385 lines
12 KiB
Go
385 lines
12 KiB
Go
package consul
|
|
|
|
import (
|
|
"fmt"
|
|
"net/rpc"
|
|
"os"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/lib"
|
|
"github.com/hashicorp/consul/testrpc"
|
|
"github.com/hashicorp/net-rpc-msgpackrpc"
|
|
)
|
|
|
|
// verifyNodeSort makes sure the order of the nodes in the slice is the same as
|
|
// the expected order, expressed as a comma-separated string.
|
|
func verifyNodeSort(t *testing.T, nodes structs.Nodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyServiceNodeSort makes sure the order of the nodes in the slice is the
|
|
// same as the expected order, expressed as a comma-separated string.
|
|
func verifyServiceNodeSort(t *testing.T, nodes structs.ServiceNodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyHealthCheckSort makes sure the order of the nodes in the slice is the
|
|
// same as the expected order, expressed as a comma-separated string.
|
|
func verifyHealthCheckSort(t *testing.T, checks structs.HealthChecks, expected string) {
|
|
vec := make([]string, len(checks))
|
|
for i, check := range checks {
|
|
vec[i] = check.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// verifyCheckServiceNodeSort makes sure the order of the nodes in the slice is
|
|
// the same as the expected order, expressed as a comma-separated string.
|
|
func verifyCheckServiceNodeSort(t *testing.T, nodes structs.CheckServiceNodes, expected string) {
|
|
vec := make([]string, len(nodes))
|
|
for i, node := range nodes {
|
|
vec[i] = node.Node.Node
|
|
}
|
|
actual := strings.Join(vec, ",")
|
|
if actual != expected {
|
|
t.Fatalf("bad sort: %s != %s", actual, expected)
|
|
}
|
|
}
|
|
|
|
// seedCoordinates uses the client to set up a set of nodes with a specific
|
|
// set of distances from the origin. We also include the server so that we
|
|
// can wait for the coordinates to get committed to the Raft log.
|
|
//
|
|
// Here's the layout of the nodes:
|
|
//
|
|
// node3 node2 node5 node4 node1
|
|
// | | | | | | | | | | |
|
|
// 0 1 2 3 4 5 6 7 8 9 10 (ms)
|
|
//
|
|
func seedCoordinates(t *testing.T, codec rpc.ClientCodec, server *Server) {
|
|
// Register some nodes.
|
|
for i := 0; i < 5; i++ {
|
|
req := structs.RegisterRequest{
|
|
Datacenter: "dc1",
|
|
Node: fmt.Sprintf("node%d", i+1),
|
|
Address: "127.0.0.1",
|
|
}
|
|
var reply struct{}
|
|
if err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &req, &reply); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
|
|
// Seed the fixed setup of the nodes.
|
|
updates := []structs.CoordinateUpdateRequest{
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node1",
|
|
Coord: lib.GenerateCoordinate(10 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node2",
|
|
Coord: lib.GenerateCoordinate(2 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node3",
|
|
Coord: lib.GenerateCoordinate(1 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node4",
|
|
Coord: lib.GenerateCoordinate(8 * time.Millisecond),
|
|
},
|
|
structs.CoordinateUpdateRequest{
|
|
Datacenter: "dc1",
|
|
Node: "node5",
|
|
Coord: lib.GenerateCoordinate(3 * time.Millisecond),
|
|
},
|
|
}
|
|
|
|
// Apply the updates and wait a while for the batch to get committed to
|
|
// the Raft log.
|
|
for _, update := range updates {
|
|
var out struct{}
|
|
if err := msgpackrpc.CallWithCodec(codec, "Coordinate.Update", &update, &out); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
}
|
|
time.Sleep(2 * server.config.CoordinateUpdatePeriod)
|
|
}
|
|
|
|
func TestRTT_sortNodesByDistanceFrom(t *testing.T) {
|
|
t.Parallel()
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testrpc.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.Nodes{
|
|
&structs.Node{Node: "apple"},
|
|
&structs.Node{Node: "node1"},
|
|
&structs.Node{Node: "node2"},
|
|
&structs.Node{Node: "node3"},
|
|
&structs.Node{Node: "node4"},
|
|
&structs.Node{Node: "node5"},
|
|
}
|
|
|
|
// The zero value for the source should not trigger any sorting.
|
|
var source structs.QuerySource
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Same for a source in some other DC.
