open-consul/vendor/github.com/hashicorp/raft/testing.go

810 lines
21 KiB
Go

package raft
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"reflect"
"sync"
"testing"
"time"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-msgpack/codec"
)
var (
userSnapshotErrorsOnNoData = true
)
// Return configurations optimized for in-memory
func inmemConfig(t *testing.T) *Config {
conf := DefaultConfig()
conf.HeartbeatTimeout = 50 * time.Millisecond
conf.ElectionTimeout = 50 * time.Millisecond
conf.LeaderLeaseTimeout = 50 * time.Millisecond
conf.CommitTimeout = 5 * time.Millisecond
conf.Logger = newTestLeveledLogger(t)
return conf
}
// MockFSM is an implementation of the FSM interface, and just stores
// the logs sequentially.
//
// NOTE: This is exposed for middleware testing purposes and is not a stable API
type MockFSM struct {
sync.Mutex
logs [][]byte
configurations []Configuration
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
type MockFSMConfigStore struct {
FSM
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
type WrappingFSM interface {
Underlying() FSM
}
func getMockFSM(fsm FSM) *MockFSM {
switch f := fsm.(type) {
case *MockFSM:
return f
case *MockFSMConfigStore:
return f.FSM.(*MockFSM)
case WrappingFSM:
return getMockFSM(f.Underlying())
}
return nil
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
type MockSnapshot struct {
logs [][]byte
maxIndex int
}
var _ ConfigurationStore = (*MockFSMConfigStore)(nil)
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockFSM) Apply(log *Log) interface{} {
m.Lock()
defer m.Unlock()
m.logs = append(m.logs, log.Data)
return len(m.logs)
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockFSM) Snapshot() (FSMSnapshot, error) {
m.Lock()
defer m.Unlock()
return &MockSnapshot{m.logs, len(m.logs)}, nil
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockFSM) Restore(inp io.ReadCloser) error {
m.Lock()
defer m.Unlock()
defer inp.Close()
hd := codec.MsgpackHandle{}
dec := codec.NewDecoder(inp, &hd)
m.logs = nil
return dec.Decode(&m.logs)
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockFSM) Logs() [][]byte {
m.Lock()
defer m.Unlock()
return m.logs
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockFSMConfigStore) StoreConfiguration(index uint64, config Configuration) {
mm := m.FSM.(*MockFSM)
mm.Lock()
defer mm.Unlock()
mm.configurations = append(mm.configurations, config)
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockSnapshot) Persist(sink SnapshotSink) error {
hd := codec.MsgpackHandle{}
enc := codec.NewEncoder(sink, &hd)
if err := enc.Encode(m.logs[:m.maxIndex]); err != nil {
sink.Cancel()
return err
}
sink.Close()
return nil
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func (m *MockSnapshot) Release() {
}
// This can be used as the destination for a logger and it'll
// map them into calls to testing.T.Log, so that you only see
// the logging for failed tests.
type testLoggerAdapter struct {
t *testing.T
prefix string
}
func (a *testLoggerAdapter) Write(d []byte) (int, error) {
if d[len(d)-1] == '\n' {
d = d[:len(d)-1]
}
if a.prefix != "" {
l := a.prefix + ": " + string(d)
if testing.Verbose() {
fmt.Printf("testLoggerAdapter verbose: %s\n", l)
}
a.t.Log(l)
return len(l), nil
}
a.t.Log(string(d))
return len(d), nil
}
func newTestLogger(t *testing.T) hclog.Logger {
return hclog.New(&hclog.LoggerOptions{
Output: &testLoggerAdapter{t: t},
Level: hclog.DefaultLevel,
})
}
func newTestLoggerWithPrefix(t *testing.T, prefix string) hclog.Logger {
return hclog.New(&hclog.LoggerOptions{
Output: &testLoggerAdapter{t: t, prefix: prefix},
Level: hclog.DefaultLevel,
})
}
func newTestLeveledLogger(t *testing.T) hclog.Logger {
return hclog.New(&hclog.LoggerOptions{
Name: "",
Output: &testLoggerAdapter{t: t},
})
}
func newTestLeveledLoggerWithPrefix(t *testing.T, prefix string) hclog.Logger {
return hclog.New(&hclog.LoggerOptions{
Name: prefix,
Output: &testLoggerAdapter{t: t, prefix: prefix},
})
}
type cluster struct {
dirs []string
stores []*InmemStore
fsms []FSM
snaps []*FileSnapshotStore
trans []LoopbackTransport
rafts []*Raft
t *testing.T
observationCh chan Observation
conf *Config
propagateTimeout time.Duration
longstopTimeout time.Duration
logger hclog.Logger
startTime time.Time
failedLock sync.Mutex
failedCh chan struct{}
failed bool
}
func (c *cluster) Merge(other *cluster) {
c.dirs = append(c.dirs, other.dirs...)
