open-consul/vendor/github.com/gocql/gocql/frame.go

1958 lines
42 KiB
Go

// Copyright (c) 2012 The gocql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gocql
import (
"context"
"errors"
"fmt"
"io"
"io/ioutil"
"net"
"runtime"
"strings"
"time"
)
type unsetColumn struct{}
// UnsetValue represents a value used in a query binding that will be ignored by Cassandra.
//
// By setting a field to the unset value Cassandra will ignore the write completely.
// The main advantage is the ability to keep the same prepared statement even when you don't
// want to update some fields, where before you needed to make another prepared statement.
//
// UnsetValue is only available when using the version 4 of the protocol.
var UnsetValue = unsetColumn{}
type namedValue struct {
name string
value interface{}
}
// NamedValue produce a value which will bind to the named parameter in a query
func NamedValue(name string, value interface{}) interface{} {
return &namedValue{
name: name,
value: value,
}
}
const (
protoDirectionMask = 0x80
protoVersionMask = 0x7F
protoVersion1 = 0x01
protoVersion2 = 0x02
protoVersion3 = 0x03
protoVersion4 = 0x04
protoVersion5 = 0x05
maxFrameSize = 256 * 1024 * 1024
)
type protoVersion byte
func (p protoVersion) request() bool {
return p&protoDirectionMask == 0x00
}
func (p protoVersion) response() bool {
return p&protoDirectionMask == 0x80
}
func (p protoVersion) version() byte {
return byte(p) & protoVersionMask
}
func (p protoVersion) String() string {
dir := "REQ"
if p.response() {
dir = "RESP"
}
return fmt.Sprintf("[version=%d direction=%s]", p.version(), dir)
}
type frameOp byte
const (
// header ops
opError frameOp = 0x00
opStartup frameOp = 0x01
opReady frameOp = 0x02
opAuthenticate frameOp = 0x03
opOptions frameOp = 0x05
opSupported frameOp = 0x06
opQuery frameOp = 0x07
opResult frameOp = 0x08
opPrepare frameOp = 0x09
opExecute frameOp = 0x0A
opRegister frameOp = 0x0B
opEvent frameOp = 0x0C
opBatch frameOp = 0x0D
opAuthChallenge frameOp = 0x0E
opAuthResponse frameOp = 0x0F
opAuthSuccess frameOp = 0x10
)
func (f frameOp) String() string {
switch f {
case opError:
return "ERROR"
case opStartup:
return "STARTUP"
case opReady:
return "READY"
case opAuthenticate:
return "AUTHENTICATE"
case opOptions:
return "OPTIONS"
case opSupported:
return "SUPPORTED"
case opQuery:
return "QUERY"
case opResult:
return "RESULT"
case opPrepare:
return "PREPARE"
case opExecute:
return "EXECUTE"
case opRegister:
return "REGISTER"
case opEvent:
return "EVENT"
case opBatch:
return "BATCH"
case opAuthChallenge:
return "AUTH_CHALLENGE"
case opAuthResponse:
return "AUTH_RESPONSE"
case opAuthSuccess:
return "AUTH_SUCCESS"
default:
return fmt.Sprintf("UNKNOWN_OP_%d", f)
}
}
const (
// result kind
resultKindVoid = 1
resultKindRows = 2
resultKindKeyspace = 3
resultKindPrepared = 4
resultKindSchemaChanged = 5
// rows flags
flagGlobalTableSpec int = 0x01
flagHasMorePages int = 0x02
flagNoMetaData int = 0x04
// query flags
flagValues byte = 0x01
flagSkipMetaData byte = 0x02
flagPageSize byte = 0x04
flagWithPagingState byte = 0x08
flagWithSerialConsistency byte = 0x10
flagDefaultTimestamp byte = 0x20
flagWithNameValues byte = 0x40
// header flags
flagCompress byte = 0x01
flagTracing byte = 0x02
flagCustomPayload byte = 0x04
flagWarning byte = 0x08
)
type Consistency uint16
const (
Any Consistency = 0x00
One Consistency = 0x01
Two Consistency = 0x02
Three Consistency = 0x03
Quorum Consistency = 0x04
All Consistency = 0x05
LocalQuorum Consistency = 0x06
EachQuorum Consistency = 0x07
LocalOne Consistency = 0x0A
)
func (c Consistency) String() string {
switch c {
case Any:
return "ANY"
case One:
return "ONE"
case Two:
return "TWO"
case Three:
return "THREE"
case Quorum:
return "QUORUM"
case All:
return "ALL"
case LocalQuorum:
return "LOCAL_QUORUM"
case EachQuorum:
return "EACH_QUORUM"
case LocalOne:
return "LOCAL_ONE"
default:
return fmt.Sprintf("UNKNOWN_CONS_0x%x", uint16(c))
}
}
func (c Consistency) MarshalText() (text []byte, err error) {
return []byte(c.String()), nil
}
func (c *Consistency) UnmarshalText(text []byte) error {
switch string(text) {
case "ANY":
*c = Any
case "ONE":
*c = One
case "TWO":
*c = Two
case "THREE":
*c = Three
case "QUORUM":
*c = Quorum
case "ALL":
*c = All
case "LOCAL_QUORUM":
*c = LocalQuorum
case "EACH_QUORUM":
*c = EachQuorum
case "LOCAL_ONE":
*c = LocalOne
default:
return fmt.Errorf("invalid consistency %q", string(text))
}
return nil
}
func ParseConsistency(s string) Consistency {
var c Consistency
if err := c.UnmarshalText([]byte(strings.ToUpper(s))); err != nil {
panic(err)
}
return c
}
// ParseConsistencyWrapper wraps gocql.ParseConsistency to provide an err
// return instead of a panic
func ParseConsistencyWrapper(s string) (consistency Consistency, err error) {
err = consistency.UnmarshalText([]byte(strings.ToUpper(s)))
return
}
// MustParseConsistency is the same as ParseConsistency except it returns
// an error (never). It is kept here since breaking changes are not good.
