ec935a2486
TestAgentLeaks_Server was reporting a goroutine leak without this. Not sure if it would actually be a leak in production or if this is due to the test setup, but seems easy enough to call it this way until we remove legacyACLTokenUpgrade.
1442 lines
44 KiB
Go
1442 lines
44 KiB
Go
package consul
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"net"
|
|
"reflect"
|
|
"strconv"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/armon/go-metrics"
|
|
"github.com/armon/go-metrics/prometheus"
|
|
"github.com/hashicorp/go-hclog"
|
|
"github.com/hashicorp/go-uuid"
|
|
"github.com/hashicorp/go-version"
|
|
"github.com/hashicorp/raft"
|
|
"github.com/hashicorp/serf/serf"
|
|
"golang.org/x/time/rate"
|
|
|
|
"github.com/hashicorp/consul/acl"
|
|
"github.com/hashicorp/consul/agent/metadata"
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/api"
|
|
"github.com/hashicorp/consul/lib"
|
|
"github.com/hashicorp/consul/logging"
|
|
"github.com/hashicorp/consul/types"
|
|
)
|
|
|
|
var LeaderSummaries = []prometheus.SummaryDefinition{
|
|
{
|
|
Name: []string{"leader", "barrier"},
|
|
Help: "Measures the time spent waiting for the raft barrier upon gaining leadership.",
|
|
},
|
|
{
|
|
Name: []string{"leader", "reconcileMember"},
|
|
Help: "Measures the time spent updating the raft store for a single serf member's information.",
|
|
},
|
|
{
|
|
Name: []string{"leader", "reapTombstones"},
|
|
Help: "Measures the time spent clearing tombstones.",
|
|
},
|
|
}
|
|
|
|
const (
|
|
newLeaderEvent = "consul:new-leader"
|
|
barrierWriteTimeout = 2 * time.Minute
|
|
)
|
|
|
|
var (
|
|
// caRootPruneInterval is how often we check for stale CARoots to remove.
|
|
caRootPruneInterval = time.Hour
|
|
|
|
// minCentralizedConfigVersion is the minimum Consul version in which centralized
|
|
// config is supported
|
|
minCentralizedConfigVersion = version.Must(version.NewVersion("1.5.0"))
|
|
)
|
|
|
|
// monitorLeadership is used to monitor if we acquire or lose our role
|
|
// as the leader in the Raft cluster. There is some work the leader is
|
|
// expected to do, so we must react to changes
|
|
func (s *Server) monitorLeadership() {
|
|
// We use the notify channel we configured Raft with, NOT Raft's
|
|
// leaderCh, which is only notified best-effort. Doing this ensures
|
|
// that we get all notifications in order, which is required for
|
|
// cleanup and to ensure we never run multiple leader loops.
|
|
raftNotifyCh := s.raftNotifyCh
|
|
|
|
var weAreLeaderCh chan struct{}
|
|
var leaderLoop sync.WaitGroup
|
|
for {
|
|
select {
|
|
case isLeader := <-raftNotifyCh:
|
|
switch {
|
|
case isLeader:
|
|
if weAreLeaderCh != nil {
|
|
s.logger.Error("attempted to start the leader loop while running")
|
|
continue
|
|
}
|
|
|
|
weAreLeaderCh = make(chan struct{})
|
|
leaderLoop.Add(1)
|
|
go func(ch chan struct{}) {
|
|
defer leaderLoop.Done()
|
|
s.leaderLoop(ch)
|
|
}(weAreLeaderCh)
|
|
s.logger.Info("cluster leadership acquired")
|
|
|
|
default:
|
|
if weAreLeaderCh == nil {
|
|
s.logger.Error("attempted to stop the leader loop while not running")
|
|
continue
|
|
}
|
|
|
|
s.logger.Debug("shutting down leader loop")
|
|
close(weAreLeaderCh)
|
|
leaderLoop.Wait()
|
|
weAreLeaderCh = nil
|
|
s.logger.Info("cluster leadership lost")
|
|
}
|
|
case <-s.shutdownCh:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) leadershipTransfer() error {
|
|
retryCount := 3
|
|
for i := 0; i < retryCount; i++ {
|
|
future := s.raft.LeadershipTransfer()
|
|
if err := future.Error(); err != nil {
|
|
s.logger.Error("failed to transfer leadership attempt, will retry",
|
|
"attempt", i,
|
|
"retry_limit", retryCount,
|
|
"error", err,
|
|
)
|
|
} else {
|
|
s.logger.Info("successfully transferred leadership",
|
|
"attempt", i,
|
|
"retry_limit", retryCount,
|
|
)
|
|
return nil
|
|
}
|
|
|
|
}
|
|
return fmt.Errorf("failed to transfer leadership in %d attempts", retryCount)
|
|
}
|
|
|
|
// leaderLoop runs as long as we are the leader to run various
|
|
// maintenance activities
|
|
func (s *Server) leaderLoop(stopCh chan struct{}) {
|
|
stopCtx := &lib.StopChannelContext{StopCh: stopCh}
|
|
|
|
// Fire a user event indicating a new leader
|
|
payload := []byte(s.config.NodeName)
|
|
for name, segment := range s.LANSegments() {
|
|
if err := segment.UserEvent(newLeaderEvent, payload, false); err != nil {
|
|
s.logger.Warn("failed to broadcast new leader event on segment",
|
|
"segment", name,
|
|
"error", err,
|
|
)
|
|
}
|
|
}
|
|
|
|
// Reconcile channel is only used once initial reconcile
|
|
// has succeeded
|
|
var reconcileCh chan serf.Member
|
|
establishedLeader := false
|
|
|
|
RECONCILE:
|
|
// Setup a reconciliation timer
|
|
reconcileCh = nil
|
|
interval := time.After(s.config.ReconcileInterval)
|
|
|
|
// Apply a raft barrier to ensure our FSM is caught up
|
|
start := time.Now()
|
|
barrier := s.raft.Barrier(barrierWriteTimeout)
|
|
if err := barrier.Error(); err != nil {
|
|
s.logger.Error("failed to wait for barrier", "error", err)
|
|
goto WAIT
|
|
}
|
|
metrics.MeasureSince([]string{"leader", "barrier"}, start)
|
|
|
|
// Check if we need to handle initial leadership actions
|
|
if !establishedLeader {
|
|
if err := s.establishLeadership(stopCtx); err != nil {
|
|
s.logger.Error("failed to establish leadership", "error", err)
|
|
// Immediately revoke leadership since we didn't successfully
|
|
// establish leadership.
|
|
s.revokeLeadership()
|
|
|
|
// attempt to transfer leadership. If successful it is
|
|
// time to leave the leaderLoop since this node is no
|
|
// longer the leader. If leadershipTransfer() fails, we
|
|
// will try to acquire it again after
|
|
// 5 seconds.