c.stores = append(c.stores, other.stores...)
c.fsms = append(c.fsms, other.fsms...)
c.snaps = append(c.snaps, other.snaps...)
c.trans = append(c.trans, other.trans...)
c.rafts = append(c.rafts, other.rafts...)
}
// notifyFailed will close the failed channel which can signal the goroutine
// running the test that another goroutine has detected a failure in order to
// terminate the test.
func (c *cluster) notifyFailed() {
c.failedLock.Lock()
defer c.failedLock.Unlock()
if !c.failed {
c.failed = true
close(c.failedCh)
}
}
// Failf provides a logging function that fails the tests, prints the output
// with microseconds, and does not mysteriously eat the string. This can be
// safely called from goroutines but won't immediately halt the test. The
// failedCh will be closed to allow blocking functions in the main thread to
// detect the failure and react. Note that you should arrange for the main
// thread to block until all goroutines have completed in order to reliably
// fail tests using this function.
func (c *cluster) Failf(format string, args ...interface{}) {
c.logger.Error(fmt.Sprintf(format, args...))
c.t.Fail()
c.notifyFailed()
}
// FailNowf provides a logging function that fails the tests, prints the output
// with microseconds, and does not mysteriously eat the string. FailNowf must be
// called from the goroutine running the test or benchmark function, not from
// other goroutines created during the test. Calling FailNowf does not stop
// those other goroutines.
func (c *cluster) FailNowf(format string, args ...interface{}) {
c.logger.Error(fmt.Sprintf(format, args...))
c.t.FailNow()
}
// Close shuts down the cluster and cleans up.
func (c *cluster) Close() {
var futures []Future
for _, r := range c.rafts {
futures = append(futures, r.Shutdown())
}
// Wait for shutdown
limit := time.AfterFunc(c.longstopTimeout, func() {
// We can't FailNowf here, and c.Failf won't do anything if we
// hang, so panic.
panic("timed out waiting for shutdown")
})
defer limit.Stop()
for _, f := range futures {
if err := f.Error(); err != nil {
c.FailNowf("shutdown future err: %v", err)
}
}
for _, d := range c.dirs {
os.RemoveAll(d)
}
}
// WaitEventChan returns a channel which will signal if an observation is made
// or a timeout occurs. It is possible to set a filter to look for specific
// observations. Setting timeout to 0 means that it will wait forever until a
// non-filtered observation is made.
func (c *cluster) WaitEventChan(filter FilterFn, timeout time.Duration) <-chan struct{} {
ch := make(chan struct{})
go func() {
defer close(ch)
var timeoutCh <-chan time.Time
if timeout > 0 {
timeoutCh = time.After(timeout)
}
for {
select {
case <-timeoutCh:
return
case o, ok := <-c.observationCh:
if !ok || filter == nil || filter(&o) {
return
}
}
}
}()
return ch
}
// WaitEvent waits until an observation is made, a timeout occurs, or a test
// failure is signaled. It is possible to set a filter to look for specific
// observations. Setting timeout to 0 means that it will wait forever until a
// non-filtered observation is made or a test failure is signaled.
func (c *cluster) WaitEvent(filter FilterFn, timeout time.Duration) {
select {
case <-c.failedCh:
c.t.FailNow()
case <-c.WaitEventChan(filter, timeout):
}
}
// WaitForReplication blocks until every FSM in the cluster has the given
// length, or the long sanity check timeout expires.
func (c *cluster) WaitForReplication(fsmLength int) {
limitCh := time.After(c.longstopTimeout)
CHECK:
for {
ch := c.WaitEventChan(nil, c.conf.CommitTimeout)
select {
case <-c.failedCh:
c.t.FailNow()
case <-limitCh:
c.FailNowf("timeout waiting for replication")
case <-ch:
for _, fsmRaw := range c.fsms {
fsm := getMockFSM(fsmRaw)
fsm.Lock()
num := len(fsm.logs)
fsm.Unlock()
if num != fsmLength {
continue CHECK
}
}
return
}
}
}
// pollState takes a snapshot of the state of the cluster. This might not be
// stable, so use GetInState() to apply some additional checks when waiting
// for the cluster to achieve a particular state.