// DEPRECATED: use ParseConsistency if you want a panic on parse error.
func MustParseConsistency(s string) (Consistency, error) {
c, err := ParseConsistencyWrapper(s)
if err != nil {
panic(err)
}
return c, nil
}
type SerialConsistency uint16
const (
Serial SerialConsistency = 0x08
LocalSerial SerialConsistency = 0x09
)
func (s SerialConsistency) String() string {
switch s {
case Serial:
return "SERIAL"
case LocalSerial:
return "LOCAL_SERIAL"
default:
return fmt.Sprintf("UNKNOWN_SERIAL_CONS_0x%x", uint16(s))
}
}
func (s SerialConsistency) MarshalText() (text []byte, err error) {
return []byte(s.String()), nil
}
func (s *SerialConsistency) UnmarshalText(text []byte) error {
switch string(text) {
case "SERIAL":
*s = Serial
case "LOCAL_SERIAL":
*s = LocalSerial
default:
return fmt.Errorf("invalid consistency %q", string(text))
}
return nil
}
const (
apacheCassandraTypePrefix = "org.apache.cassandra.db.marshal."
)
var (
ErrFrameTooBig = errors.New("frame length is bigger than the maximum allowed")
)
const maxFrameHeaderSize = 9
func writeInt(p []byte, n int32) {
p[0] = byte(n >> 24)
p[1] = byte(n >> 16)
p[2] = byte(n >> 8)
p[3] = byte(n)
}
func readInt(p []byte) int32 {
return int32(p[0])<<24 | int32(p[1])<<16 | int32(p[2])<<8 | int32(p[3])
}
func writeShort(p []byte, n uint16) {
p[0] = byte(n >> 8)
p[1] = byte(n)
}
func readShort(p []byte) uint16 {
return uint16(p[0])<<8 | uint16(p[1])
}
type frameHeader struct {
version protoVersion
flags byte
stream int
op frameOp
length int
customPayload map[string][]byte
warnings []string
}
func (f frameHeader) String() string {
return fmt.Sprintf("[header version=%s flags=0x%x stream=%d op=%s length=%d]", f.version, f.flags, f.stream, f.op, f.length)
}
func (f frameHeader) Header() frameHeader {
return f
}
const defaultBufSize = 128
type ObservedFrameHeader struct {
Version byte
Flags byte
Stream int16
Opcode byte
Length int32
// StartHeader is the time we started reading the frame header off the network connection.
Start time.Time
// EndHeader is the time we finished reading the frame header off the network connection.
End time.Time
}
// FrameHeaderObserver is the interface implemented by frame observers / stat collectors.
//
// Experimental, this interface and use may change
type FrameHeaderObserver interface {
// ObserveFrameHeader gets called on every received frame header.
ObserveFrameHeader(context.Context, ObservedFrameHeader)
}
// a framer is responsible for reading, writing and parsing frames on a single stream
type framer struct {
r io.Reader
w io.Writer
proto byte
// flags are for outgoing flags, enabling compression and tracing etc
flags byte
compres Compressor
headSize int
// if this frame was read then the header will be here
header *frameHeader
// if tracing flag is set this is not nil
traceID []byte
// holds a ref to the whole byte slice for rbuf so that it can be reset to
// 0 after a read.
readBuffer []byte
rbuf []byte
wbuf []byte
}
func newFramer(r io.Reader, w io.Writer, compressor Compressor, version byte) *framer {
f := &framer{
wbuf: make([]byte, defaultBufSize),
readBuffer: make([]byte, defaultBufSize),
}
var flags byte
if compressor != nil {
flags |= flagCompress
}
version &= protoVersionMask
headSize := 8
if version > protoVersion2 {
headSize = 9
}
f.compres = compressor
f.proto = version
f.flags = flags
f.headSize = headSize
f.r = r
f.rbuf = f.readBuffer[:0]
f.w = w
f.wbuf = f.wbuf[:0]
f.header = nil
f.traceID = nil
return f
}
type frame interface {
Header() frameHeader
}
func readHeader(r io.Reader, p []byte) (head frameHeader, err error) {
_, err = io.ReadFull(r, p[:1])
if err != nil {
return frameHeader{}, err
}
version := p[0] & protoVersionMask
if version < protoVersion1 || version > protoVersion4 {
return frameHeader{}, fmt.Errorf("gocql: unsupported protocol response version: %d", version)
}
headSize := 9
if version < protoVersion3 {
headSize = 8
}
_, err = io.ReadFull(r, p[1:headSize])
if err != nil {
return frameHeader{}, err
}
p = p[:headSize]
head.version = protoVersion(p[0])
head.flags = p[1]
if version > protoVersion2 {
if len(p) != 9 {
return frameHeader{}, fmt.Errorf("not enough bytes to read header require 9 got: %d", len(p))
}
head.stream = int(int16(p[2])<<8 | int16(p[3]))
head.op = frameOp(p[4])
head.length = int(readInt(p[5:]))
} else {
if len(p) != 8 {
return frameHeader{}, fmt.Errorf("not enough bytes to read header require 8 got: %d", len(p))
}
head.stream = int(int8(p[2]))
head.op = frameOp(p[3])
head.length = int(readInt(p[4:]))
}
return head, nil
}
// explicitly enables tracing for the framers outgoing requests
func (f *framer) trace() {
f.flags |= flagTracing
}
// reads a frame form the wire into the framers buffer
func (f *framer) readFrame(head *frameHeader) error {
if head.length < 0 {
return fmt.Errorf("frame body length can not be less than 0: %d", head.length)
} else if head.length > maxFrameSize {
// need to free up the connection to be used again
_, err := io.CopyN(ioutil.Discard, f.r, int64(head.length))