|
|
if err := s.leadershipTransfer(); err != nil {
|
|
s.logger.Error("failed to transfer leadership", "error", err)
|
|
interval = time.After(5 * time.Second)
|
|
goto WAIT
|
|
}
|
|
return
|
|
}
|
|
establishedLeader = true
|
|
defer s.revokeLeadership()
|
|
}
|
|
|
|
// Reconcile any missing data
|
|
if err := s.reconcile(); err != nil {
|
|
s.logger.Error("failed to reconcile", "error", err)
|
|
goto WAIT
|
|
}
|
|
|
|
// Initial reconcile worked, now we can process the channel
|
|
// updates
|
|
reconcileCh = s.reconcileCh
|
|
|
|
WAIT:
|
|
// Poll the stop channel to give it priority so we don't waste time
|
|
// trying to perform the other operations if we have been asked to shut
|
|
// down.
|
|
select {
|
|
case <-stopCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
// Periodically reconcile as long as we are the leader,
|
|
// or when Serf events arrive
|
|
for {
|
|
select {
|
|
case <-stopCh:
|
|
return
|
|
case <-s.shutdownCh:
|
|
return
|
|
case <-interval:
|
|
goto RECONCILE
|
|
case member := <-reconcileCh:
|
|
s.reconcileMember(member)
|
|
case index := <-s.tombstoneGC.ExpireCh():
|
|
go s.reapTombstones(index)
|
|
case errCh := <-s.reassertLeaderCh:
|
|
// we can get into this state when the initial
|
|
// establishLeadership has failed as well as the follow
|
|
// up leadershipTransfer. Afterwards we will be waiting
|
|
// for the interval to trigger a reconciliation and can
|
|
// potentially end up here. There is no point to
|
|
// reassert because this agent was never leader in the
|
|
// first place.
|
|
if !establishedLeader {
|
|
errCh <- fmt.Errorf("leadership has not been established")
|
|
continue
|
|
}
|
|
|
|
// continue to reassert only if we previously were the
|
|
// leader, which means revokeLeadership followed by an
|
|
// establishLeadership().
|
|
s.revokeLeadership()
|
|
err := s.establishLeadership(stopCtx)
|
|
errCh <- err
|
|
|
|
// in case establishLeadership failed, we will try to
|
|
// transfer leadership. At this time raft thinks we are
|
|
// the leader, but consul disagrees.
|
|
if err != nil {
|
|
if err := s.leadershipTransfer(); err != nil {
|
|
// establishedLeader was true before,
|
|
// but it no longer is since it revoked
|
|
// leadership and Leadership transfer
|
|
// also failed. Which is why it stays
|
|
// in the leaderLoop, but now
|
|
// establishedLeader needs to be set to
|
|
// false.
|
|
establishedLeader = false
|
|
interval = time.After(5 * time.Second)
|
|
goto WAIT
|
|
}
|
|
|
|
// leadershipTransfer was successful and it is
|
|
// time to leave the leaderLoop.
|
|
return
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// establishLeadership is invoked once we become leader and are able
|
|
// to invoke an initial barrier. The barrier is used to ensure any
|
|
// previously inflight transactions have been committed and that our
|
|
// state is up-to-date.
|
|
func (s *Server) establishLeadership(ctx context.Context) error {
|
|
start := time.Now()
|
|
if err := s.initializeACLs(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Hint the tombstone expiration timer. When we freshly establish leadership
|
|
// we become the authoritative timer, and so we need to start the clock
|
|
// on any pending GC events.
|
|
s.tombstoneGC.SetEnabled(true)
|
|
lastIndex := s.raft.LastIndex()
|
|
s.tombstoneGC.Hint(lastIndex)
|
|
|
|
// Setup the session timers. This is done both when starting up or when
|
|
// a leader fail over happens. Since the timers are maintained by the leader
|
|
// node along, effectively this means all the timers are renewed at the
|
|
// time of failover. The TTL contract is that the session will not be expired
|
|
// before the TTL, so expiring it later is allowable.
|
|
//
|
|
// This MUST be done after the initial barrier to ensure the latest Sessions
|
|
// are available to be initialized. Otherwise initialization may use stale
|
|
// data.
|
|
if err := s.initializeSessionTimers(); err != nil {
|
|
return err
|
|
}
|
|
|
|
if err := s.establishEnterpriseLeadership(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
s.getOrCreateAutopilotConfig()
|
|
s.autopilot.Start(ctx)
|
|
|
|
s.startConfigReplication(ctx)
|
|
|
|
s.startFederationStateReplication(ctx)
|
|
|
|
s.startFederationStateAntiEntropy(ctx)
|
|
|
|
if err := s.startConnectLeader(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Attempt to bootstrap config entries. We wait until after starting the
|
|
// Connect leader tasks so we hopefully have transitioned to supporting
|
|
// service-intentions.
|
|
if err := s.bootstrapConfigEntries(s.config.ConfigEntryBootstrap); err != nil {
|
|
return err
|
|
}
|
|
|
|
s.setConsistentReadReady()
|
|
|
|
s.logger.Debug("successfully established leadership", "duration", time.Since(start))
|
|
return nil
|
|
}
|
|
|
|
// revokeLeadership is invoked once we step down as leader.
|
|
// This is used to cleanup any state that may be specific to a leader.
|
|
func (s *Server) revokeLeadership() {
|
|
// Disable the tombstone GC, since it is only useful as a leader
|
|
s.tombstoneGC.SetEnabled(false)
|
|
|
|
// Clear the session timers on either shutdown or step down, since we
|
|
// are no longer responsible for session expirations.
|
|
s.clearAllSessionTimers()
|
|
|
|
s.revokeEnterpriseLeadership()
|
|
|
|
s.stopFederationStateAntiEntropy()
|
|
|
|
s.stopFederationStateReplication()
|
|
|
|
s.stopConfigReplication()
|
|
|
|
s.stopConnectLeader()
|
|
|
|
s.stopACLTokenReaping()
|
|
|
|
s.stopACLUpgrade()
|
|
|
|
s.resetConsistentReadReady()
|
|
|
|
// Stop returns a chan and we want to block until it is closed
|
|
// which indicates that autopilot is actually stopped.
|
|
<-s.autopilot.Stop()
|
|
}
|
|
|
|
// initializeACLs is used to setup the ACLs if we are the leader
|
|
// and need to do this.
|
|
func (s *Server) initializeACLs(ctx context.Context) error {
|
|
if !s.config.ACLsEnabled {
|
|
return nil
|
|
}
|
|
|
|
// Purge the cache, since it could've changed while we were not the
|
|
// leader.
|
|
s.acls.cache.Purge()
|
|
|
|
// Purge the auth method validators since they could've changed while we
|
|
// were not leader.
