open-consul/agent/consul/config_endpoint.go

589 lines
18 KiB
Go

package consul
import (
"fmt"
"time"
metrics "github.com/armon/go-metrics"
"github.com/armon/go-metrics/prometheus"
"github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
"github.com/mitchellh/copystructure"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/structs"
)
var ConfigSummaries = []prometheus.SummaryDefinition{
{
Name: []string{"config_entry", "apply"},
Help: "",
},
{
Name: []string{"config_entry", "get"},
Help: "",
},
{
Name: []string{"config_entry", "list"},
Help: "",
},
{
Name: []string{"config_entry", "listAll"},
Help: "",
},
{
Name: []string{"config_entry", "delete"},
Help: "",
},
{
Name: []string{"config_entry", "resolve_service_config"},
Help: "",
},
}
// The ConfigEntry endpoint is used to query centralized config information
type ConfigEntry struct {
srv *Server
logger hclog.Logger
}
// Apply does an upsert of the given config entry.
func (c *ConfigEntry) Apply(args *structs.ConfigEntryRequest, reply *bool) error {
if err := c.srv.validateEnterpriseRequest(args.Entry.GetEnterpriseMeta(), true); err != nil {
return err
}
// Ensure that all config entry writes go to the primary datacenter. These will then
// be replicated to all the other datacenters.
args.Datacenter = c.srv.config.PrimaryDatacenter
if done, err := c.srv.ForwardRPC("ConfigEntry.Apply", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "apply"}, time.Now())
entMeta := args.Entry.GetEnterpriseMeta()
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, entMeta, nil)
if err != nil {
return err
}
if err := c.preflightCheck(args.Entry.GetKind()); err != nil {
return err
}
// Normalize and validate the incoming config entry as if it came from a user.
if err := args.Entry.Normalize(); err != nil {
return err
}
if err := args.Entry.Validate(); err != nil {
return err
}
if authz != nil && !args.Entry.CanWrite(authz) {
return acl.ErrPermissionDenied
}
if args.Op != structs.ConfigEntryUpsert && args.Op != structs.ConfigEntryUpsertCAS {
args.Op = structs.ConfigEntryUpsert
}
resp, err := c.srv.raftApply(structs.ConfigEntryRequestType, args)
if err != nil {
return err
}
if respErr, ok := resp.(error); ok {
return respErr
}
if respBool, ok := resp.(bool); ok {
*reply = respBool
}
return nil
}
// Get returns a single config entry by Kind/Name.
func (c *ConfigEntry) Get(args *structs.ConfigEntryQuery, reply *structs.ConfigEntryResponse) error {
if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil {
return err
}
if done, err := c.srv.ForwardRPC("ConfigEntry.Get", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "get"}, time.Now())
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil)
if err != nil {
return err
}
// Create a dummy config entry to check the ACL permissions.
lookupEntry, err := structs.MakeConfigEntry(args.Kind, args.Name)
if err != nil {
return err
}
lookupEntry.GetEnterpriseMeta().Merge(&args.EnterpriseMeta)
if authz != nil && !lookupEntry.CanRead(authz) {
return acl.ErrPermissionDenied
}
return c.srv.blockingQuery(
&args.QueryOptions,
&reply.QueryMeta,
func(ws memdb.WatchSet, state *state.Store) error {
index, entry, err := state.ConfigEntry(ws, args.Kind, args.Name, &args.EnterpriseMeta)
if err != nil {
return err
}
reply.Index = index
if entry == nil {
return nil
}
reply.Entry = entry
return nil
})
}
// List returns all the config entries of the given kind. If Kind is blank,
// all existing config entries will be returned.
func (c *ConfigEntry) List(args *structs.ConfigEntryQuery, reply *structs.IndexedConfigEntries) error {
if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil {
return err
}
if done, err := c.srv.ForwardRPC("ConfigEntry.List", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "list"}, time.Now())
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil)
if err != nil {
return err
}
if args.Kind != "" && !structs.ValidateConfigEntryKind(args.Kind) {
return fmt.Errorf("invalid config entry kind: %s", args.Kind)
}
return c.srv.blockingQuery(
&args.QueryOptions,
&reply.QueryMeta,
func(ws memdb.WatchSet, state *state.Store) error {
index, entries, err := state.ConfigEntriesByKind(ws, args.Kind, &args.EnterpriseMeta)
if err != nil {
return err
}
// Filter the entries returned by ACL permissions.