if err != nil {
return fmt.Errorf("error whilst trying to discard frame with invalid length: %v", err)
}
return ErrFrameTooBig
}
if cap(f.readBuffer) >= head.length {
f.rbuf = f.readBuffer[:head.length]
} else {
f.readBuffer = make([]byte, head.length)
f.rbuf = f.readBuffer
}
// assume the underlying reader takes care of timeouts and retries
n, err := io.ReadFull(f.r, f.rbuf)
if err != nil {
return fmt.Errorf("unable to read frame body: read %d/%d bytes: %v", n, head.length, err)
}
if head.flags&flagCompress == flagCompress {
if f.compres == nil {
return NewErrProtocol("no compressor available with compressed frame body")
}
f.rbuf, err = f.compres.Decode(f.rbuf)
if err != nil {
return err
}
}
f.header = head
return nil
}
func (f *framer) parseFrame() (frame frame, err error) {
defer func() {
if r := recover(); r != nil {
if _, ok := r.(runtime.Error); ok {
panic(r)
}
err = r.(error)
}
}()
if f.header.version.request() {
return nil, NewErrProtocol("got a request frame from server: %v", f.header.version)
}
if f.header.flags&flagTracing == flagTracing {
f.readTrace()
}
if f.header.flags&flagWarning == flagWarning {
f.header.warnings = f.readStringList()
}
if f.header.flags&flagCustomPayload == flagCustomPayload {
f.header.customPayload = f.readBytesMap()
}
// assumes that the frame body has been read into rbuf
switch f.header.op {
case opError:
frame = f.parseErrorFrame()
case opReady:
frame = f.parseReadyFrame()
case opResult:
frame, err = f.parseResultFrame()
case opSupported:
frame = f.parseSupportedFrame()
case opAuthenticate:
frame = f.parseAuthenticateFrame()
case opAuthChallenge:
frame = f.parseAuthChallengeFrame()
case opAuthSuccess:
frame = f.parseAuthSuccessFrame()
case opEvent:
frame = f.parseEventFrame()
default:
return nil, NewErrProtocol("unknown op in frame header: %s", f.header.op)
}
return
}
func (f *framer) parseErrorFrame() frame {
code := f.readInt()
msg := f.readString()
errD := errorFrame{
frameHeader: *f.header,
code: code,
message: msg,
}
switch code {
case errUnavailable:
cl := f.readConsistency()
required := f.readInt()
alive := f.readInt()
return &RequestErrUnavailable{
errorFrame: errD,
Consistency: cl,
Required: required,
Alive: alive,
}
case errWriteTimeout:
cl := f.readConsistency()
received := f.readInt()
blockfor := f.readInt()
writeType := f.readString()
return &RequestErrWriteTimeout{
errorFrame: errD,
Consistency: cl,
Received: received,
BlockFor: blockfor,
WriteType: writeType,
}
case errReadTimeout:
cl := f.readConsistency()
received := f.readInt()
blockfor := f.readInt()
dataPresent := f.readByte()
return &RequestErrReadTimeout{
errorFrame: errD,
Consistency: cl,
Received: received,
BlockFor: blockfor,
DataPresent: dataPresent,
}
case errAlreadyExists:
ks := f.readString()
table := f.readString()
return &RequestErrAlreadyExists{
errorFrame: errD,
Keyspace: ks,
Table: table,
}
case errUnprepared:
stmtId := f.readShortBytes()
return &RequestErrUnprepared{
errorFrame: errD,
StatementId: copyBytes(stmtId), // defensively copy
}
case errReadFailure:
res := &RequestErrReadFailure{
errorFrame: errD,
}
res.Consistency = f.readConsistency()
res.Received = f.readInt()
res.BlockFor = f.readInt()
res.DataPresent = f.readByte() != 0
return res
case errWriteFailure:
res := &RequestErrWriteFailure{
errorFrame: errD,
}
res.Consistency = f.readConsistency()
res.Received = f.readInt()
res.BlockFor = f.readInt()
res.NumFailures = f.readInt()
res.WriteType = f.readString()
return res
case errFunctionFailure:
res := RequestErrFunctionFailure{
errorFrame: errD,
}
res.Keyspace = f.readString()
res.Function = f.readString()
res.ArgTypes = f.readStringList()
return res
case errInvalid, errBootstrapping, errConfig, errCredentials, errOverloaded,
errProtocol, errServer, errSyntax, errTruncate, errUnauthorized:
// TODO(zariel): we should have some distinct types for these errors
return errD
default:
panic(fmt.Errorf("unknown error code: 0x%x", errD.code))
}
}
func (f *framer) writeHeader(flags byte, op frameOp, stream int) {
f.wbuf = f.wbuf[:0]
f.wbuf = append(f.wbuf,
f.proto,
flags,
)
if f.proto > protoVersion2 {
f.wbuf = append(f.wbuf,
byte(stream>>8),
byte(stream),
)
} else {
f.wbuf = append(f.wbuf,
byte(stream),
)
}
// pad out length
f.wbuf = append(f.wbuf,
byte(op),
0,
0,
0,
0,
)
}
func (f *framer) setLength(length int) {
p := 4
if f.proto > protoVersion2 {
p = 5
}
f.wbuf[p+0] = byte(length >> 24)
f.wbuf[p+1] = byte(length >> 16)
f.wbuf[p+2] = byte(length >> 8)
f.wbuf[p+3] = byte(length)
}
func (f *framer) finishWrite() error {
if len(f.wbuf) > maxFrameSize {
// huge app frame, lets remove it so it doesn't bloat the heap
f.wbuf = make([]byte, defaultBufSize)
return ErrFrameTooBig
}
if f.wbuf[1]&flagCompress == flagCompress {
if f.compres == nil {
panic("compress flag set with no compressor")
}
// TODO: only compress frames which are big enough
compressed, err := f.compres.Encode(f.wbuf[f.headSize:])
if err != nil {
return err
}
f.wbuf = append(f.wbuf[:f.headSize], compressed...)