func (c *cluster) pollState(s RaftState) ([]*Raft, uint64) {
var highestTerm uint64
in := make([]*Raft, 0, 1)
for _, r := range c.rafts {
if r.State() == s {
in = append(in, r)
}
term := r.getCurrentTerm()
if term > highestTerm {
highestTerm = term
}
}
return in, highestTerm
}
// GetInState polls the state of the cluster and attempts to identify when it has
// settled into the given state.
func (c *cluster) GetInState(s RaftState) []*Raft {
c.logger.Info("starting stability test", "raft-state", s)
limitCh := time.After(c.longstopTimeout)
// An election should complete after 2 * max(HeartbeatTimeout, ElectionTimeout)
// because of the randomised timer expiring in 1 x interval ... 2 x interval.
// We add a bit for propagation delay. If the election fails (e.g. because
// two elections start at once), we will have got something through our
// observer channel indicating a different state (i.e. one of the nodes
// will have moved to candidate state) which will reset the timer.
//
// Because of an implementation peculiarity, it can actually be 3 x timeout.
timeout := c.conf.HeartbeatTimeout
if timeout < c.conf.ElectionTimeout {
timeout = c.conf.ElectionTimeout
}
timeout = 2*timeout + c.conf.CommitTimeout
timer := time.NewTimer(timeout)
defer timer.Stop()
// Wait until we have a stable instate slice. Each time we see an
// observation a state has changed, recheck it and if it has changed,
// restart the timer.
var pollStartTime = time.Now()
for {
inState, highestTerm := c.pollState(s)
inStateTime := time.Now()
// Sometimes this routine is called very early on before the
// rafts have started up. We then timeout even though no one has
// even started an election. So if the highest term in use is
// zero, we know there are no raft processes that have yet issued
// a RequestVote, and we set a long time out. This is fixed when
// we hear the first RequestVote, at which point we reset the
// timer.
if highestTerm == 0 {
timer.Reset(c.longstopTimeout)
} else {
timer.Reset(timeout)
}
// Filter will wake up whenever we observe a RequestVote.
filter := func(ob *Observation) bool {
switch ob.Data.(type) {
case RaftState:
return true
case RequestVoteRequest:
return true
default:
return false
}
}
select {
case <-c.failedCh:
c.t.FailNow()
case <-limitCh:
c.FailNowf("timeout waiting for stable %s state", s)
case <-c.WaitEventChan(filter, 0):
c.logger.Debug("resetting stability timeout")
case t, ok := <-timer.C:
if !ok {
c.FailNowf("timer channel errored")
}
c.logger.Info(fmt.Sprintf("stable state for %s reached at %s (%d nodes), %s from start of poll, %s from cluster start. Timeout at %s, %s after stability",
s, inStateTime, len(inState), inStateTime.Sub(pollStartTime), inStateTime.Sub(c.startTime), t, t.Sub(inStateTime)))
return inState
}
}
}
// Leader waits for the cluster to elect a leader and stay in a stable state.
func (c *cluster) Leader() *Raft {
leaders := c.GetInState(Leader)
if len(leaders) != 1 {
c.FailNowf("expected one leader: %v", leaders)
}
return leaders[0]
}
// Followers waits for the cluster to have N-1 followers and stay in a stable
// state.
func (c *cluster) Followers() []*Raft {
expFollowers := len(c.rafts) - 1
followers := c.GetInState(Follower)
if len(followers) != expFollowers {
c.FailNowf("timeout waiting for %d followers (followers are %v)", expFollowers, followers)
}
return followers
}
// FullyConnect connects all the transports together.
func (c *cluster) FullyConnect() {
c.logger.Debug("fully connecting")
for i, t1 := range c.trans {
for j, t2 := range c.trans {
if i != j {
t1.Connect(t2.LocalAddr(), t2)
t2.Connect(t1.LocalAddr(), t1)
}
}
}
}
// Disconnect disconnects all transports from the given address.
func (c *cluster) Disconnect(a ServerAddress) {
c.logger.Debug("disconnecting", "address", a)
for _, t := range c.trans {
if t.LocalAddr() == a {
t.DisconnectAll()
} else {
t.Disconnect(a)
}
}
}
// Partition keeps the given list of addresses connected but isolates them
// from the other members of the cluster.
