open-consul/acl/acl.go
Matt Keeler 99e0a124cb
New ACLs (#4791)
This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week.
Description

At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers.

On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though.

    Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though.
    All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management.
    Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are:
        A server running the new system must still support other clients using the legacy system.
        A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system.
        The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode.

So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00

962 lines
25 KiB
Go

package acl
import (
"github.com/armon/go-radix"
"github.com/hashicorp/consul/sentinel"
)
var (
// allowAll is a singleton policy which allows all
// non-management actions
allowAll Authorizer
// denyAll is a singleton policy which denies all actions
denyAll Authorizer
// manageAll is a singleton policy which allows all
// actions, including management
manageAll Authorizer
)
// DefaultPolicyEnforcementLevel will be used if the user leaves the level
// blank when configuring an ACL.
const DefaultPolicyEnforcementLevel = "hard-mandatory"
func init() {
// Setup the singletons
allowAll = &StaticAuthorizer{
allowManage: false,
defaultAllow: true,
}
denyAll = &StaticAuthorizer{
allowManage: false,
defaultAllow: false,
}
manageAll = &StaticAuthorizer{
allowManage: true,
defaultAllow: true,
}
}
// Authorizer is the interface for policy enforcement.
type Authorizer interface {
// ACLRead checks for permission to list all the ACLs
ACLRead() bool
// ACLWrite checks for permission to manipulate ACLs
ACLWrite() bool
// AgentRead checks for permission to read from agent endpoints for a
// given node.
AgentRead(string) bool
// AgentWrite checks for permission to make changes via agent endpoints
// for a given node.
AgentWrite(string) bool
// EventRead determines if a specific event can be queried.
EventRead(string) bool
// EventWrite determines if a specific event may be fired.
EventWrite(string) bool
// IntentionDefaultAllow determines the default authorized behavior
// when no intentions match a Connect request.
IntentionDefaultAllow() bool
// IntentionRead determines if a specific intention can be read.
IntentionRead(string) bool
// IntentionWrite determines if a specific intention can be
// created, modified, or deleted.
IntentionWrite(string) bool
// KeyList checks for permission to list keys under a prefix
KeyList(string) bool
// KeyRead checks for permission to read a given key
KeyRead(string) bool
// KeyWrite checks for permission to write a given key
KeyWrite(string, sentinel.ScopeFn) bool
// KeyWritePrefix checks for permission to write to an
// entire key prefix. This means there must be no sub-policies
// that deny a write.
KeyWritePrefix(string) bool
// KeyringRead determines if the encryption keyring used in
// the gossip layer can be read.
KeyringRead() bool
// KeyringWrite determines if the keyring can be manipulated
KeyringWrite() bool
// NodeRead checks for permission to read (discover) a given node.
NodeRead(string) bool
// NodeWrite checks for permission to create or update (register) a
// given node.
NodeWrite(string, sentinel.ScopeFn) bool
// OperatorRead determines if the read-only Consul operator functions
// can be used.
OperatorRead() bool
// OperatorWrite determines if the state-changing Consul operator
// functions can be used.
OperatorWrite() bool
// PreparedQueryRead determines if a specific prepared query can be read
// to show its contents (this is not used for execution).
PreparedQueryRead(string) bool
// PreparedQueryWrite determines if a specific prepared query can be
// created, modified, or deleted.
PreparedQueryWrite(string) bool
// ServiceRead checks for permission to read a given service
ServiceRead(string) bool
// ServiceWrite checks for permission to create or update a given
// service
ServiceWrite(string, sentinel.ScopeFn) bool
// SessionRead checks for permission to read sessions for a given node.
SessionRead(string) bool
// SessionWrite checks for permission to create sessions for a given
// node.
SessionWrite(string) bool
// Snapshot checks for permission to take and restore snapshots.
Snapshot() bool
}
// StaticAuthorizer is used to implement a base ACL policy. It either
// allows or denies all requests. This can be used as a parent
// ACL to act in a blacklist or whitelist mode.