}
length := len(f.wbuf) - f.headSize
f.setLength(length)
_, err := f.w.Write(f.wbuf)
if err != nil {
return err
}
return nil
}
func (f *framer) readTrace() {
f.traceID = f.readUUID().Bytes()
}
type readyFrame struct {
frameHeader
}
func (f *framer) parseReadyFrame() frame {
return &readyFrame{
frameHeader: *f.header,
}
}
type supportedFrame struct {
frameHeader
supported map[string][]string
}
// TODO: if we move the body buffer onto the frameHeader then we only need a single
// framer, and can move the methods onto the header.
func (f *framer) parseSupportedFrame() frame {
return &supportedFrame{
frameHeader: *f.header,
supported: f.readStringMultiMap(),
}
}
type writeStartupFrame struct {
opts map[string]string
}
func (w writeStartupFrame) String() string {
return fmt.Sprintf("[startup opts=%+v]", w.opts)
}
func (w *writeStartupFrame) writeFrame(f *framer, streamID int) error {
f.writeHeader(f.flags&^flagCompress, opStartup, streamID)
f.writeStringMap(w.opts)
return f.finishWrite()
}
type writePrepareFrame struct {
statement string
}
func (w *writePrepareFrame) writeFrame(f *framer, streamID int) error {
f.writeHeader(f.flags, opPrepare, streamID)
f.writeLongString(w.statement)
return f.finishWrite()
}
func (f *framer) readTypeInfo() TypeInfo {
// TODO: factor this out so the same code paths can be used to parse custom
// types and other types, as much of the logic will be duplicated.
id := f.readShort()
simple := NativeType{
proto: f.proto,
typ: Type(id),
}
if simple.typ == TypeCustom {
simple.custom = f.readString()
if cassType := getApacheCassandraType(simple.custom); cassType != TypeCustom {
simple.typ = cassType
}
}
switch simple.typ {
case TypeTuple:
n := f.readShort()
tuple := TupleTypeInfo{
NativeType: simple,
Elems: make([]TypeInfo, n),
}
for i := 0; i < int(n); i++ {
tuple.Elems[i] = f.readTypeInfo()
}
return tuple
case TypeUDT:
udt := UDTTypeInfo{
NativeType: simple,
}
udt.KeySpace = f.readString()
udt.Name = f.readString()
n := f.readShort()
udt.Elements = make([]UDTField, n)
for i := 0; i < int(n); i++ {
field := &udt.Elements[i]
field.Name = f.readString()
field.Type = f.readTypeInfo()
}
return udt
case TypeMap, TypeList, TypeSet:
collection := CollectionType{
NativeType: simple,
}
if simple.typ == TypeMap {
collection.Key = f.readTypeInfo()
}
collection.Elem = f.readTypeInfo()
return collection
}
return simple
}
type preparedMetadata struct {
resultMetadata
// proto v4+
pkeyColumns []int
}
func (r preparedMetadata) String() string {
return fmt.Sprintf("[prepared flags=0x%x pkey=%v paging_state=% X columns=%v col_count=%d actual_col_count=%d]", r.flags, r.pkeyColumns, r.pagingState, r.columns, r.colCount, r.actualColCount)
}
func (f *framer) parsePreparedMetadata() preparedMetadata {
// TODO: deduplicate this from parseMetadata
meta := preparedMetadata{}
meta.flags = f.readInt()
meta.colCount = f.readInt()
if meta.colCount < 0 {
panic(fmt.Errorf("received negative column count: %d", meta.colCount))
}
meta.actualColCount = meta.colCount
if f.proto >= protoVersion4 {
pkeyCount := f.readInt()
pkeys := make([]int, pkeyCount)
for i := 0; i < pkeyCount; i++ {
pkeys[i] = int(f.readShort())
}
meta.pkeyColumns = pkeys
}
if meta.flags&flagHasMorePages == flagHasMorePages {
meta.pagingState = copyBytes(f.readBytes())
}
if meta.flags&flagNoMetaData == flagNoMetaData {
return meta
}
var keyspace, table string
globalSpec := meta.flags&flagGlobalTableSpec == flagGlobalTableSpec
if globalSpec {
keyspace = f.readString()
table = f.readString()
}
var cols []ColumnInfo
if meta.colCount < 1000 {
// preallocate columninfo to avoid excess copying
cols = make([]ColumnInfo, meta.colCount)
for i := 0; i < meta.colCount; i++ {
f.readCol(&cols[i], &meta.resultMetadata, globalSpec, keyspace, table)
}
} else {
// use append, huge number of columns usually indicates a corrupt frame or
// just a huge row.
for i := 0; i < meta.colCount; i++ {
var col ColumnInfo
f.readCol(&col, &meta.resultMetadata, globalSpec, keyspace, table)
cols = append(cols, col)
}
}
meta.columns = cols
return meta
}
type resultMetadata struct {
flags int
// only if flagPageState
pagingState []byte
columns []ColumnInfo
colCount int
// this is a count of the total number of columns which can be scanned,
// it is at minimum len(columns) but may be larger, for instance when a column
// is a UDT or tuple.
actualColCount int
}
func (r resultMetadata) String() string {
return fmt.Sprintf("[metadata flags=0x%x paging_state=% X columns=%v]", r.flags, r.pagingState, r.columns)
}
func (f *framer) readCol(col *ColumnInfo, meta *resultMetadata, globalSpec bool, keyspace, table string) {
if !globalSpec {
col.Keyspace = f.readString()
col.Table = f.readString()
} else {
col.Keyspace = keyspace
col.Table = table
}
col.Name = f.readString()
col.TypeInfo = f.readTypeInfo()
switch v := col.TypeInfo.(type) {
// maybe also UDT
case TupleTypeInfo:
// -1 because we already included the tuple column
meta.actualColCount += len(v.Elems) - 1
}
}
func (f *framer) parseResultMetadata() resultMetadata {
var meta resultMetadata
meta.flags = f.readInt()
meta.colCount = f.readInt()
if meta.colCount < 0 {
panic(fmt.Errorf("received negative column count: %d", meta.colCount))
}
meta.actualColCount = meta.colCount
if meta.flags&flagHasMorePages == flagHasMorePages {
meta.pagingState = copyBytes(f.readBytes())
}
if meta.flags&flagNoMetaData == flagNoMetaData {
return meta
}
var keyspace, table string
globalSpec := meta.flags&flagGlobalTableSpec == flagGlobalTableSpec
if globalSpec {
keyspace = f.readString()
table = f.readString()
}
var cols []ColumnInfo
if meta.colCount < 1000 {
// preallocate columninfo to avoid excess copying
cols = make([]ColumnInfo, meta.colCount)
for i := 0; i < meta.colCount; i++ {
f.readCol(&cols[i], &meta, globalSpec, keyspace, table)
}
} else {
// use append, huge number of columns usually indicates a corrupt frame or
// just a huge row.
