.Session{
|
|
Node: s1.config.NodeName,
|
|
TTL: "60s",
|
|
},
|
|
}
|
|
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &args, &before); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Take a snapshot.
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: s1.config.Datacenter,
|
|
Op: structs.SnapshotSave,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
snap, err := SnapshotRPC(s1.connPool, s1.config.Datacenter, s1.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
defer snap.Close()
|
|
|
|
// Make an after session.
|
|
var after string
|
|
{
|
|
args := structs.SessionRequest{
|
|
Datacenter: s1.config.Datacenter,
|
|
Op: structs.SessionCreate,
|
|
Session: structs.Session{
|
|
Node: s1.config.NodeName,
|
|
TTL: "60s",
|
|
},
|
|
}
|
|
if err := msgpackrpc.CallWithCodec(codec, "Session.Apply", &args, &after); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Make sure the leader has timers setup.
|
|
if s1.sessionTimers.Get(before) == nil {
|
|
t.Fatalf("missing session timer")
|
|
}
|
|
if s1.sessionTimers.Get(after) == nil {
|
|
t.Fatalf("missing session timer")
|
|
}
|
|
|
|
// Restore the snapshot.
|
|
args.Op = structs.SnapshotRestore
|
|
restore, err := SnapshotRPC(s1.connPool, s1.config.Datacenter, s1.config.RPCAddr, false,
|
|
&args, snap, &reply)
|
|
if err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
defer restore.Close()
|
|
|
|
// Make sure the before time is still there, and that the after timer
|
|
// got reverted. This proves we fully cycled the leader state.
|
|
if s1.sessionTimers.Get(before) == nil {
|
|
t.Fatalf("missing session timer")
|
|
}
|
|
if s1.sessionTimers.Get(after) != nil {
|
|
t.Fatalf("unexpected session timer")
|
|
}
|
|
}
|
|
|
|
func TestSnapshot_ACLDeny(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServerWithConfig(t, func(c *Config) {
|
|
c.ACLDatacenter = "dc1"
|
|
c.ACLsEnabled = true
|
|
c.ACLMasterToken = "root"
|
|
c.ACLDefaultPolicy = "deny"
|
|
})
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
codec := rpcClient(t, s1)
|
|
defer codec.Close()
|
|
|
|
testrpc.WaitForLeader(t, s1.RPC, "dc1")
|
|
|
|
// Take a snapshot.
|
|
func() {
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: "dc1",
|
|
Op: structs.SnapshotSave,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
_, err := SnapshotRPC(s1.connPool, s1.config.Datacenter, s1.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if !acl.IsErrPermissionDenied(err) {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}()
|
|
|
|
// Restore a snapshot.
|
|
func() {
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: "dc1",
|
|
Op: structs.SnapshotRestore,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
_, err := SnapshotRPC(s1.connPool, s1.config.Datacenter, s1.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if !acl.IsErrPermissionDenied(err) {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}()
|
|
|
|
// With the token in place everything should go through.
|
|
verifySnapshot(t, s1, "dc1", "root")
|
|
}
|
|
|
|
func TestSnapshot_Forward_Leader(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServerWithConfig(t, func(c *Config) {
|
|
c.Bootstrap = true
|
|
|
|
// Since we are doing multiple restores to the same leader,
|
|
// the default short time for a reconcile can cause the
|
|
// reconcile to get aborted by our snapshot restore. By
|
|
// setting it much longer than the test, we avoid this case.
|
|
c.ReconcileInterval = 60 * time.Second
|
|
})
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
|
|
dir2, s2 := testServerWithConfig(t, func(c *Config) {
|
|
c.Bootstrap = false
|
|
})
|
|
defer os.RemoveAll(dir2)
|
|
defer s2.Shutdown()
|
|
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
|
|
|
|
// Try to join.
|
|
joinLAN(t, s2, s1)
|
|
testrpc.WaitForTestAgent(t, s2.RPC, "dc1")
|
|
|
|
// Run against the leader and the follower to ensure we forward. When
|
|
// we changed to Raft protocol version 3, since we only have two servers,
|
|
// the second one isn't a voter, so the snapshot API doesn't wait for
|
|
// that to replicate before returning success. We added some logic to
|
|
// verifySnapshot() to poll the server we are working with in stale mode
|
|
// in order to verify that the snapshot contents are there. Previously,
|
|
// with Raft protocol version 2, the snapshot API would wait until the
|
|
// follower got the information as well since it was required to meet
|
|
// the quorum (2/2 servers), so things were synchronized properly with
|
|
// no special logic.
|
|
verifySnapshot(t, s1, "dc1", "")
|
|
verifySnapshot(t, s2, "dc1", "")
|
|
}
|
|
|
|
func TestSnapshot_Forward_Datacenter(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServerDC(t, "dc1")
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
|
|
dir2, s2 := testServerDC(t, "dc2")
|
|
defer os.RemoveAll(dir2)
|
|
defer s2.Shutdown()
|
|
|
|
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
|
|
testrpc.WaitForTestAgent(t, s2.RPC, "dc2")
|
|
|
|
// Try to WAN join.
|
|
joinWAN(t, s2, s1)
|
|
retry.Run(t, func(r *retry.R) {
|
|
if got, want := len(s1.WANMembers()), 2; got < want {
|
|
r.Fatalf("got %d WAN members want at least %d", got, want)
|
|
}
|
|
})
|
|
|
|
// Run a snapshot from each server locally and remotely to ensure we
|
|
// forward.
|
|
for _, s := range []*Server{s1, s2} {
|
|
verifySnapshot(t, s, "dc1", "")
|
|
verifySnapshot(t, s, "dc2", "")
|
|
}
|
|
}
|
|
|
|
func TestSnapshot_AllowStale(t *testing.T) {
|
|
t.Parallel()
|
|
dir1, s1 := testServerWithConfig(t, func(c *Config) {
|
|
c.Bootstrap = false
|
|
})
|
|
defer os.RemoveAll(dir1)
|
|
defer s1.Shutdown()
|
|
|
|
dir2, s2 := testServerWithConfig(t, func(c *Config) {
|
|
c.Bootstrap = false
|
|
})
|
|
defer os.RemoveAll(dir2)
|
|
defer s2.Shutdown()
|
|
|
|
// Run against the servers which aren't haven't been set up to establish
|
|
// a leader and make sure we get a no leader error.
|
|
for _, s := range []*Server{s1, s2} {
|
|
// Take a snapshot.
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
Op: structs.SnapshotSave,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
_, err := SnapshotRPC(s.connPool, s.config.Datacenter, s.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if err == nil || !strings.Contains(err.Error(), structs.ErrNoLeader.Error()) {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Run in stale mode and make sure we get an error from Raft (snapshot
|
|
// was attempted), and not a no leader error.
|
|
for _, s := range []*Server{s1, s2} {
|
|
// Take a snapshot.
|
|
args := structs.SnapshotRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
AllowStale: true,
|
|
Op: structs.SnapshotSave,
|
|
}
|
|
var reply structs.SnapshotResponse
|
|
_, err := SnapshotRPC(s.connPool, s.config.Datacenter, s.config.RPCAddr, false,
|
|
&args, bytes.NewReader([]byte("")), &reply)
|
|
if err == nil || !strings.Contains(err.Error(), "Raft error when taking snapshot") {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
}
|