type StaticAuthorizer struct {
allowManage bool
defaultAllow bool
}
func (s *StaticAuthorizer) ACLRead() bool {
return s.allowManage
}
func (s *StaticAuthorizer) ACLWrite() bool {
return s.allowManage
}
func (s *StaticAuthorizer) AgentRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) AgentWrite(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) EventRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) EventWrite(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) IntentionDefaultAllow() bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) IntentionRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) IntentionWrite(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyList(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyWrite(string, sentinel.ScopeFn) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyWritePrefix(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyringRead() bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) KeyringWrite() bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) NodeRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) NodeWrite(string, sentinel.ScopeFn) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) OperatorRead() bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) OperatorWrite() bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) PreparedQueryRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) PreparedQueryWrite(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) ServiceRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) ServiceWrite(string, sentinel.ScopeFn) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) SessionRead(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) SessionWrite(string) bool {
return s.defaultAllow
}
func (s *StaticAuthorizer) Snapshot() bool {
return s.allowManage
}
// AllowAll returns an Authorizer that allows all operations
func AllowAll() Authorizer {
return allowAll
}
// DenyAll returns an Authorizer that denies all operations
func DenyAll() Authorizer {
return denyAll
}
// ManageAll returns an Authorizer that can manage all resources
func ManageAll() Authorizer {
return manageAll
}
// RootAuthorizer returns a possible Authorizer if the ID matches a root policy
func RootAuthorizer(id string) Authorizer {
switch id {
case "allow":
return allowAll
case "deny":
return denyAll
case "manage":
return manageAll
default:
return nil
}
}
// RulePolicy binds a regular ACL policy along with an optional piece of
// code to execute.
type RulePolicy struct {
// aclPolicy is used for simple acl rules(allow/deny/manage)
aclPolicy string
// sentinelPolicy has the code part of a policy
sentinelPolicy Sentinel
}
// PolicyAuthorizer is used to wrap a set of ACL policies to provide
// the Authorizer interface.
//
type PolicyAuthorizer struct {
// parent is used to resolve policy if we have
// no matching rule.
parent Authorizer
// sentinel is an interface for validating and executing sentinel code
// policies.
sentinel sentinel.Evaluator
// aclRule contains the acl management policy.
aclRule string
// agentRules contain the exact-match agent policies
agentRules *radix.Tree
// intentionRules contains the service intention exact-match policies
intentionRules *radix.Tree
// keyRules contains the key exact-match policies
keyRules *radix.Tree
// nodeRules contains the node exact-match policies
nodeRules *radix.Tree
// serviceRules contains the service exact-match policies
serviceRules *radix.Tree
// sessionRules contains the session exact-match policies
sessionRules *radix.Tree
// eventRules contains the user event exact-match policies
eventRules *radix.Tree
// preparedQueryRules contains the prepared query exact-match policies
preparedQueryRules *radix.Tree
// keyringRule contains the keyring policies. The keyring has
// a very simple yes/no without prefix matching, so here we
// don't need to use a radix tree.
keyringRule string
// operatorRule contains the operator policies.
operatorRule string
}
// policyAuthorizerRadixLeaf is used as the main
// structure for storing in the radix.Tree's within the
// PolicyAuthorizer
type policyAuthorizerRadixLeaf struct {
exact interface{}
prefix interface{}
}
// getPolicy first attempts to get an exact match for the segment from the "exact" tree and then falls
// back to getting the policy for the longest prefix from the "prefix" tree
func getPolicy(segment string, tree *radix.Tree) (policy interface{}, found bool) {
found = false
tree.WalkPath(segment, func(path string, leaf interface{}) bool {
policies := leaf.(*policyAuthorizerRadixLeaf)
if policies.exact != nil && path == segment {
found = true
policy = policies.exact
return true
}
if policies.prefix != nil {
found = true
policy = policies.prefix
}
return false
})
return
}
func insertPolicyIntoRadix(segment string, tree *radix.Tree, exactPolicy interface{}, prefixPolicy interface{}) {
leaf, found := tree.Get(segment)
if found {
policy := leaf.(*policyAuthorizerRadixLeaf)
if exactPolicy != nil {
policy.exact = exactPolicy
}
if prefixPolicy != nil {
policy.prefix = prefixPolicy
}
} else {
policy := &policyAuthorizerRadixLeaf{exact: exactPolicy, prefix: prefixPolicy}
tree.Insert(segment, policy)
}
}
func enforce(rule string, requiredPermission string) (allow, recurse bool) {
switch rule {
case PolicyWrite:
// grants read, list and write permissions
return true, false
case PolicyList:
// grants read and list permissions
if requiredPermission == PolicyList || requiredPermission == PolicyRead {
return true, false
} else {
return false, false
}
case PolicyRead:
// grants just read permissions
if requiredPermission == PolicyRead {
return true, false
} else {
return false, false
}
case PolicyDeny:
// explicit denial - do not recurse
return false, false
default:
// need to recurse as there was no specific policy set
return false, true
}
}
// NewPolicyAuthorizer is used to construct a policy based ACL from a set of policies
// and a parent policy to resolve missing cases.