for i := 0; i < meta.colCount; i++ {
var col ColumnInfo
f.readCol(&col, &meta, globalSpec, keyspace, table)
cols = append(cols, col)
}
}
meta.columns = cols
return meta
}
type resultVoidFrame struct {
frameHeader
}
func (f *resultVoidFrame) String() string {
return "[result_void]"
}
func (f *framer) parseResultFrame() (frame, error) {
kind := f.readInt()
switch kind {
case resultKindVoid:
return &resultVoidFrame{frameHeader: *f.header}, nil
case resultKindRows:
return f.parseResultRows(), nil
case resultKindKeyspace:
return f.parseResultSetKeyspace(), nil
case resultKindPrepared:
return f.parseResultPrepared(), nil
case resultKindSchemaChanged:
return f.parseResultSchemaChange(), nil
}
return nil, NewErrProtocol("unknown result kind: %x", kind)
}
type resultRowsFrame struct {
frameHeader
meta resultMetadata
// dont parse the rows here as we only need to do it once
numRows int
}
func (f *resultRowsFrame) String() string {
return fmt.Sprintf("[result_rows meta=%v]", f.meta)
}
func (f *framer) parseResultRows() frame {
result := &resultRowsFrame{}
result.meta = f.parseResultMetadata()
result.numRows = f.readInt()
if result.numRows < 0 {
panic(fmt.Errorf("invalid row_count in result frame: %d", result.numRows))
}
return result
}
type resultKeyspaceFrame struct {
frameHeader
keyspace string
}
func (r *resultKeyspaceFrame) String() string {
return fmt.Sprintf("[result_keyspace keyspace=%s]", r.keyspace)
}
func (f *framer) parseResultSetKeyspace() frame {
return &resultKeyspaceFrame{
frameHeader: *f.header,
keyspace: f.readString(),
}
}
type resultPreparedFrame struct {
frameHeader
preparedID []byte
reqMeta preparedMetadata
respMeta resultMetadata
}
func (f *framer) parseResultPrepared() frame {
frame := &resultPreparedFrame{
frameHeader: *f.header,
preparedID: f.readShortBytes(),
reqMeta: f.parsePreparedMetadata(),
}
if f.proto < protoVersion2 {
return frame
}
frame.respMeta = f.parseResultMetadata()
return frame
}
type schemaChangeKeyspace struct {
frameHeader
change string
keyspace string
}
func (f schemaChangeKeyspace) String() string {
return fmt.Sprintf("[event schema_change_keyspace change=%q keyspace=%q]", f.change, f.keyspace)
}
type schemaChangeTable struct {
frameHeader
change string
keyspace string
object string
}
func (f schemaChangeTable) String() string {
return fmt.Sprintf("[event schema_change change=%q keyspace=%q object=%q]", f.change, f.keyspace, f.object)
}
type schemaChangeType struct {
frameHeader
change string
keyspace string
object string
}
type schemaChangeFunction struct {
frameHeader
change string
keyspace string
name string
args []string
}
type schemaChangeAggregate struct {
frameHeader
change string
keyspace string
name string
args []string
}
func (f *framer) parseResultSchemaChange() frame {
if f.proto <= protoVersion2 {
change := f.readString()
keyspace := f.readString()
table := f.readString()
if table != "" {
return &schemaChangeTable{
frameHeader: *f.header,
change: change,
keyspace: keyspace,
object: table,
}
} else {
return &schemaChangeKeyspace{
frameHeader: *f.header,
change: change,
keyspace: keyspace,
}
}
} else {
change := f.readString()
target := f.readString()
// TODO: could just use a separate type for each target
switch target {
case "KEYSPACE":
frame := &schemaChangeKeyspace{
frameHeader: *f.header,
change: change,
}
frame.keyspace = f.readString()
return frame
case "TABLE":
frame := &schemaChangeTable{
frameHeader: *f.header,
change: change,
}
frame.keyspace = f.readString()
frame.object = f.readString()
return frame
case "TYPE":
frame := &schemaChangeType{
frameHeader: *f.header,
change: change,
}
frame.keyspace = f.readString()
frame.object = f.readString()
return frame
case "FUNCTION":
frame := &schemaChangeFunction{
frameHeader: *f.header,
change: change,
}
frame.keyspace = f.readString()
frame.name = f.readString()
frame.args = f.readStringList()
return frame
case "AGGREGATE":
frame := &schemaChangeAggregate{
frameHeader: *f.header,
change: change,
}
frame.keyspace = f.readString()
frame.name = f.readString()
frame.args = f.readStringList()
return frame
default:
panic(fmt.Errorf("gocql: unknown SCHEMA_CHANGE target: %q change: %q", target, change))
}
}
}
type authenticateFrame struct {
frameHeader
class string
}
func (a *authenticateFrame) String() string {
return fmt.Sprintf("[authenticate class=%q]", a.class)
}
func (f *framer) parseAuthenticateFrame() frame {
return &authenticateFrame{
frameHeader: *f.header,
class: f.readString(),
}
}
type authSuccessFrame struct {
frameHeader
data []byte
}
func (a *authSuccessFrame) String() string {
return fmt.Sprintf("[auth_success data=%q]", a.data)
}
func (f *framer) parseAuthSuccessFrame() frame {
return &authSuccessFrame{
frameHeader: *f.header,
data: f.readBytes(),
}
}
type authChallengeFrame struct {
frameHeader
data []byte
}
func (a *authChallengeFrame) String() string {