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc2"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Same for a source node in our DC that we have no coordinate for.
|
|
source.Node = "apple"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "apple,node1,node2,node3,node4,node5")
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any seeded
|
|
// coordinate info so it should end up at the end, despite its lexical
|
|
// hegemony.
|
|
source.Node = "node1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
}
|
|
|
|
func TestRTT_sortNodesByDistanceFrom_Nodes(t *testing.T) {
|
|
t.Parallel()
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testrpc.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.Nodes{
|
|
&structs.Node{Node: "apple"},
|
|
&structs.Node{Node: "node1"},
|
|
&structs.Node{Node: "node2"},
|
|
&structs.Node{Node: "node3"},
|
|
&structs.Node{Node: "node4"},
|
|
&structs.Node{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRTT_sortNodesByDistanceFrom_ServiceNodes(t *testing.T) {
|
|
t.Parallel()
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
testrpc.WaitForTestAgent(t, server.RPC, "dc1")
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.ServiceNodes{
|
|
&structs.ServiceNode{Node: "apple"},
|
|
&structs.ServiceNode{Node: "node1"},
|
|
&structs.ServiceNode{Node: "node2"},
|
|
&structs.ServiceNode{Node: "node3"},
|
|
&structs.ServiceNode{Node: "node4"},
|
|
&structs.ServiceNode{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRTT_sortNodesByDistanceFrom_HealthChecks(t *testing.T) {
|
|
t.Parallel()
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testrpc.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
checks := structs.HealthChecks{
|
|
&structs.HealthCheck{Node: "apple"},
|
|
&structs.HealthCheck{Node: "node1"},
|
|
&structs.HealthCheck{Node: "node2"},
|
|
&structs.HealthCheck{Node: "node3"},
|
|
&structs.HealthCheck{Node: "node4"},
|
|
&structs.HealthCheck{Node: "node5"},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
checks[1], checks[2] = checks[2], checks[1]
|
|
if err := server.sortNodesByDistanceFrom(source, checks); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyHealthCheckSort(t, checks, "node2,node3,node5,node4,node1,apple")
|
|
}
|
|
|
|
func TestRTT_sortNodesByDistanceFrom_CheckServiceNodes(t *testing.T) {
|
|
t.Parallel()
|
|
dir, server := testServer(t)
|
|
defer os.RemoveAll(dir)
|
|
defer server.Shutdown()
|
|
|
|
codec := rpcClient(t, server)
|
|
defer codec.Close()
|
|
testrpc.WaitForLeader(t, server.RPC, "dc1")
|
|
|
|
seedCoordinates(t, codec, server)
|
|
nodes := structs.CheckServiceNodes{
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "apple"}},
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "node1"}},
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "node2"}},
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "node3"}},
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "node4"}},
|
|
structs.CheckServiceNode{Node: &structs.Node{Node: "node5"}},
|
|
}
|
|
|
|
// Now sort relative to node1, note that apple doesn't have any
|
|
// seeded coordinate info so it should end up at the end, despite
|
|
// its lexical hegemony.
|
|
var source structs.QuerySource
|
|
source.Node = "node1"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node1,node4,node5,node2,node3,apple")
|
|
|
|
// Try another sort from node2. Note that node5 and node3 are the
|
|
// same distance away so the stable sort should preserve the order
|
|
// they were in from the previous sort.
|
|
source.Node = "node2"
|
|
source.Datacenter = "dc1"
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node2,node5,node3,node4,node1,apple")
|
|
|
|
// Let's exercise the stable sort explicitly to make sure we didn't
|
|
// just get lucky.
|
|
nodes[1], nodes[2] = nodes[2], nodes[1]
|
|
if err := server.sortNodesByDistanceFrom(source, nodes); err != nil {
|
|
t.Fatalf("err: %v", err)
|
|
}
|
|
verifyCheckServiceNodeSort(t, nodes, "node2,node3,node5,node4,node1,apple")
|
|
}
|