|
|
s.aclAuthMethodValidators.Purge()
|
|
|
|
// Remove any token affected by CVE-2019-8336
|
|
if !s.InACLDatacenter() {
|
|
_, token, err := s.fsm.State().ACLTokenGetBySecret(nil, redactedToken, nil)
|
|
if err == nil && token != nil {
|
|
req := structs.ACLTokenBatchDeleteRequest{
|
|
TokenIDs: []string{token.AccessorID},
|
|
}
|
|
|
|
_, err := s.raftApply(structs.ACLTokenDeleteRequestType, &req)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to remove token with a redacted secret: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
if s.InACLDatacenter() {
|
|
s.logger.Info("initializing acls")
|
|
|
|
// TODO(partitions): initialize acls in all of the partitions?
|
|
|
|
// Create/Upgrade the builtin global-management policy
|
|
_, policy, err := s.fsm.State().ACLPolicyGetByID(nil, structs.ACLPolicyGlobalManagementID, structs.DefaultEnterpriseMetaInDefaultPartition())
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get the builtin global-management policy")
|
|
}
|
|
if policy == nil || policy.Rules != structs.ACLPolicyGlobalManagement {
|
|
newPolicy := structs.ACLPolicy{
|
|
ID: structs.ACLPolicyGlobalManagementID,
|
|
Name: "global-management",
|
|
Description: "Builtin Policy that grants unlimited access",
|
|
Rules: structs.ACLPolicyGlobalManagement,
|
|
Syntax: acl.SyntaxCurrent,
|
|
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
|
|
}
|
|
if policy != nil {
|
|
newPolicy.Name = policy.Name
|
|
newPolicy.Description = policy.Description
|
|
}
|
|
|
|
newPolicy.SetHash(true)
|
|
|
|
req := structs.ACLPolicyBatchSetRequest{
|
|
Policies: structs.ACLPolicies{&newPolicy},
|
|
}
|
|
_, err := s.raftApply(structs.ACLPolicySetRequestType, &req)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to create global-management policy: %v", err)
|
|
}
|
|
s.logger.Info("Created ACL 'global-management' policy")
|
|
}
|
|
|
|
// Check for configured master token.
|
|
if master := s.config.ACLMasterToken; len(master) > 0 {
|
|
state := s.fsm.State()
|
|
if _, err := uuid.ParseUUID(master); err != nil {
|
|
s.logger.Warn("Configuring a non-UUID master token is deprecated")
|
|
}
|
|
|
|
_, token, err := state.ACLTokenGetBySecret(nil, master, nil)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get master token: %v", err)
|
|
}
|
|
// Ignoring expiration times to avoid an insertion collision.
|
|
if token == nil {
|
|
accessor, err := lib.GenerateUUID(s.checkTokenUUID)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to generate the accessor ID for the master token: %v", err)
|
|
}
|
|
|
|
token := structs.ACLToken{
|
|
AccessorID: accessor,
|
|
SecretID: master,
|
|
Description: "Master Token",
|
|
Policies: []structs.ACLTokenPolicyLink{
|
|
{
|
|
ID: structs.ACLPolicyGlobalManagementID,
|
|
},
|
|
},
|
|
CreateTime: time.Now(),
|
|
Local: false,
|
|
|
|
// DEPRECATED (ACL-Legacy-Compat) - only needed for compatibility
|
|
Type: structs.ACLTokenTypeManagement,
|
|
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
|
|
}
|
|
|
|
token.SetHash(true)
|
|
|
|
done := false
|
|
if canBootstrap, _, err := state.CanBootstrapACLToken(); err == nil && canBootstrap {
|
|
req := structs.ACLTokenBootstrapRequest{
|
|
Token: token,
|
|
ResetIndex: 0,
|
|
}
|
|
if _, err := s.raftApply(structs.ACLBootstrapRequestType, &req); err == nil {
|
|
s.logger.Info("Bootstrapped ACL master token from configuration")
|
|
done = true
|
|
} else {
|
|
if err.Error() != structs.ACLBootstrapNotAllowedErr.Error() &&
|
|
err.Error() != structs.ACLBootstrapInvalidResetIndexErr.Error() {
|
|
return fmt.Errorf("failed to bootstrap master token: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !done {
|
|
// either we didn't attempt to or setting the token with a bootstrap request failed.
|
|
req := structs.ACLTokenBatchSetRequest{
|
|
Tokens: structs.ACLTokens{&token},
|
|
CAS: false,
|
|
}
|
|
if _, err := s.raftApply(structs.ACLTokenSetRequestType, &req); err != nil {
|
|
return fmt.Errorf("failed to create master token: %v", err)
|
|
}
|
|
|
|
s.logger.Info("Created ACL master token from configuration")
|
|
}
|
|
}
|
|
}
|
|
|
|
state := s.fsm.State()
|
|
_, token, err := state.ACLTokenGetBySecret(nil, structs.ACLTokenAnonymousID, nil)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get anonymous token: %v", err)
|
|
}
|
|
// Ignoring expiration times to avoid an insertion collision.
|
|
if token == nil {
|
|
// DEPRECATED (ACL-Legacy-Compat) - Don't need to query for previous "anonymous" token
|
|
// check for legacy token that needs an upgrade
|
|
_, legacyToken, err := state.ACLTokenGetBySecret(nil, anonymousToken, nil)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to get anonymous token: %v", err)
|
|
}
|
|
// Ignoring expiration times to avoid an insertion collision.
|
|
|
|
// the token upgrade routine will take care of upgrading the token if a legacy version exists
|
|
if legacyToken == nil {
|
|
token = &structs.ACLToken{
|
|
AccessorID: structs.ACLTokenAnonymousID,
|
|
SecretID: anonymousToken,
|
|
Description: "Anonymous Token",
|
|
CreateTime: time.Now(),
|
|
EnterpriseMeta: *structs.DefaultEnterpriseMetaInDefaultPartition(),
|
|
}
|
|
token.SetHash(true)
|
|
|
|
req := structs.ACLTokenBatchSetRequest{
|
|
Tokens: structs.ACLTokens{token},
|
|
CAS: false,
|
|
}
|
|
_, err := s.raftApply(structs.ACLTokenSetRequestType, &req)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to create anonymous token: %v", err)
|
|
}
|
|
s.logger.Info("Created ACL anonymous token from configuration")
|
|
}
|
|
}
|
|
// launch the upgrade go routine to generate accessors for everything
|
|
s.startACLUpgrade(ctx)
|
|
} else {
|
|
s.startACLReplication(ctx)
|
|
}
|
|
|
|
s.startACLTokenReaping(ctx)
|
|
|
|
return nil
|
|
}
|
|
|
|
// legacyACLTokenUpgrade runs a single time to upgrade any tokens that may
|
|
// have been created immediately before the Consul upgrade, or any legacy tokens
|
|
// from a restored snapshot.