return fmt.Sprintf("[auth_challenge data=%q]", a.data)
}
func (f *framer) parseAuthChallengeFrame() frame {
return &authChallengeFrame{
frameHeader: *f.header,
data: f.readBytes(),
}
}
type statusChangeEventFrame struct {
frameHeader
change string
host net.IP
port int
}
func (t statusChangeEventFrame) String() string {
return fmt.Sprintf("[status_change change=%s host=%v port=%v]", t.change, t.host, t.port)
}
// essentially the same as statusChange
type topologyChangeEventFrame struct {
frameHeader
change string
host net.IP
port int
}
func (t topologyChangeEventFrame) String() string {
return fmt.Sprintf("[topology_change change=%s host=%v port=%v]", t.change, t.host, t.port)
}
func (f *framer) parseEventFrame() frame {
eventType := f.readString()
switch eventType {
case "TOPOLOGY_CHANGE":
frame := &topologyChangeEventFrame{frameHeader: *f.header}
frame.change = f.readString()
frame.host, frame.port = f.readInet()
return frame
case "STATUS_CHANGE":
frame := &statusChangeEventFrame{frameHeader: *f.header}
frame.change = f.readString()
frame.host, frame.port = f.readInet()
return frame
case "SCHEMA_CHANGE":
// this should work for all versions
return f.parseResultSchemaChange()
default:
panic(fmt.Errorf("gocql: unknown event type: %q", eventType))
}
}
type writeAuthResponseFrame struct {
data []byte
}
func (a *writeAuthResponseFrame) String() string {
return fmt.Sprintf("[auth_response data=%q]", a.data)
}
func (a *writeAuthResponseFrame) writeFrame(framer *framer, streamID int) error {
return framer.writeAuthResponseFrame(streamID, a.data)
}
func (f *framer) writeAuthResponseFrame(streamID int, data []byte) error {
f.writeHeader(f.flags, opAuthResponse, streamID)
f.writeBytes(data)
return f.finishWrite()
}
type queryValues struct {
value []byte
// optional name, will set With names for values flag
name string
isUnset bool
}
type queryParams struct {
consistency Consistency
// v2+
skipMeta bool
values []queryValues
pageSize int
pagingState []byte
serialConsistency SerialConsistency
// v3+
defaultTimestamp bool
defaultTimestampValue int64
}
func (q queryParams) String() string {
return fmt.Sprintf("[query_params consistency=%v skip_meta=%v page_size=%d paging_state=%q serial_consistency=%v default_timestamp=%v values=%v]",
q.consistency, q.skipMeta, q.pageSize, q.pagingState, q.serialConsistency, q.defaultTimestamp, q.values)
}
func (f *framer) writeQueryParams(opts *queryParams) {
f.writeConsistency(opts.consistency)
if f.proto == protoVersion1 {
return
}
var flags byte
if len(opts.values) > 0 {
flags |= flagValues
}
if opts.skipMeta {
flags |= flagSkipMetaData
}
if opts.pageSize > 0 {
flags |= flagPageSize
}
if len(opts.pagingState) > 0 {
flags |= flagWithPagingState
}
if opts.serialConsistency > 0 {
flags |= flagWithSerialConsistency
}
names := false
// protoV3 specific things
if f.proto > protoVersion2 {
if opts.defaultTimestamp {
flags |= flagDefaultTimestamp
}
if len(opts.values) > 0 && opts.values[0].name != "" {
flags |= flagWithNameValues
names = true
}
}
f.writeByte(flags)
if n := len(opts.values); n > 0 {
f.writeShort(uint16(n))
for i := 0; i < n; i++ {
if names {
f.writeString(opts.values[i].name)
}
if opts.values[i].isUnset {
f.writeUnset()
} else {
f.writeBytes(opts.values[i].value)
}
}
}
if opts.pageSize > 0 {
f.writeInt(int32(opts.pageSize))
}
if len(opts.pagingState) > 0 {
f.writeBytes(opts.pagingState)
}
if opts.serialConsistency > 0 {
f.writeConsistency(Consistency(opts.serialConsistency))
}
if f.proto > protoVersion2 && opts.defaultTimestamp {
// timestamp in microseconds
var ts int64
if opts.defaultTimestampValue != 0 {
ts = opts.defaultTimestampValue
} else {
ts = time.Now().UnixNano() / 1000
}
f.writeLong(ts)
}
}
type writeQueryFrame struct {
statement string
params queryParams
}
func (w *writeQueryFrame) String() string {
return fmt.Sprintf("[query statement=%q params=%v]", w.statement, w.params)
}
func (w *writeQueryFrame) writeFrame(framer *framer, streamID int) error {
return framer.writeQueryFrame(streamID, w.statement, &w.params)
}
func (f *framer) writeQueryFrame(streamID int, statement string, params *queryParams) error {
f.writeHeader(f.flags, opQuery, streamID)
f.writeLongString(statement)
f.writeQueryParams(params)
return f.finishWrite()
}
type frameWriter interface {
writeFrame(framer *framer, streamID int) error
}
type frameWriterFunc func(framer *framer, streamID int) error
func (f frameWriterFunc) writeFrame(framer *framer, streamID int) error {
return f(framer, streamID)
}
type writeExecuteFrame struct {
preparedID []byte
params queryParams
}
func (e *writeExecuteFrame) String() string {
return fmt.Sprintf("[execute id=% X params=%v]", e.preparedID, &e.params)
}
func (e *writeExecuteFrame) writeFrame(fr *framer, streamID int) error {
return fr.writeExecuteFrame(streamID, e.preparedID, &e.params)