func (c *cluster) Partition(far []ServerAddress) {
c.logger.Debug("partitioning", "addresses", far)
// Gather the set of nodes on the "near" side of the partition (we
// will call the supplied list of nodes the "far" side).
near := make(map[ServerAddress]struct{})
OUTER:
for _, t := range c.trans {
l := t.LocalAddr()
for _, a := range far {
if l == a {
continue OUTER
}
}
near[l] = struct{}{}
}
// Now fixup all the connections. The near side will be separated from
// the far side, and vice-versa.
for _, t := range c.trans {
l := t.LocalAddr()
if _, ok := near[l]; ok {
for _, a := range far {
t.Disconnect(a)
}
} else {
for a := range near {
t.Disconnect(a)
}
}
}
}
// IndexOf returns the index of the given raft instance.
func (c *cluster) IndexOf(r *Raft) int {
for i, n := range c.rafts {
if n == r {
return i
}
}
return -1
}
// EnsureLeader checks that ALL the nodes think the leader is the given expected
// leader.
func (c *cluster) EnsureLeader(t *testing.T, expect ServerAddress) {
// We assume c.Leader() has been called already; now check all the rafts
// think the leader is correct
fail := false
for _, r := range c.rafts {
leader := ServerAddress(r.Leader())
if leader != expect {
if leader == "" {
leader = "[none]"
}
if expect == "" {
c.logger.Error("peer sees incorrect leader", "peer", r, "leader", leader, "expected-leader", "[none]")
} else {
c.logger.Error("peer sees incorrect leader", "peer", r, "leader", leader, "expected-leader", expect)
}
fail = true
}
}
if fail {
c.FailNowf("at least one peer has the wrong notion of leader")
}
}
// EnsureSame makes sure all the FSMs have the same contents.
func (c *cluster) EnsureSame(t *testing.T) {
limit := time.Now().Add(c.longstopTimeout)
first := getMockFSM(c.fsms[0])
CHECK:
first.Lock()
for i, fsmRaw := range c.fsms {
fsm := getMockFSM(fsmRaw)
if i == 0 {
continue
}
fsm.Lock()
if len(first.logs) != len(fsm.logs) {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("FSM log length mismatch: %d %d",
len(first.logs), len(fsm.logs))
} else {
goto WAIT
}
}
for idx := 0; idx < len(first.logs); idx++ {
if bytes.Compare(first.logs[idx], fsm.logs[idx]) != 0 {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("FSM log mismatch at index %d", idx)
} else {
goto WAIT
}
}
}
if len(first.configurations) != len(fsm.configurations) {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("FSM configuration length mismatch: %d %d",
len(first.logs), len(fsm.logs))
} else {
goto WAIT
}
}
for idx := 0; idx < len(first.configurations); idx++ {
if !reflect.DeepEqual(first.configurations[idx], fsm.configurations[idx]) {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("FSM configuration mismatch at index %d: %v, %v", idx, first.configurations[idx], fsm.configurations[idx])
} else {
goto WAIT
}
}
}
fsm.Unlock()
}
first.Unlock()
return
WAIT:
first.Unlock()
c.WaitEvent(nil, c.conf.CommitTimeout)
goto CHECK
}
// getConfiguration returns the configuration of the given Raft instance, or
// fails the test if there's an error
func (c *cluster) getConfiguration(r *Raft) Configuration {
future := r.GetConfiguration()
if err := future.Error(); err != nil {
c.FailNowf("failed to get configuration: %v", err)
return Configuration{}
}
return future.Configuration()
}
// EnsureSamePeers makes sure all the rafts have the same set of peers.
func (c *cluster) EnsureSamePeers(t *testing.T) {
limit := time.Now().Add(c.longstopTimeout)
peerSet := c.getConfiguration(c.rafts[0])
CHECK:
for i, raft := range c.rafts {
if i == 0 {
continue
}
otherSet := c.getConfiguration(raft)
if !reflect.DeepEqual(peerSet, otherSet) {
if time.Now().After(limit) {
c.FailNowf("peer mismatch: %+v %+v", peerSet, otherSet)
} else {
goto WAIT
}
}
}
return
WAIT:
c.WaitEvent(nil, c.conf.CommitTimeout)
goto CHECK
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
type MakeClusterOpts struct {
Peers int
Bootstrap bool
Conf *Config
ConfigStoreFSM bool
MakeFSMFunc func() FSM
LongstopTimeout time.Duration
}
// makeCluster will return a cluster with the given config and number of peers.