|
|
// TODO(ACL-Legacy-Compat): remove in phase 2
|
|
func (s *Server) legacyACLTokenUpgrade(ctx context.Context) error {
|
|
// aclUpgradeRateLimit is the number of batch upgrade requests per second allowed.
|
|
const aclUpgradeRateLimit rate.Limit = 1.0
|
|
|
|
// aclUpgradeBatchSize controls how many tokens we look at during each round of upgrading. Individual raft logs
|
|
// will be further capped using the aclBatchUpsertSize. This limit just prevents us from creating a single slice
|
|
// with all tokens in it.
|
|
const aclUpgradeBatchSize = 128
|
|
|
|
limiter := rate.NewLimiter(aclUpgradeRateLimit, int(aclUpgradeRateLimit))
|
|
for {
|
|
if err := limiter.Wait(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
// actually run the upgrade here
|
|
state := s.fsm.State()
|
|
tokens, _, err := state.ACLTokenListUpgradeable(aclUpgradeBatchSize)
|
|
if err != nil {
|
|
s.logger.Warn("encountered an error while searching for tokens without accessor ids", "error", err)
|
|
}
|
|
// No need to check expiration time here, as that only exists for v2 tokens.
|
|
|
|
if len(tokens) == 0 {
|
|
// No new legacy tokens can be created, so we can exit
|
|
s.stopACLUpgrade() // required to prevent goroutine leak, according to TestAgentLeaks_Server
|
|
return nil
|
|
}
|
|
|
|
var newTokens structs.ACLTokens
|
|
for _, token := range tokens {
|
|
// This should be entirely unnecessary but is just a small safeguard against changing accessor IDs
|
|
if token.AccessorID != "" {
|
|
continue
|
|
}
|
|
|
|
newToken := *token
|
|
if token.SecretID == anonymousToken {
|
|
newToken.AccessorID = structs.ACLTokenAnonymousID
|
|
} else {
|
|
accessor, err := lib.GenerateUUID(s.checkTokenUUID)
|
|
if err != nil {
|
|
s.logger.Warn("failed to generate accessor during token auto-upgrade", "error", err)
|
|
continue
|
|
}
|
|
newToken.AccessorID = accessor
|
|
}
|
|
|
|
// Assign the global-management policy to legacy management tokens
|
|
if len(newToken.Policies) == 0 &&
|
|
len(newToken.ServiceIdentities) == 0 &&
|
|
len(newToken.NodeIdentities) == 0 &&
|
|
len(newToken.Roles) == 0 &&
|
|
newToken.Type == structs.ACLTokenTypeManagement {
|
|
newToken.Policies = append(newToken.Policies, structs.ACLTokenPolicyLink{ID: structs.ACLPolicyGlobalManagementID})
|
|
}
|
|
|
|
// need to copy these as we are going to do a CAS operation.
|
|
newToken.CreateIndex = token.CreateIndex
|
|
newToken.ModifyIndex = token.ModifyIndex
|
|
|
|
newToken.SetHash(true)
|
|
|
|
newTokens = append(newTokens, &newToken)
|
|
}
|
|
|
|
req := &structs.ACLTokenBatchSetRequest{Tokens: newTokens, CAS: true}
|
|
|
|
_, err = s.raftApply(structs.ACLTokenSetRequestType, req)
|
|
if err != nil {
|
|
s.logger.Error("failed to apply acl token upgrade batch", "error", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(ACL-Legacy-Compat): remove in phase 2. Keeping it for now so that we
|
|
// can upgrade any tokens created immediately before the upgrade happens.
|
|
func (s *Server) startACLUpgrade(ctx context.Context) {
|
|
if s.config.PrimaryDatacenter != s.config.Datacenter {
|
|
// token upgrades should only run in the primary
|
|
return
|
|
}
|
|
|
|
s.leaderRoutineManager.Start(ctx, aclUpgradeRoutineName, s.legacyACLTokenUpgrade)
|
|
}
|
|
|
|
func (s *Server) stopACLUpgrade() {
|
|
s.leaderRoutineManager.Stop(aclUpgradeRoutineName)
|
|
}
|
|
|
|
func (s *Server) startACLReplication(ctx context.Context) {
|
|
if s.InACLDatacenter() {
|
|
return
|
|
}
|
|
|
|
// unlike some other leader routines this initializes some extra state
|
|
// and therefore we want to prevent re-initialization if things are already
|
|
// running
|
|
if s.leaderRoutineManager.IsRunning(aclPolicyReplicationRoutineName) {
|
|
return
|
|
}
|
|
|
|
s.initReplicationStatus()
|
|
s.leaderRoutineManager.Start(ctx, aclPolicyReplicationRoutineName, s.runACLPolicyReplicator)
|
|
s.leaderRoutineManager.Start(ctx, aclRoleReplicationRoutineName, s.runACLRoleReplicator)
|
|
|
|
if s.config.ACLTokenReplication {
|
|
s.leaderRoutineManager.Start(ctx, aclTokenReplicationRoutineName, s.runACLTokenReplicator)
|
|
s.updateACLReplicationStatusRunning(structs.ACLReplicateTokens)
|
|
} else {
|
|
s.updateACLReplicationStatusRunning(structs.ACLReplicatePolicies)
|
|
}
|
|
}
|
|
|
|
type replicateFunc func(ctx context.Context, logger hclog.Logger, lastRemoteIndex uint64) (uint64, bool, error)
|
|
|
|
// This function is only intended to be run as a managed go routine, it will block until
|
|
// the context passed in indicates that it should exit.
|
|
func (s *Server) runACLPolicyReplicator(ctx context.Context) error {
|
|
policyLogger := s.aclReplicationLogger(structs.ACLReplicatePolicies.SingularNoun())
|
|
policyLogger.Info("started ACL Policy replication")
|
|
return s.runACLReplicator(ctx, policyLogger, structs.ACLReplicatePolicies, s.replicateACLPolicies, "acl-policies")
|
|
}
|
|
|
|
// This function is only intended to be run as a managed go routine, it will block until
|
|
// the context passed in indicates that it should exit.
|
|
func (s *Server) runACLRoleReplicator(ctx context.Context) error {
|
|
roleLogger := s.aclReplicationLogger(structs.ACLReplicateRoles.SingularNoun())
|
|
roleLogger.Info("started ACL Role replication")
|
|
return s.runACLReplicator(ctx, roleLogger, structs.ACLReplicateRoles, s.replicateACLRoles, "acl-roles")
|
|
}
|
|
|
|
// This function is only intended to be run as a managed go routine, it will block until
|
|
// the context passed in indicates that it should exit.
|
|
func (s *Server) runACLTokenReplicator(ctx context.Context) error {
|
|
tokenLogger := s.aclReplicationLogger(structs.ACLReplicateTokens.SingularNoun())
|
|
tokenLogger.Info("started ACL Token replication")
|
|
return s.runACLReplicator(ctx, tokenLogger, structs.ACLReplicateTokens, s.replicateACLTokens, "acl-tokens")
|
|
}
|
|
|
|
// This function is only intended to be run as a managed go routine, it will block until
|
|
// the context passed in indicates that it should exit.