}
func (f *framer) writeExecuteFrame(streamID int, preparedID []byte, params *queryParams) error {
f.writeHeader(f.flags, opExecute, streamID)
f.writeShortBytes(preparedID)
if f.proto > protoVersion1 {
f.writeQueryParams(params)
} else {
n := len(params.values)
f.writeShort(uint16(n))
for i := 0; i < n; i++ {
if params.values[i].isUnset {
f.writeUnset()
} else {
f.writeBytes(params.values[i].value)
}
}
f.writeConsistency(params.consistency)
}
return f.finishWrite()
}
// TODO: can we replace BatchStatemt with batchStatement? As they prety much
// duplicate each other
type batchStatment struct {
preparedID []byte
statement string
values []queryValues
}
type writeBatchFrame struct {
typ BatchType
statements []batchStatment
consistency Consistency
// v3+
serialConsistency SerialConsistency
defaultTimestamp bool
defaultTimestampValue int64
}
func (w *writeBatchFrame) writeFrame(framer *framer, streamID int) error {
return framer.writeBatchFrame(streamID, w)
}
func (f *framer) writeBatchFrame(streamID int, w *writeBatchFrame) error {
f.writeHeader(f.flags, opBatch, streamID)
f.writeByte(byte(w.typ))
n := len(w.statements)
f.writeShort(uint16(n))
var flags byte
for i := 0; i < n; i++ {
b := &w.statements[i]
if len(b.preparedID) == 0 {
f.writeByte(0)
f.writeLongString(b.statement)
} else {
f.writeByte(1)
f.writeShortBytes(b.preparedID)
}
f.writeShort(uint16(len(b.values)))
for j := range b.values {
col := b.values[j]
if f.proto > protoVersion2 && col.name != "" {
// TODO: move this check into the caller and set a flag on writeBatchFrame
// to indicate using named values
if f.proto <= protoVersion5 {
return fmt.Errorf("gocql: named query values are not supported in batches, please see https://issues.apache.org/jira/browse/CASSANDRA-10246")
}
flags |= flagWithNameValues
f.writeString(col.name)
}
if col.isUnset {
f.writeUnset()
} else {
f.writeBytes(col.value)
}
}
}
f.writeConsistency(w.consistency)
if f.proto > protoVersion2 {
if w.serialConsistency > 0 {
flags |= flagWithSerialConsistency
}
if w.defaultTimestamp {
flags |= flagDefaultTimestamp
}
f.writeByte(flags)
if w.serialConsistency > 0 {
f.writeConsistency(Consistency(w.serialConsistency))
}
if w.defaultTimestamp {
var ts int64
if w.defaultTimestampValue != 0 {
ts = w.defaultTimestampValue
} else {
ts = time.Now().UnixNano() / 1000
}
f.writeLong(ts)
}
}
return f.finishWrite()
}
type writeOptionsFrame struct{}
func (w *writeOptionsFrame) writeFrame(framer *framer, streamID int) error {
return framer.writeOptionsFrame(streamID, w)
}
func (f *framer) writeOptionsFrame(stream int, _ *writeOptionsFrame) error {
f.writeHeader(f.flags, opOptions, stream)
return f.finishWrite()
}
type writeRegisterFrame struct {
events []string
}
func (w *writeRegisterFrame) writeFrame(framer *framer, streamID int) error {
return framer.writeRegisterFrame(streamID, w)
}
func (f *framer) writeRegisterFrame(streamID int, w *writeRegisterFrame) error {
f.writeHeader(f.flags, opRegister, streamID)
f.writeStringList(w.events)
return f.finishWrite()
}
func (f *framer) readByte() byte {
if len(f.rbuf) < 1 {
panic(fmt.Errorf("not enough bytes in buffer to read byte require 1 got: %d", len(f.rbuf)))
}
b := f.rbuf[0]
f.rbuf = f.rbuf[1:]
return b
}
func (f *framer) readInt() (n int) {
if len(f.rbuf) < 4 {
panic(fmt.Errorf("not enough bytes in buffer to read int require 4 got: %d", len(f.rbuf)))
}
n = int(int32(f.rbuf[0])<<24 | int32(f.rbuf[1])<<16 | int32(f.rbuf[2])<<8 | int32(f.rbuf[3]))
f.rbuf = f.rbuf[4:]
return
}
func (f *framer) readShort() (n uint16) {
if len(f.rbuf) < 2 {
panic(fmt.Errorf("not enough bytes in buffer to read short require 2 got: %d", len(f.rbuf)))
}
n = uint16(f.rbuf[0])<<8 | uint16(f.rbuf[1])
f.rbuf = f.rbuf[2:]
return
}
func (f *framer) readLong() (n int64) {
if len(f.rbuf) < 8 {
panic(fmt.Errorf("not enough bytes in buffer to read long require 8 got: %d", len(f.rbuf)))
}
n = int64(f.rbuf[0])<<56 | int64(f.rbuf[1])<<48 | int64(f.rbuf[2])<<40 | int64(f.rbuf[3])<<32 |
int64(f.rbuf[4])<<24 | int64(f.rbuf[5])<<16 | int64(f.rbuf[6])<<8 | int64(f.rbuf[7])
f.rbuf = f.rbuf[8:]
return
}
func (f *framer) readString() (s string) {
size := f.readShort()
if len(f.rbuf) < int(size) {
panic(fmt.Errorf("not enough bytes in buffer to read string require %d got: %d", size, len(f.rbuf)))
}
s = string(f.rbuf[:size])
f.rbuf = f.rbuf[size:]
return
}
func (f *framer) readLongString() (s string) {
size := f.readInt()
if len(f.rbuf) < size {
panic(fmt.Errorf("not enough bytes in buffer to read long string require %d got: %d", size, len(f.rbuf)))
}
s = string(f.rbuf[:size])
f.rbuf = f.rbuf[size:]
return
}
func (f *framer) readUUID() *UUID {
if len(f.rbuf) < 16 {
panic(fmt.Errorf("not enough bytes in buffer to read uuid require %d got: %d", 16, len(f.rbuf)))
}
// TODO: how to handle this error, if it is a uuid, then sureley, problems?