func NewPolicyAuthorizer(parent Authorizer, policies []*Policy, sentinel sentinel.Evaluator) (*PolicyAuthorizer, error) {
p := &PolicyAuthorizer{
parent: parent,
agentRules: radix.New(),
intentionRules: radix.New(),
keyRules: radix.New(),
nodeRules: radix.New(),
serviceRules: radix.New(),
sessionRules: radix.New(),
eventRules: radix.New(),
preparedQueryRules: radix.New(),
sentinel: sentinel,
}
policy := MergePolicies(policies)
// Load the agent policy (exact matches)
for _, ap := range policy.Agents {
insertPolicyIntoRadix(ap.Node, p.agentRules, ap.Policy, nil)
}
// Load the agent policy (prefix matches)
for _, ap := range policy.AgentPrefixes {
insertPolicyIntoRadix(ap.Node, p.agentRules, nil, ap.Policy)
}
// Load the key policy (exact matches)
for _, kp := range policy.Keys {
policyRule := RulePolicy{
aclPolicy: kp.Policy,
sentinelPolicy: kp.Sentinel,
}
insertPolicyIntoRadix(kp.Prefix, p.keyRules, policyRule, nil)
}
// Load the key policy (prefix matches)
for _, kp := range policy.KeyPrefixes {
policyRule := RulePolicy{
aclPolicy: kp.Policy,
sentinelPolicy: kp.Sentinel,
}
insertPolicyIntoRadix(kp.Prefix, p.keyRules, nil, policyRule)
}
// Load the node policy (exact matches)
for _, np := range policy.Nodes {
policyRule := RulePolicy{
aclPolicy: np.Policy,
sentinelPolicy: np.Sentinel,
}
insertPolicyIntoRadix(np.Name, p.nodeRules, policyRule, nil)
}
// Load the node policy (prefix matches)
for _, np := range policy.NodePrefixes {
policyRule := RulePolicy{
aclPolicy: np.Policy,
sentinelPolicy: np.Sentinel,
}
insertPolicyIntoRadix(np.Name, p.nodeRules, nil, policyRule)
}
// Load the service policy (exact matches)
for _, sp := range policy.Services {
policyRule := RulePolicy{
aclPolicy: sp.Policy,
sentinelPolicy: sp.Sentinel,
}
insertPolicyIntoRadix(sp.Name, p.serviceRules, policyRule, nil)
intention := sp.Intentions
if intention == "" {
switch sp.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
policyRule = RulePolicy{
aclPolicy: intention,
sentinelPolicy: sp.Sentinel,
}
insertPolicyIntoRadix(sp.Name, p.intentionRules, policyRule, nil)
}
// Load the service policy (prefix matches)
for _, sp := range policy.ServicePrefixes {
policyRule := RulePolicy{
aclPolicy: sp.Policy,
sentinelPolicy: sp.Sentinel,
}
insertPolicyIntoRadix(sp.Name, p.serviceRules, nil, policyRule)
intention := sp.Intentions
if intention == "" {
switch sp.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
policyRule = RulePolicy{
aclPolicy: intention,
sentinelPolicy: sp.Sentinel,
}
insertPolicyIntoRadix(sp.Name, p.intentionRules, nil, policyRule)
}
// Load the session policy (exact matches)
for _, sp := range policy.Sessions {
insertPolicyIntoRadix(sp.Node, p.sessionRules, sp.Policy, nil)
}
// Load the session policy (prefix matches)
for _, sp := range policy.SessionPrefixes {
insertPolicyIntoRadix(sp.Node, p.sessionRules, nil, sp.Policy)
}
// Load the event policy (exact matches)
for _, ep := range policy.Events {
insertPolicyIntoRadix(ep.Event, p.eventRules, ep.Policy, nil)
}
// Load the event policy (prefix matches)
for _, ep := range policy.EventPrefixes {
insertPolicyIntoRadix(ep.Event, p.eventRules, nil, ep.Policy)
}
// Load the prepared query policy (exact matches)
for _, qp := range policy.PreparedQueries {
insertPolicyIntoRadix(qp.Prefix, p.preparedQueryRules, qp.Policy, nil)
}
// Load the prepared query policy (prefix matches)
for _, qp := range policy.PreparedQueryPrefixes {
insertPolicyIntoRadix(qp.Prefix, p.preparedQueryRules, nil, qp.Policy)
}
// Load the acl policy
p.aclRule = policy.ACL
// Load the keyring policy
p.keyringRule = policy.Keyring
// Load the operator policy
p.operatorRule = policy.Operator
return p, nil
}
// ACLRead checks if listing of ACLs is allowed
func (p *PolicyAuthorizer) ACLRead() bool {
if allow, recurse := enforce(p.aclRule, PolicyRead); !recurse {
return allow
}
return p.parent.ACLRead()
}
// ACLWrite checks if modification of ACLs is allowed
func (p *PolicyAuthorizer) ACLWrite() bool {
if allow, recurse := enforce(p.aclRule, PolicyWrite); !recurse {
return allow
}
return p.parent.ACLWrite()
}
// AgentRead checks for permission to read from agent endpoints for a given
// node.