filteredEntries := make([]structs.ConfigEntry, 0, len(entries))
for _, entry := range entries {
if authz != nil && !entry.CanRead(authz) {
continue
}
filteredEntries = append(filteredEntries, entry)
}
reply.Kind = args.Kind
reply.Index = index
reply.Entries = filteredEntries
return nil
})
}
var configEntryKindsFromConsul_1_8_0 = []string{
structs.ServiceDefaults,
structs.ProxyDefaults,
structs.ServiceRouter,
structs.ServiceSplitter,
structs.ServiceResolver,
structs.IngressGateway,
structs.TerminatingGateway,
}
// ListAll returns all the known configuration entries
func (c *ConfigEntry) ListAll(args *structs.ConfigEntryListAllRequest, reply *structs.IndexedGenericConfigEntries) error {
if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil {
return err
}
if done, err := c.srv.ForwardRPC("ConfigEntry.ListAll", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "listAll"}, time.Now())
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil)
if err != nil {
return err
}
if len(args.Kinds) == 0 {
args.Kinds = configEntryKindsFromConsul_1_8_0
}
kindMap := make(map[string]struct{})
for _, kind := range args.Kinds {
kindMap[kind] = struct{}{}
}
return c.srv.blockingQuery(
&args.QueryOptions,
&reply.QueryMeta,
func(ws memdb.WatchSet, state *state.Store) error {
index, entries, err := state.ConfigEntries(ws, &args.EnterpriseMeta)
if err != nil {
return err
}
// Filter the entries returned by ACL permissions or by the provided kinds.
filteredEntries := make([]structs.ConfigEntry, 0, len(entries))
for _, entry := range entries {
if authz != nil && !entry.CanRead(authz) {
continue
}
// Doing this filter outside of memdb isn't terribly
// performant. This kind filter is currently only used across
// version upgrades, so in the common case we are going to
// always return all of the data anyway, so it should be fine.
// If that changes at some point, then we should move this down
// into memdb.
if _, ok := kindMap[entry.GetKind()]; !ok {
continue
}
filteredEntries = append(filteredEntries, entry)
}
reply.Entries = filteredEntries
reply.Index = index
return nil
})
}
// Delete deletes a config entry.
func (c *ConfigEntry) Delete(args *structs.ConfigEntryRequest, reply *struct{}) error {
if err := c.srv.validateEnterpriseRequest(args.Entry.GetEnterpriseMeta(), true); err != nil {
return err
}
// Ensure that all config entry writes go to the primary datacenter. These will then
// be replicated to all the other datacenters.
args.Datacenter = c.srv.config.PrimaryDatacenter
if done, err := c.srv.ForwardRPC("ConfigEntry.Delete", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "delete"}, time.Now())
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, args.Entry.GetEnterpriseMeta(), nil)
if err != nil {
return err
}
if err := c.preflightCheck(args.Entry.GetKind()); err != nil {
return err
}
// Normalize the incoming entry.
if err := args.Entry.Normalize(); err != nil {
return err
}
if authz != nil && !args.Entry.CanWrite(authz) {
return acl.ErrPermissionDenied
}
args.Op = structs.ConfigEntryDelete
resp, err := c.srv.raftApply(structs.ConfigEntryRequestType, args)
if err != nil {
return err
}
if respErr, ok := resp.(error); ok {
return respErr
}
return nil
}
// ResolveServiceConfig
func (c *ConfigEntry) ResolveServiceConfig(args *structs.ServiceConfigRequest, reply *structs.ServiceConfigResponse) error {
if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil {
return err
}
if done, err := c.srv.ForwardRPC("ConfigEntry.ResolveServiceConfig", args, args, reply); done {
return err
}
defer metrics.MeasureSince([]string{"config_entry", "resolve_service_config"}, time.Now())
var authzContext acl.AuthorizerContext
authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, &authzContext)
if err != nil {
return err
}
if authz != nil && authz.ServiceRead(args.Name, &authzContext) != acl.Allow {
return acl.ErrPermissionDenied
}
return c.srv.blockingQuery(
&args.QueryOptions,
&reply.QueryMeta,
func(ws memdb.WatchSet, state *state.Store) error {
reply.Reset()
reply.MeshGateway.Mode = structs.MeshGatewayModeDefault
// TODO(freddy) Refactor this into smaller set of state store functions
// Pass the WatchSet to both the service and proxy config lookups. If either is updated during the
// blocking query, this function will be rerun and these state store lookups will both be current.
// We use the default enterprise meta to look up the global proxy defaults because they are not namespaced.