u, _ := UUIDFromBytes(f.rbuf[:16])
f.rbuf = f.rbuf[16:]
return &u
}
func (f *framer) readStringList() []string {
size := f.readShort()
l := make([]string, size)
for i := 0; i < int(size); i++ {
l[i] = f.readString()
}
return l
}
func (f *framer) readBytesInternal() ([]byte, error) {
size := f.readInt()
if size < 0 {
return nil, nil
}
if len(f.rbuf) < size {
return nil, fmt.Errorf("not enough bytes in buffer to read bytes require %d got: %d", size, len(f.rbuf))
}
l := f.rbuf[:size]
f.rbuf = f.rbuf[size:]
return l, nil
}
func (f *framer) readBytes() []byte {
l, err := f.readBytesInternal()
if err != nil {
panic(err)
}
return l
}
func (f *framer) readShortBytes() []byte {
size := f.readShort()
if len(f.rbuf) < int(size) {
panic(fmt.Errorf("not enough bytes in buffer to read short bytes: require %d got %d", size, len(f.rbuf)))
}
l := f.rbuf[:size]
f.rbuf = f.rbuf[size:]
return l
}
func (f *framer) readInet() (net.IP, int) {
if len(f.rbuf) < 1 {
panic(fmt.Errorf("not enough bytes in buffer to read inet size require %d got: %d", 1, len(f.rbuf)))
}
size := f.rbuf[0]
f.rbuf = f.rbuf[1:]
if !(size == 4 || size == 16) {
panic(fmt.Errorf("invalid IP size: %d", size))
}
if len(f.rbuf) < 1 {
panic(fmt.Errorf("not enough bytes in buffer to read inet require %d got: %d", size, len(f.rbuf)))
}
ip := make([]byte, size)
copy(ip, f.rbuf[:size])
f.rbuf = f.rbuf[size:]
port := f.readInt()
return net.IP(ip), port
}
func (f *framer) readConsistency() Consistency {
return Consistency(f.readShort())
}
func (f *framer) readStringMap() map[string]string {
size := f.readShort()
m := make(map[string]string, size)
for i := 0; i < int(size); i++ {
k := f.readString()
v := f.readString()
m[k] = v
}
return m
}
func (f *framer) readBytesMap() map[string][]byte {
size := f.readShort()
m := make(map[string][]byte, size)
for i := 0; i < int(size); i++ {
k := f.readString()
v := f.readBytes()
m[k] = v
}
return m
}
func (f *framer) readStringMultiMap() map[string][]string {
size := f.readShort()
m := make(map[string][]string, size)
for i := 0; i < int(size); i++ {
k := f.readString()
v := f.readStringList()
m[k] = v
}
return m
}
func (f *framer) writeByte(b byte) {
f.wbuf = append(f.wbuf, b)
}
func appendBytes(p []byte, d []byte) []byte {
if d == nil {
return appendInt(p, -1)
}
p = appendInt(p, int32(len(d)))
p = append(p, d...)
return p
}
func appendShort(p []byte, n uint16) []byte {
return append(p,
byte(n>>8),
byte(n),
)
}
func appendInt(p []byte, n int32) []byte {
return append(p, byte(n>>24),
byte(n>>16),
byte(n>>8),
byte(n))
}
func appendLong(p []byte, n int64) []byte {
return append(p,
byte(n>>56),
byte(n>>48),
byte(n>>40),
byte(n>>32),
byte(n>>24),
byte(n>>16),
byte(n>>8),
byte(n),
)
}
// these are protocol level binary types
func (f *framer) writeInt(n int32) {
f.wbuf = appendInt(f.wbuf, n)
}
func (f *framer) writeShort(n uint16) {
f.wbuf = appendShort(f.wbuf, n)
}
func (f *framer) writeLong(n int64) {
f.wbuf = appendLong(f.wbuf, n)
}
func (f *framer) writeString(s string) {
f.writeShort(uint16(len(s)))
f.wbuf = append(f.wbuf, s...)
}
func (f *framer) writeLongString(s string) {
f.writeInt(int32(len(s)))
f.wbuf = append(f.wbuf, s...)
}
func (f *framer) writeUUID(u *UUID) {
f.wbuf = append(f.wbuf, u[:]...)
}
func (f *framer) writeStringList(l []string) {
f.writeShort(uint16(len(l)))
for _, s := range l {
f.writeString(s)
}
}
func (f *framer) writeUnset() {
// Protocol version 4 specifies that bind variables do not require having a
// value when executing a statement. Bind variables without a value are
// called 'unset'. The 'unset' bind variable is serialized as the int
// value '-2' without following bytes.
f.writeInt(-2)
}
func (f *framer) writeBytes(p []byte) {
// TODO: handle null case correctly,
// [bytes] A [int] n, followed by n bytes if n >= 0. If n < 0,
// no byte should follow and the value represented is `null`.
if p == nil {
f.writeInt(-1)
} else {
f.writeInt(int32(len(p)))
f.wbuf = append(f.wbuf, p...)
}
}
func (f *framer) writeShortBytes(p []byte) {
f.writeShort(uint16(len(p)))
f.wbuf = append(f.wbuf, p...)
}
func (f *framer) writeInet(ip net.IP, port int) {
f.wbuf = append(f.wbuf,
byte(len(ip)),
)
f.wbuf = append(f.wbuf,
[]byte(ip)...,
)
f.writeInt(int32(port))
}
func (f *framer) writeConsistency(cons Consistency) {
f.writeShort(uint16(cons))
}
func (f *framer) writeStringMap(m map[string]string) {
f.writeShort(uint16(len(m)))
for k, v := range m {
f.writeString(k)
f.writeString(v)
}
}