func (p *PolicyAuthorizer) AgentRead(node string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(node, p.agentRules); ok {
if allow, recurse := enforce(rule.(string), PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.AgentRead(node)
}
// AgentWrite checks for permission to make changes via agent endpoints for a
// given node.
func (p *PolicyAuthorizer) AgentWrite(node string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(node, p.agentRules); ok {
if allow, recurse := enforce(rule.(string), PolicyWrite); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.AgentWrite(node)
}
// Snapshot checks if taking and restoring snapshots is allowed.
func (p *PolicyAuthorizer) Snapshot() bool {
if allow, recurse := enforce(p.aclRule, PolicyWrite); !recurse {
return allow
}
return p.parent.Snapshot()
}
// EventRead is used to determine if the policy allows for a
// specific user event to be read.
func (p *PolicyAuthorizer) EventRead(name string) bool {
// Longest-prefix match on event names
if rule, ok := getPolicy(name, p.eventRules); ok {
if allow, recurse := enforce(rule.(string), PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.EventRead(name)
}
// EventWrite is used to determine if new events can be created
// (fired) by the policy.
func (p *PolicyAuthorizer) EventWrite(name string) bool {
// Longest-prefix match event names
if rule, ok := getPolicy(name, p.eventRules); ok {
if allow, recurse := enforce(rule.(string), PolicyWrite); !recurse {
return allow
}
}
// No match, use parent
return p.parent.EventWrite(name)
}
// IntentionDefaultAllow returns whether the default behavior when there are
// no matching intentions is to allow or deny.
func (p *PolicyAuthorizer) IntentionDefaultAllow() bool {
// We always go up, this can't be determined by a policy.
return p.parent.IntentionDefaultAllow()
}
// IntentionRead checks if writing (creating, updating, or deleting) of an
// intention is allowed.
func (p *PolicyAuthorizer) IntentionRead(prefix string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(prefix, p.intentionRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.IntentionRead(prefix)
}
// IntentionWrite checks if writing (creating, updating, or deleting) of an
// intention is allowed.
func (p *PolicyAuthorizer) IntentionWrite(prefix string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(prefix, p.intentionRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyWrite); !recurse {
// TODO (ACL-V2) - should we do sentinel enforcement here
return allow
}
}
// No matching rule, use the parent.
return p.parent.IntentionWrite(prefix)
}
// KeyRead returns if a key is allowed to be read
func (p *PolicyAuthorizer) KeyRead(key string) bool {
// Look for a matching rule
if rule, ok := getPolicy(key, p.keyRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.KeyRead(key)
}
// KeyList returns if a key is allowed to be listed
func (p *PolicyAuthorizer) KeyList(key string) bool {
// Look for a matching rule
if rule, ok := getPolicy(key, p.keyRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyList); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.KeyList(key)
}
// KeyWrite returns if a key is allowed to be written
func (p *PolicyAuthorizer) KeyWrite(key string, scope sentinel.ScopeFn) bool {
// Look for a matching rule
if rule, ok := getPolicy(key, p.keyRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyWrite); !recurse {
if allow {
return p.executeCodePolicy(&pr.sentinelPolicy, scope)
}
return false
}
}
// No matching rule, use the parent.
return p.parent.KeyWrite(key, scope)
}
// KeyWritePrefix returns if a prefix is allowed to be written
//
// This is mainly used to detect whether a whole tree within
// the KV can be removed. For that reason we must be able to
// delete everything under the prefix. First we must have "write"
// on the prefix itself
func (p *PolicyAuthorizer) KeyWritePrefix(prefix string) bool {
// Look for a matching rule that denies
prefixAllowed := true
found := false
// Look for a prefix rule that would apply to the prefix we are checking
// WalkPath starts at the root and walks down to the given prefix.