_, proxyEntry, err := state.ConfigEntry(ws, structs.ProxyDefaults, structs.ProxyConfigGlobal, structs.DefaultEnterpriseMeta())
if err != nil {
return err
}
var (
proxyConf *structs.ProxyConfigEntry
proxyConfGlobalProtocol string
ok bool
)
if proxyEntry != nil {
proxyConf, ok = proxyEntry.(*structs.ProxyConfigEntry)
if !ok {
return fmt.Errorf("invalid proxy config type %T", proxyEntry)
}
// Apply the proxy defaults to the sidecar's proxy config
mapCopy, err := copystructure.Copy(proxyConf.Config)
if err != nil {
return fmt.Errorf("failed to copy global proxy-defaults: %v", err)
}
reply.ProxyConfig = mapCopy.(map[string]interface{})
reply.Mode = proxyConf.Mode
reply.TransparentProxy = proxyConf.TransparentProxy
reply.MeshGateway = proxyConf.MeshGateway
reply.Expose = proxyConf.Expose
// Extract the global protocol from proxyConf for upstream configs.
rawProtocol := proxyConf.Config["protocol"]
if rawProtocol != nil {
proxyConfGlobalProtocol, ok = rawProtocol.(string)
if !ok {
return fmt.Errorf("invalid protocol type %T", rawProtocol)
}
}
}
index, serviceEntry, err := state.ConfigEntry(ws, structs.ServiceDefaults, args.Name, &args.EnterpriseMeta)
if err != nil {
return err
}
reply.Index = index
var serviceConf *structs.ServiceConfigEntry
if serviceEntry != nil {
serviceConf, ok = serviceEntry.(*structs.ServiceConfigEntry)
if !ok {
return fmt.Errorf("invalid service config type %T", serviceEntry)
}
if serviceConf.Expose.Checks {
reply.Expose.Checks = true
}
if len(serviceConf.Expose.Paths) >= 1 {
reply.Expose.Paths = serviceConf.Expose.Paths
}
if serviceConf.MeshGateway.Mode != structs.MeshGatewayModeDefault {
reply.MeshGateway.Mode = serviceConf.MeshGateway.Mode
}
if serviceConf.Protocol != "" {
if reply.ProxyConfig == nil {
reply.ProxyConfig = make(map[string]interface{})
}
reply.ProxyConfig["protocol"] = serviceConf.Protocol
}
if serviceConf.TransparentProxy.OutboundListenerPort != 0 {
reply.TransparentProxy.OutboundListenerPort = serviceConf.TransparentProxy.OutboundListenerPort
}
if serviceConf.Mode != structs.ProxyModeDefault {
reply.Mode = serviceConf.Mode
}
}
// First collect all upstreams into a set of seen upstreams.
// Upstreams can come from:
// - Explicitly from proxy registrations, and therefore as an argument to this RPC endpoint
// - Implicitly from centralized upstream config in service-defaults
seenUpstreams := map[structs.ServiceID]struct{}{}
upstreamIDs := args.UpstreamIDs
legacyUpstreams := false
var (
noUpstreamArgs = len(upstreamIDs) == 0 && len(args.Upstreams) == 0
// Check the args and the resolved value. If it was exclusively set via a config entry, then args.Mode
// will never be transparent because the service config request does not use the resolved value.
tproxy = args.Mode == structs.ProxyModeTransparent || reply.Mode == structs.ProxyModeTransparent
)
// The upstreams passed as arguments to this endpoint are the upstreams explicitly defined in a proxy registration.
// If no upstreams were passed, then we should only returned the resolved config if the proxy in transparent mode.
// Otherwise we would return a resolved upstream config to a proxy with no configured upstreams.
if noUpstreamArgs && !tproxy {
return nil
}
// The request is considered legacy if the deprecated args.Upstream was used
if len(upstreamIDs) == 0 && len(args.Upstreams) > 0 {
legacyUpstreams = true
upstreamIDs = make([]structs.ServiceID, 0)
for _, upstream := range args.Upstreams {
// Before Consul namespaces were released, the Upstreams provided to the endpoint did not contain the namespace.
// Because of this we attach the enterprise meta of the request, which will just be the default namespace.
sid := structs.NewServiceID(upstream, &args.EnterpriseMeta)
upstreamIDs = append(upstreamIDs, sid)
}
}
// First store all upstreams that were provided in the request
for _, sid := range upstreamIDs {
if _, ok := seenUpstreams[sid]; !ok {
seenUpstreams[sid] = struct{}{}
}
}
// Then store upstreams inferred from service-defaults and mapify the overrides.
var (
upstreamConfigs = make(map[structs.ServiceID]*structs.UpstreamConfig)
upstreamDefaults *structs.UpstreamConfig
// usConfigs stores the opaque config map for each upstream and is keyed on the upstream's ID.