|
|
func (s *Server) runACLReplicator(
|
|
ctx context.Context,
|
|
logger hclog.Logger,
|
|
replicationType structs.ACLReplicationType,
|
|
replicateFunc replicateFunc,
|
|
metricName string,
|
|
) error {
|
|
var failedAttempts uint
|
|
limiter := rate.NewLimiter(rate.Limit(s.config.ACLReplicationRate), s.config.ACLReplicationBurst)
|
|
|
|
var lastRemoteIndex uint64
|
|
for {
|
|
if err := limiter.Wait(ctx); err != nil {
|
|
return err
|
|
}
|
|
|
|
if s.tokens.ReplicationToken() == "" {
|
|
continue
|
|
}
|
|
|
|
index, exit, err := replicateFunc(ctx, logger, lastRemoteIndex)
|
|
if exit {
|
|
return nil
|
|
}
|
|
|
|
if err != nil {
|
|
metrics.SetGauge([]string{"leader", "replication", metricName, "status"},
|
|
0,
|
|
)
|
|
lastRemoteIndex = 0
|
|
s.updateACLReplicationStatusError(err.Error())
|
|
logger.Warn("ACL replication error (will retry if still leader)",
|
|
"error", err,
|
|
)
|
|
if (1 << failedAttempts) < aclReplicationMaxRetryBackoff {
|
|
failedAttempts++
|
|
}
|
|
|
|
select {
|
|
case <-ctx.Done():
|
|
return nil
|
|
case <-time.After((1 << failedAttempts) * time.Second):
|
|
// do nothing
|
|
}
|
|
} else {
|
|
metrics.SetGauge([]string{"leader", "replication", metricName, "status"},
|
|
1,
|
|
)
|
|
metrics.SetGauge([]string{"leader", "replication", metricName, "index"},
|
|
float32(index),
|
|
)
|
|
lastRemoteIndex = index
|
|
s.updateACLReplicationStatusIndex(replicationType, index)
|
|
logger.Debug("ACL replication completed through remote index",
|
|
"index", index,
|
|
)
|
|
failedAttempts = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) aclReplicationLogger(singularNoun string) hclog.Logger {
|
|
return s.loggers.
|
|
Named(logging.Replication).
|
|
Named(logging.ACL).
|
|
Named(singularNoun)
|
|
}
|
|
|
|
func (s *Server) stopACLReplication() {
|
|
// these will be no-ops when not started
|
|
s.leaderRoutineManager.Stop(aclPolicyReplicationRoutineName)
|
|
s.leaderRoutineManager.Stop(aclRoleReplicationRoutineName)
|
|
s.leaderRoutineManager.Stop(aclTokenReplicationRoutineName)
|
|
}
|
|
|
|
func (s *Server) startConfigReplication(ctx context.Context) {
|
|
if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter {
|
|
// replication shouldn't run in the primary DC
|
|
return
|
|
}
|
|
|
|
s.leaderRoutineManager.Start(ctx, configReplicationRoutineName, s.configReplicator.Run)
|
|
}
|
|
|
|
func (s *Server) stopConfigReplication() {
|
|
// will be a no-op when not started
|
|
s.leaderRoutineManager.Stop(configReplicationRoutineName)
|
|
}
|
|
|
|
func (s *Server) startFederationStateReplication(ctx context.Context) {
|
|
if s.config.PrimaryDatacenter == "" || s.config.PrimaryDatacenter == s.config.Datacenter {
|
|
// replication shouldn't run in the primary DC
|
|
return
|
|
}
|
|
|
|
if s.gatewayLocator != nil {
|
|
s.gatewayLocator.SetUseReplicationSignal(true)
|
|
s.gatewayLocator.SetLastFederationStateReplicationError(nil, false)
|
|
}
|
|
|
|
s.leaderRoutineManager.Start(ctx, federationStateReplicationRoutineName, s.federationStateReplicator.Run)
|
|
}
|
|
|
|
func (s *Server) stopFederationStateReplication() {
|
|
// will be a no-op when not started
|
|
s.leaderRoutineManager.Stop(federationStateReplicationRoutineName)
|
|
|
|
if s.gatewayLocator != nil {
|
|
s.gatewayLocator.SetUseReplicationSignal(false)
|
|
s.gatewayLocator.SetLastFederationStateReplicationError(nil, false)
|
|
}
|
|
}
|
|
|
|
// getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary
|
|
func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig {
|
|
logger := s.loggers.Named(logging.Autopilot)
|
|
state := s.fsm.State()
|
|
_, config, err := state.AutopilotConfig()
|
|
if err != nil {
|
|
logger.Error("failed to get config", "error", err)
|
|
return nil
|
|
}
|
|
if config != nil {
|
|
return config
|
|
}
|
|
|
|
config = s.config.AutopilotConfig
|
|
req := structs.AutopilotSetConfigRequest{Config: *config}
|
|
if _, err = s.raftApply(structs.AutopilotRequestType, req); err != nil {
|
|
logger.Error("failed to initialize config", "error", err)
|
|
return nil
|
|
}
|
|
|
|
return config
|
|
}
|
|
|
|
func (s *Server) bootstrapConfigEntries(entries []structs.ConfigEntry) error {
|
|
if s.config.PrimaryDatacenter != "" && s.config.PrimaryDatacenter != s.config.Datacenter {
|
|
// only bootstrap in the primary datacenter
|
|
return nil
|
|
}
|
|
|
|
if len(entries) < 1 {
|
|
// nothing to initialize
|
|
return nil
|
|
}
|
|
|
|
if ok, _ := ServersInDCMeetMinimumVersion(s, s.config.Datacenter, minCentralizedConfigVersion); !ok {
|
|
s.loggers.
|
|
Named(logging.CentralConfig).
|
|
Warn("config: can't initialize until all servers >=" + minCentralizedConfigVersion.String())
|
|
return nil
|
|
}
|
|
|
|
state := s.fsm.State()
|
|
|
|
// Do some quick preflight checks to see if someone is doing something
|
|
// that's not allowed at this time:
|
|
//
|
|
// - Trying to upgrade from an older pre-1.9.0 version of consul with
|
|
// intentions AND are trying to bootstrap a service-intentions config entry
|
|
// at the same time.
|
|
//
|
|
// - Trying to insert service-intentions config entries when connect is
|
|
// disabled.