// Therefore the last prefix rule we see is the one that matters
p.keyRules.WalkPath(prefix, func(path string, leaf interface{}) bool {
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil {
found = true
if rule.prefix.(RulePolicy).aclPolicy != PolicyWrite {
prefixAllowed = false
} else {
prefixAllowed = true
}
}
return false
})
if !prefixAllowed {
return false
}
// Look if any of our children do not allow write access. This loop takes
// into account both prefix and exact match rules.
deny := false
p.keyRules.WalkPrefix(prefix, func(path string, leaf interface{}) bool {
found = true
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil && rule.prefix.(RulePolicy).aclPolicy != PolicyWrite {
deny = true
return true
}
if rule.exact != nil && rule.exact.(RulePolicy).aclPolicy != PolicyWrite {
deny = true
return true
}
return false
})
// Deny the write if any sub-rules may be violated
if deny {
return false
}
// If we had a matching rule, done
if found {
return true
}
// No matching rule, use the parent.
return p.parent.KeyWritePrefix(prefix)
}
// KeyringRead is used to determine if the keyring can be
// read by the current ACL token.
func (p *PolicyAuthorizer) KeyringRead() bool {
if allow, recurse := enforce(p.keyringRule, PolicyRead); !recurse {
return allow
}
return p.parent.KeyringRead()
}
// KeyringWrite determines if the keyring can be manipulated.
func (p *PolicyAuthorizer) KeyringWrite() bool {
if allow, recurse := enforce(p.keyringRule, PolicyWrite); !recurse {
return allow
}
return p.parent.KeyringWrite()
}
// OperatorRead determines if the read-only operator functions are allowed.
func (p *PolicyAuthorizer) OperatorRead() bool {
if allow, recurse := enforce(p.operatorRule, PolicyRead); !recurse {
return allow
}
return p.parent.OperatorRead()
}
// OperatorWrite determines if the state-changing operator functions are
// allowed.
func (p *PolicyAuthorizer) OperatorWrite() bool {
if allow, recurse := enforce(p.operatorRule, PolicyWrite); !recurse {
return allow
}
return p.parent.OperatorWrite()
}
// NodeRead checks if reading (discovery) of a node is allowed
func (p *PolicyAuthorizer) NodeRead(name string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(name, p.nodeRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyRead); !recurse {
// TODO (ACL-V2) - Should we do sentinel enforcement here
return allow
}
}
// No matching rule, use the parent.
return p.parent.NodeRead(name)
}
// NodeWrite checks if writing (registering) a node is allowed
func (p *PolicyAuthorizer) NodeWrite(name string, scope sentinel.ScopeFn) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(name, p.nodeRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyWrite); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.NodeWrite(name, scope)
}
// PreparedQueryRead checks if reading (listing) of a prepared query is
// allowed - this isn't execution, just listing its contents.
func (p *PolicyAuthorizer) PreparedQueryRead(prefix string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(prefix, p.preparedQueryRules); ok {
if allow, recurse := enforce(rule.(string), PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.PreparedQueryRead(prefix)
}
// PreparedQueryWrite checks if writing (creating, updating, or deleting) of a
// prepared query is allowed.
func (p *PolicyAuthorizer) PreparedQueryWrite(prefix string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(prefix, p.preparedQueryRules); ok {
if allow, recurse := enforce(rule.(string), PolicyWrite); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.PreparedQueryWrite(prefix)
}
// ServiceRead checks if reading (discovery) of a service is allowed
func (p *PolicyAuthorizer) ServiceRead(name string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(name, p.serviceRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.ServiceRead(name)
}
// ServiceWrite checks if writing (registering) a service is allowed
func (p *PolicyAuthorizer) ServiceWrite(name string, scope sentinel.ScopeFn) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(name, p.serviceRules); ok {
pr := rule.(RulePolicy)
if allow, recurse := enforce(pr.aclPolicy, PolicyWrite); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.ServiceWrite(name, scope)
}
// SessionRead checks for permission to read sessions for a given node.
func (p *PolicyAuthorizer) SessionRead(node string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(node, p.sessionRules); ok {
if allow, recurse := enforce(rule.(string), PolicyRead); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.SessionRead(node)
}
// SessionWrite checks for permission to create sessions for a given node.
func (p *PolicyAuthorizer) SessionWrite(node string) bool {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(node, p.sessionRules); ok {
if allow, recurse := enforce(rule.(string), PolicyWrite); !recurse {
return allow
}
}
// No matching rule, use the parent.
return p.parent.SessionWrite(node)
}
// executeCodePolicy will run the associated code policy if code policies are
// enabled.
func (p *PolicyAuthorizer) executeCodePolicy(policy *Sentinel, scope sentinel.ScopeFn) bool {
if p.sentinel == nil {
return true
}
if policy.Code == "" || scope == nil {
return true
}
enforcement := policy.EnforcementLevel
if enforcement == "" {
enforcement = DefaultPolicyEnforcementLevel
}
return p.sentinel.Execute(policy.Code, enforcement, scope())
}