usConfigs = make(map[structs.ServiceID]map[string]interface{})
)
if serviceConf != nil && serviceConf.UpstreamConfig != nil {
for i, override := range serviceConf.UpstreamConfig.Overrides {
if override.Name == "" {
c.logger.Warn(
"Skipping UpstreamConfig.Overrides entry without a required name field",
"entryIndex", i,
"kind", serviceConf.GetKind(),
"name", serviceConf.GetName(),
"namespace", serviceConf.GetEnterpriseMeta().NamespaceOrEmpty(),
)
continue // skip this impossible condition
}
seenUpstreams[override.ServiceID()] = struct{}{}
upstreamConfigs[override.ServiceID()] = override
}
if serviceConf.UpstreamConfig.Defaults != nil {
upstreamDefaults = serviceConf.UpstreamConfig.Defaults
// Store the upstream defaults under a wildcard key so that they can be applied to
// upstreams that are inferred from intentions and do not have explicit upstream configuration.
cfgMap := make(map[string]interface{})
upstreamDefaults.MergeInto(cfgMap)
wildcard := structs.NewServiceID(structs.WildcardSpecifier, structs.WildcardEnterpriseMeta())
usConfigs[wildcard] = cfgMap
}
}
for upstream := range seenUpstreams {
resolvedCfg := make(map[string]interface{})
// The protocol of an upstream is resolved in this order:
// 1. Default protocol from proxy-defaults (how all services should be addressed)
// 2. Protocol for upstream service defined in its service-defaults (how the upstream wants to be addressed)
// 3. Protocol defined for the upstream in the service-defaults.(upstream_config.defaults|upstream_config.overrides) of the downstream
// (how the downstream wants to address it)
protocol := proxyConfGlobalProtocol
_, upstreamSvcDefaults, err := state.ConfigEntry(ws, structs.ServiceDefaults, upstream.ID, &upstream.EnterpriseMeta)
if err != nil {
return err
}
if upstreamSvcDefaults != nil {
cfg, ok := upstreamSvcDefaults.(*structs.ServiceConfigEntry)
if !ok {
return fmt.Errorf("invalid service config type %T", upstreamSvcDefaults)
}
if cfg.Protocol != "" {
protocol = cfg.Protocol
}
}
if protocol != "" {
resolvedCfg["protocol"] = protocol
}
// Merge centralized defaults for all upstreams before configuration for specific upstreams
if upstreamDefaults != nil {
upstreamDefaults.MergeInto(resolvedCfg)
}
// The MeshGateway value from the proxy registration overrides the one from upstream_defaults
// because it is specific to the proxy instance.
//
// The goal is to flatten the mesh gateway mode in this order:
// 0. Value from centralized upstream_defaults
// 1. Value from local proxy registration
// 2. Value from centralized upstream_config
// 3. Value from local upstream definition. This last step is done in the client's service manager.
if !args.MeshGateway.IsZero() {
resolvedCfg["mesh_gateway"] = args.MeshGateway
}
if upstreamConfigs[upstream] != nil {
upstreamConfigs[upstream].MergeInto(resolvedCfg)
}
if len(resolvedCfg) > 0 {
usConfigs[upstream] = resolvedCfg
}
}
// don't allocate the slices just to not fill them
if len(usConfigs) == 0 {
return nil
}
if legacyUpstreams {
// For legacy upstreams we return a map that is only keyed on the string ID, since they precede namespaces
reply.UpstreamConfigs = make(map[string]map[string]interface{})
for us, conf := range usConfigs {
reply.UpstreamConfigs[us.ID] = conf
}
} else {
reply.UpstreamIDConfigs = make(structs.OpaqueUpstreamConfigs, 0, len(usConfigs))
for us, conf := range usConfigs {
reply.UpstreamIDConfigs = append(reply.UpstreamIDConfigs,
structs.OpaqueUpstreamConfig{Upstream: us, Config: conf})
}
}
return nil
})
}
// preflightCheck is meant to have kind-specific system validation outside of
// content validation. The initial use case is restricting the ability to do
// writes of service-intentions until the system is finished migration.
func (c *ConfigEntry) preflightCheck(kind string) error {
switch kind {
case structs.ServiceIntentions:
// Exit early if Connect hasn't been enabled.
if !c.srv.config.ConnectEnabled {
return ErrConnectNotEnabled
}
usingConfigEntries, err := c.srv.fsm.State().AreIntentionsInConfigEntries()
if err != nil {
return fmt.Errorf("system metadata lookup failed: %v", err)
}
if !usingConfigEntries {
return ErrIntentionsNotUpgradedYet
}
}
return nil
}