|
|
|
|
usingConfigEntries, err := s.fsm.State().AreIntentionsInConfigEntries()
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to determine if we are migrating intentions yet: %v", err)
|
|
}
|
|
|
|
if !usingConfigEntries || !s.config.ConnectEnabled {
|
|
for _, entry := range entries {
|
|
if entry.GetKind() == structs.ServiceIntentions {
|
|
if !s.config.ConnectEnabled {
|
|
return fmt.Errorf("Refusing to apply configuration entry %q / %q because Connect must be enabled to bootstrap intentions",
|
|
entry.GetKind(), entry.GetName())
|
|
}
|
|
if !usingConfigEntries {
|
|
return fmt.Errorf("Refusing to apply configuration entry %q / %q because intentions are still being migrated to config entries",
|
|
entry.GetKind(), entry.GetName())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, entry := range entries {
|
|
// avoid a round trip through Raft if we know the CAS is going to fail
|
|
_, existing, err := state.ConfigEntry(nil, entry.GetKind(), entry.GetName(), entry.GetEnterpriseMeta())
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to determine whether the configuration for %q / %q already exists: %v", entry.GetKind(), entry.GetName(), err)
|
|
}
|
|
|
|
if existing == nil {
|
|
// ensure the ModifyIndex is set to 0 for the CAS request
|
|
entry.GetRaftIndex().ModifyIndex = 0
|
|
|
|
req := structs.ConfigEntryRequest{
|
|
Op: structs.ConfigEntryUpsertCAS,
|
|
Datacenter: s.config.Datacenter,
|
|
Entry: entry,
|
|
}
|
|
|
|
_, err := s.raftApply(structs.ConfigEntryRequestType, &req)
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to apply configuration entry %q / %q: %v", entry.GetKind(), entry.GetName(), err)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// reconcileReaped is used to reconcile nodes that have failed and been reaped
|
|
// from Serf but remain in the catalog. This is done by looking for unknown nodes with serfHealth checks registered.
|
|
// We generate a "reap" event to cause the node to be cleaned up.
|
|
func (s *Server) reconcileReaped(known map[string]struct{}, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
if nodeEntMeta == nil {
|
|
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
|
|
}
|
|
|
|
state := s.fsm.State()
|
|
_, checks, err := state.ChecksInState(nil, api.HealthAny, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, check := range checks {
|
|
// Ignore any non serf checks
|
|
if check.CheckID != structs.SerfCheckID {
|
|
continue
|
|
}
|
|
|
|
// Check if this node is "known" by serf
|
|
if _, ok := known[check.Node]; ok {
|
|
continue
|
|
}
|
|
|
|
// Get the node services, look for ConsulServiceID
|
|
_, services, err := state.NodeServices(nil, check.Node, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
serverPort := 0
|
|
serverAddr := ""
|
|
serverID := ""
|
|
|
|
CHECKS:
|
|
for _, service := range services.Services {
|
|
if service.ID == structs.ConsulServiceID {
|
|
_, node, err := state.GetNode(check.Node, nodeEntMeta)
|
|
if err != nil {
|
|
s.logger.Error("Unable to look up node with name", "name", check.Node, "error", err)
|
|
continue CHECKS
|
|
}
|
|
|
|
serverAddr = node.Address
|
|
serverPort = service.Port
|
|
lookupAddr := net.JoinHostPort(serverAddr, strconv.Itoa(serverPort))
|
|
svr := s.serverLookup.Server(raft.ServerAddress(lookupAddr))
|
|
if svr != nil {
|
|
serverID = svr.ID
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// Create a fake member
|
|
member := serf.Member{
|
|
Name: check.Node,
|
|
Tags: map[string]string{
|
|
"dc": s.config.Datacenter,
|
|
"role": "node",
|
|
},
|
|
}
|
|
addEnterpriseSerfTags(member.Tags, nodeEntMeta)
|
|
|
|
// Create the appropriate tags if this was a server node
|
|
if serverPort > 0 {
|
|
member.Tags["role"] = "consul"
|
|
member.Tags["port"] = strconv.FormatUint(uint64(serverPort), 10)
|
|
member.Tags["id"] = serverID
|
|
member.Addr = net.ParseIP(serverAddr)
|
|
}
|
|
|
|
// Attempt to reap this member
|
|
if err := s.handleReapMember(member, nodeEntMeta); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// reconcileMember is used to do an async reconcile of a single
|
|
// serf member
|
|
func (s *Server) reconcileMember(member serf.Member) error {
|
|
// Check if this is a member we should handle
|
|
if !s.shouldHandleMember(member) {
|
|
// TODO(partition): log the partition name
|
|
s.logger.Warn("skipping reconcile of node", "member", member)
|
|
return nil
|
|
}
|
|
defer metrics.MeasureSince([]string{"leader", "reconcileMember"}, time.Now())
|
|
|
|
nodeEntMeta := getSerfMemberEnterpriseMeta(member)
|
|
|
|
var err error
|
|
switch member.Status {
|
|
case serf.StatusAlive:
|
|
err = s.handleAliveMember(member, nodeEntMeta)
|
|
case serf.StatusFailed:
|
|
err = s.handleFailedMember(member, nodeEntMeta)
|
|
case serf.StatusLeft:
|
|
err = s.handleLeftMember(member, nodeEntMeta)
|
|
case StatusReap:
|
|
err = s.handleReapMember(member, nodeEntMeta)
|
|
}
|
|
if err != nil {
|
|
s.logger.Error("failed to reconcile member",
|
|
// TODO(partition): log the partition name
|
|
"member", member,
|
|
"error", err,
|
|
)
|
|
|
|
// Permission denied should not bubble up
|
|
if acl.IsErrPermissionDenied(err) {
|
|
return nil
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// shouldHandleMember checks if this is a Consul pool member
|
|
func (s *Server) shouldHandleMember(member serf.Member) bool {
|
|
if valid, dc := isConsulNode(member); valid && dc == s.config.Datacenter {
|
|
return true
|
|
}
|
|
if valid, parts := metadata.IsConsulServer(member); valid &&
|
|
parts.Segment == "" &&
|
|
parts.Datacenter == s.config.Datacenter {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// handleAliveMember is used to ensure the node
|
|
// is registered, with a passing health check.