// If bootstrap is true, the servers will know about each other before starting,
// otherwise their transports will be wired up but they won't yet have configured
// each other.
func makeCluster(t *testing.T, opts *MakeClusterOpts) *cluster {
if opts.Conf == nil {
opts.Conf = inmemConfig(t)
}
c := &cluster{
observationCh: make(chan Observation, 1024),
conf: opts.Conf,
// Propagation takes a maximum of 2 heartbeat timeouts (time to
// get a new heartbeat that would cause a commit) plus a bit.
propagateTimeout: opts.Conf.HeartbeatTimeout*2 + opts.Conf.CommitTimeout,
longstopTimeout: 5 * time.Second,
logger: newTestLoggerWithPrefix(t, "cluster"),
failedCh: make(chan struct{}),
}
if opts.LongstopTimeout > 0 {
c.longstopTimeout = opts.LongstopTimeout
}
c.t = t
var configuration Configuration
// Setup the stores and transports
for i := 0; i < opts.Peers; i++ {
dir, err := ioutil.TempDir("", "raft")
if err != nil {
c.FailNowf("err: %v", err)
}
store := NewInmemStore()
c.dirs = append(c.dirs, dir)
c.stores = append(c.stores, store)
if opts.ConfigStoreFSM {
c.fsms = append(c.fsms, &MockFSMConfigStore{
FSM: &MockFSM{},
})
} else {
var fsm FSM
if opts.MakeFSMFunc != nil {
fsm = opts.MakeFSMFunc()
} else {
fsm = &MockFSM{}
}
c.fsms = append(c.fsms, fsm)
}
dir2, snap := FileSnapTest(t)
c.dirs = append(c.dirs, dir2)
c.snaps = append(c.snaps, snap)
addr, trans := NewInmemTransport("")
c.trans = append(c.trans, trans)
localID := ServerID(fmt.Sprintf("server-%s", addr))
if opts.Conf.ProtocolVersion < 3 {
localID = ServerID(addr)
}
configuration.Servers = append(configuration.Servers, Server{
Suffrage: Voter,
ID: localID,
Address: addr,
})
}
// Wire the transports together
c.FullyConnect()
// Create all the rafts
c.startTime = time.Now()
for i := 0; i < opts.Peers; i++ {
logs := c.stores[i]
store := c.stores[i]
snap := c.snaps[i]
trans := c.trans[i]
peerConf := opts.Conf
peerConf.LocalID = configuration.Servers[i].ID
peerConf.Logger = newTestLeveledLoggerWithPrefix(t, string(configuration.Servers[i].ID))
if opts.Bootstrap {
err := BootstrapCluster(peerConf, logs, store, snap, trans, configuration)
if err != nil {
c.FailNowf("BootstrapCluster failed: %v", err)
}
}
raft, err := NewRaft(peerConf, c.fsms[i], logs, store, snap, trans)
if err != nil {
c.FailNowf("NewRaft failed: %v", err)
}
raft.RegisterObserver(NewObserver(c.observationCh, false, nil))
if err != nil {
c.FailNowf("RegisterObserver failed: %v", err)
}
c.rafts = append(c.rafts, raft)
}
return c
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func MakeCluster(n int, t *testing.T, conf *Config) *cluster {
return makeCluster(t, &MakeClusterOpts{
Peers: n,
Bootstrap: true,
Conf: conf,
})
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func MakeClusterNoBootstrap(n int, t *testing.T, conf *Config) *cluster {
return makeCluster(t, &MakeClusterOpts{
Peers: n,
Conf: conf,
})
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func MakeClusterCustom(t *testing.T, opts *MakeClusterOpts) *cluster {
return makeCluster(t, opts)
}
// NOTE: This is exposed for middleware testing purposes and is not a stable API
func FileSnapTest(t *testing.T) (string, *FileSnapshotStore) {
// Create a test dir
dir, err := ioutil.TempDir("", "raft")
if err != nil {
t.Fatalf("err: %v ", err)
}
snap, err := NewFileSnapshotStoreWithLogger(dir, 3, newTestLogger(t))
if err != nil {
t.Fatalf("err: %v", err)
}
return dir, snap
}