|
|
func (s *Server) handleAliveMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
if nodeEntMeta == nil {
|
|
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
|
|
}
|
|
|
|
// Register consul service if a server
|
|
var service *structs.NodeService
|
|
if valid, parts := metadata.IsConsulServer(member); valid {
|
|
service = &structs.NodeService{
|
|
ID: structs.ConsulServiceID,
|
|
Service: structs.ConsulServiceName,
|
|
Port: parts.Port,
|
|
Weights: &structs.Weights{
|
|
Passing: 1,
|
|
Warning: 1,
|
|
},
|
|
EnterpriseMeta: *nodeEntMeta,
|
|
Meta: map[string]string{
|
|
// DEPRECATED - remove nonvoter in favor of read_replica in a future version of consul
|
|
"non_voter": strconv.FormatBool(member.Tags["nonvoter"] == "1"),
|
|
"read_replica": strconv.FormatBool(member.Tags["read_replica"] == "1"),
|
|
"raft_version": strconv.Itoa(parts.RaftVersion),
|
|
"serf_protocol_current": strconv.FormatUint(uint64(member.ProtocolCur), 10),
|
|
"serf_protocol_min": strconv.FormatUint(uint64(member.ProtocolMin), 10),
|
|
"serf_protocol_max": strconv.FormatUint(uint64(member.ProtocolMax), 10),
|
|
"version": parts.Build.String(),
|
|
},
|
|
}
|
|
|
|
// Attempt to join the consul server
|
|
if err := s.joinConsulServer(member, parts); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Check if the node exists
|
|
state := s.fsm.State()
|
|
_, node, err := state.GetNode(member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if node != nil && node.Address == member.Addr.String() {
|
|
// Check if the associated service is available
|
|
if service != nil {
|
|
match := false
|
|
_, services, err := state.NodeServices(nil, member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if services != nil {
|
|
for id, serv := range services.Services {
|
|
if id == service.ID {
|
|
// If metadata are different, be sure to update it
|
|
match = reflect.DeepEqual(serv.Meta, service.Meta)
|
|
}
|
|
}
|
|
}
|
|
if !match {
|
|
goto AFTER_CHECK
|
|
}
|
|
}
|
|
|
|
// Check if the serfCheck is in the passing state
|
|
_, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, check := range checks {
|
|
if check.CheckID == structs.SerfCheckID && check.Status == api.HealthPassing {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
AFTER_CHECK:
|
|
s.logger.Info("member joined, marking health alive", "member", member.Name)
|
|
|
|
// Register with the catalog.
|
|
req := structs.RegisterRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
Node: member.Name,
|
|
ID: types.NodeID(member.Tags["id"]),
|
|
Address: member.Addr.String(),
|
|
Service: service,
|
|
Check: &structs.HealthCheck{
|
|
Node: member.Name,
|
|
CheckID: structs.SerfCheckID,
|
|
Name: structs.SerfCheckName,
|
|
Status: api.HealthPassing,
|
|
Output: structs.SerfCheckAliveOutput,
|
|
},
|
|
EnterpriseMeta: *nodeEntMeta,
|
|
}
|
|
if node != nil {
|
|
req.TaggedAddresses = node.TaggedAddresses
|
|
req.NodeMeta = node.Meta
|
|
}
|
|
|
|
_, err = s.raftApply(structs.RegisterRequestType, &req)
|
|
return err
|
|
}
|
|
|
|
// handleFailedMember is used to mark the node's status
|
|
// as being critical, along with all checks as unknown.
|
|
func (s *Server) handleFailedMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
if nodeEntMeta == nil {
|
|
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
|
|
}
|
|
|
|
// Check if the node exists
|
|
state := s.fsm.State()
|
|
_, node, err := state.GetNode(member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if node == nil {
|
|
s.logger.Info("ignoring failed event for member because it does not exist in the catalog", "member", member.Name)
|
|
return nil
|
|
}
|
|
|
|
// TODO(partitions): get the ent meta by parsing serf tags
|
|
|
|
if node.Address == member.Addr.String() {
|
|
// Check if the serfCheck is in the critical state
|
|
_, checks, err := state.NodeChecks(nil, member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
for _, check := range checks {
|
|
if check.CheckID == structs.SerfCheckID && check.Status == api.HealthCritical {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
s.logger.Info("member failed, marking health critical", "member", member.Name)
|
|
|
|
// Register with the catalog
|
|
req := structs.RegisterRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
Node: member.Name,
|
|
EnterpriseMeta: *nodeEntMeta,
|
|
ID: types.NodeID(member.Tags["id"]),
|
|
Address: member.Addr.String(),
|
|
Check: &structs.HealthCheck{
|
|
Node: member.Name,
|
|
CheckID: structs.SerfCheckID,
|
|
Name: structs.SerfCheckName,
|
|
Status: api.HealthCritical,
|
|
Output: structs.SerfCheckFailedOutput,
|
|
},
|
|
|
|
// If there's existing information about the node, do not
|
|
// clobber it.
|
|
SkipNodeUpdate: true,
|
|
}
|
|
_, err = s.raftApply(structs.RegisterRequestType, &req)
|
|
return err
|
|
}
|
|
|
|
// handleLeftMember is used to handle members that gracefully
|
|
// left. They are deregistered if necessary.
|
|
func (s *Server) handleLeftMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
return s.handleDeregisterMember("left", member, nodeEntMeta)
|
|
}
|
|
|
|
// handleReapMember is used to handle members that have been
|
|
// reaped after a prolonged failure. They are deregistered.
|
|
func (s *Server) handleReapMember(member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
return s.handleDeregisterMember("reaped", member, nodeEntMeta)
|
|
}
|
|
|
|
// handleDeregisterMember is used to deregister a member of a given reason
|
|
func (s *Server) handleDeregisterMember(reason string, member serf.Member, nodeEntMeta *structs.EnterpriseMeta) error {
|
|
if nodeEntMeta == nil {
|
|
nodeEntMeta = structs.NodeEnterpriseMetaInDefaultPartition()
|
|
}
|
|
|
|
// Do not deregister ourself. This can only happen if the current leader
|
|
// is leaving. Instead, we should allow a follower to take-over and
|
|
// deregister us later.
|
|
if member.Name == s.config.NodeName {
|
|
s.logger.Warn("deregistering self should be done by follower", "name", s.config.NodeName)
|
|
return nil
|
|
}
|
|
|
|
// Remove from Raft peers if this was a server
|
|
if valid, _ := metadata.IsConsulServer(member); valid {
|
|
if err := s.removeConsulServer(member); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Check if the node does not exist
|
|
state := s.fsm.State()
|
|
_, node, err := state.GetNode(member.Name, nodeEntMeta)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if node == nil {
|
|
return nil
|
|
}
|
|
|
|
// Deregister the node
|
|
s.logger.Info("deregistering member", "member", member.Name, "reason", reason)
|
|
req := structs.DeregisterRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
Node: member.Name,
|
|
EnterpriseMeta: *nodeEntMeta,
|
|
}
|
|
_, err = s.raftApply(structs.DeregisterRequestType, &req)
|
|
return err
|
|
}
|
|
|
|
// joinConsulServer is used to try to join another consul server
|
|
func (s *Server) joinConsulServer(m serf.Member, parts *metadata.Server) error {
|
|
// Check for possibility of multiple bootstrap nodes
|
|
if parts.Bootstrap {
|
|
members := s.serfLAN.Members()
|
|
for _, member := range members {
|
|
valid, p := metadata.IsConsulServer(member)
|
|
if valid && member.Name != m.Name && p.Bootstrap {
|
|
s.logger.Error("Two nodes are in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.",
|
|
"node_to_add", m.Name,
|
|
"other", member.Name,
|
|
)
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// We used to do a check here and prevent adding the server if the cluster size was too small (1 or 2 servers) as a means
|
|
// of preventing the case where we may remove ourselves and cause a loss of leadership. The Autopilot AddServer function
|
|
// will now handle simple address updates better and so long as the address doesn't conflict with another node
|
|
// it will not require a removal but will instead just update the address. If it would require a removal of other nodes
|
|
// due to conflicts then the logic regarding cluster sizes will kick in and prevent doing anything dangerous that could
|
|
// cause loss of leadership.
|
|
|
|
// get the autpilot library version of a server from the serf member
|
|
apServer, err := s.autopilotServer(m)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// now ask autopilot to add it
|
|
return s.autopilot.AddServer(apServer)
|
|
}
|
|
|
|
// removeConsulServer is used to try to remove a consul server that has left
|
|
func (s *Server) removeConsulServer(m serf.Member) error {
|
|
server, err := s.autopilotServer(m)
|
|
if err != nil || server == nil {
|
|
return err
|
|
}
|
|
|
|
return s.autopilot.RemoveServer(server.ID)
|
|
}
|
|
|
|
// reapTombstones is invoked by the current leader to manage garbage
|
|
// collection of tombstones. When a key is deleted, we trigger a tombstone
|
|
// GC clock. Once the expiration is reached, this routine is invoked
|
|
// to clear all tombstones before this index. This must be replicated
|
|
// through Raft to ensure consistency. We do this outside the leader loop
|
|
// to avoid blocking.
|
|
func (s *Server) reapTombstones(index uint64) {
|
|
defer metrics.MeasureSince([]string{"leader", "reapTombstones"}, time.Now())
|
|
req := structs.TombstoneRequest{
|
|
Datacenter: s.config.Datacenter,
|
|
Op: structs.TombstoneReap,
|
|
ReapIndex: index,
|
|
}
|
|
_, err := s.raftApply(structs.TombstoneRequestType, &req)
|
|
if err != nil {
|
|
s.logger.Error("failed to reap tombstones up to index",
|
|
"index", index,
|
|
"error", err,
|
|
)
|
|
}
|
|
}
|
|
|
|
func (s *Server) setDatacenterSupportsFederationStates() {
|
|
atomic.StoreInt32(&s.dcSupportsFederationStates, 1)
|
|
}
|
|
|
|
func (s *Server) DatacenterSupportsFederationStates() bool {
|
|
if atomic.LoadInt32(&s.dcSupportsFederationStates) != 0 {
|
|
return true
|
|
}
|
|
|
|
state := serversFederationStatesInfo{
|
|
supported: true,
|
|
found: false,
|
|
}
|
|
|
|
// if we are in a secondary, check if they are supported in the primary dc
|
|
if s.config.PrimaryDatacenter != s.config.Datacenter {
|
|
s.router.CheckServers(s.config.PrimaryDatacenter, state.update)
|
|
|
|
if !state.supported || !state.found {
|
|
s.logger.Debug("federation states are not enabled in the primary dc")
|
|
return false
|
|
}
|
|
}
|
|
|
|
// check the servers in the local DC
|
|
s.router.CheckServers(s.config.Datacenter, state.update)
|
|
|
|
if state.supported && state.found {
|
|
s.setDatacenterSupportsFederationStates()
|
|
return true
|
|
}
|
|
|
|
s.logger.Debug("federation states are not enabled in this datacenter", "datacenter", s.config.Datacenter)
|
|
return false
|
|
}
|
|
|
|
type serversFederationStatesInfo struct {
|
|
// supported indicates whether every processed server supports federation states
|
|
supported bool
|
|
|
|
// found indicates that at least one server was processed
|
|
found bool
|
|
}
|
|
|
|
func (s *serversFederationStatesInfo) update(srv *metadata.Server) bool {
|
|
if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed {
|
|
// they are left or something so regardless we treat these servers as meeting
|
|
// the version requirement
|
|
return true
|
|
}
|
|
|
|
// mark that we processed at least one server
|
|
s.found = true
|
|
|
|
if supported, ok := srv.FeatureFlags["fs"]; ok && supported == 1 {
|
|
return true
|
|
}
|
|
|
|
// mark that at least one server does not support federation states
|
|
s.supported = false
|
|
|
|
// prevent continuing server evaluation
|
|
return false
|
|
}
|
|
|
|
func (s *Server) setDatacenterSupportsIntentionsAsConfigEntries() {
|
|
atomic.StoreInt32(&s.dcSupportsIntentionsAsConfigEntries, 1)
|
|
}
|
|
|
|
func (s *Server) DatacenterSupportsIntentionsAsConfigEntries() bool {
|
|
if atomic.LoadInt32(&s.dcSupportsIntentionsAsConfigEntries) != 0 {
|
|
return true
|
|
}
|
|
|
|
state := serversIntentionsAsConfigEntriesInfo{
|
|
supported: true,
|
|
found: false,
|
|
}
|
|
|
|
// if we are in a secondary, check if they are supported in the primary dc
|
|
if s.config.PrimaryDatacenter != s.config.Datacenter {
|
|
s.router.CheckServers(s.config.PrimaryDatacenter, state.update)
|
|
|
|
if !state.supported || !state.found {
|
|
s.logger.Debug("intentions have not been migrated to config entries in the primary dc yet")
|
|
return false
|
|
}
|
|
}
|
|
|
|
// check the servers in the local DC
|
|
s.router.CheckServers(s.config.Datacenter, state.update)
|
|
|
|
if state.supported && state.found {
|
|
s.setDatacenterSupportsIntentionsAsConfigEntries()
|
|
return true
|
|
}
|
|
|
|
s.logger.Debug("intentions cannot be migrated to config entries in this datacenter", "datacenter", s.config.Datacenter)
|
|
return false
|
|
}
|
|
|
|
type serversIntentionsAsConfigEntriesInfo struct {
|
|
// supported indicates whether every processed server supports intentions as config entries
|
|
supported bool
|
|
|
|
// found indicates that at least one server was processed
|
|
found bool
|
|
}
|
|
|
|
func (s *serversIntentionsAsConfigEntriesInfo) update(srv *metadata.Server) bool {
|
|
if srv.Status != serf.StatusAlive && srv.Status != serf.StatusFailed {
|
|
// they are left or something so regardless we treat these servers as meeting
|
|
// the version requirement
|
|
return true
|
|
}
|
|
|
|
// mark that we processed at least one server
|
|
s.found = true
|
|
|
|
if supported, ok := srv.FeatureFlags["si"]; ok && supported == 1 {
|
|
return true
|
|
}
|
|
|
|
// mark that at least one server does not support service-intentions
|
|
s.supported = false
|
|
|
|
// prevent continuing server evaluation
|
|
return false
|
|
}
|