open-consul/agent/rpc/peering/service.go
freddygv 19f25fc3a5 Allow terminated peerings to be deleted
Peerings are terminated when a peer decides to delete the peering from
their end. Deleting a peering sends a termination message to the peer
and triggers them to mark the peering as terminated but does NOT delete
the peering itself. This is to prevent peerings from disappearing from
both sides just because one side deleted them.

Previously the Delete endpoint was skipping the deletion if the peering
was not marked as active. However, terminated peerings are also
inactive.

This PR makes some updates so that peerings marked as terminated can be
deleted by users.
2022-08-26 10:52:47 -06:00

914 lines
30 KiB
Go

package peering
import (
"context"
"errors"
"fmt"
"strings"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-multierror"
"google.golang.org/grpc"
"google.golang.org/grpc/codes"
grpcstatus "google.golang.org/grpc/status"
"google.golang.org/protobuf/proto"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/acl/resolver"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/consul/stream"
"github.com/hashicorp/consul/agent/dns"
external "github.com/hashicorp/consul/agent/grpc-external"
"github.com/hashicorp/consul/agent/grpc-external/services/peerstream"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/proto/pbpeering"
"github.com/hashicorp/consul/proto/pbpeerstream"
)
var (
errPeeringTokenInvalidCA = errors.New("peering token CA value is invalid")
errPeeringTokenEmptyServerAddresses = errors.New("peering token server addresses value is empty")
errPeeringTokenEmptyServerName = errors.New("peering token server name value is empty")
errPeeringTokenEmptyPeerID = errors.New("peering token peer ID value is empty")
)
// errPeeringInvalidServerAddress is returned when an establish request contains
// an invalid server address.
type errPeeringInvalidServerAddress struct {
addr string
}
// Error implements the error interface
func (e *errPeeringInvalidServerAddress) Error() string {
return fmt.Sprintf("%s is not a valid peering server address", e.addr)
}
// For private/internal gRPC handlers, protoc-gen-rpc-glue generates the
// requisite methods to satisfy the structs.RPCInfo interface using fields
// from the pbcommon package. This service is public, so we can't use those
// fields in our proto definition. Instead, we construct our RPCInfo manually.
var writeRequest struct {
structs.WriteRequest
structs.DCSpecificRequest
}
var readRequest struct {
structs.QueryOptions
structs.DCSpecificRequest
}
// Server implements pbpeering.PeeringService to provide RPC operations for
// managing peering relationships.
type Server struct {
Config
}
type Config struct {
Backend Backend
Tracker *peerstream.Tracker
Logger hclog.Logger
ForwardRPC func(structs.RPCInfo, func(*grpc.ClientConn) error) (bool, error)
Datacenter string
ConnectEnabled bool
PeeringEnabled bool
}
func NewServer(cfg Config) *Server {
requireNotNil(cfg.Backend, "Backend")
requireNotNil(cfg.Tracker, "Tracker")
requireNotNil(cfg.Logger, "Logger")
requireNotNil(cfg.ForwardRPC, "ForwardRPC")
if cfg.Datacenter == "" {
panic("Datacenter is required")
}
return &Server{
Config: cfg,
}
}
func requireNotNil(v interface{}, name string) {
if v == nil {
panic(name + " is required")
}
}
var _ pbpeering.PeeringServiceServer = (*Server)(nil)
func (s *Server) Register(grpcServer *grpc.Server) {
pbpeering.RegisterPeeringServiceServer(grpcServer, s)
}
// Backend defines the core integrations the Peering endpoint depends on. A
// functional implementation will integrate with various subcomponents of Consul
// such as the State store for reading and writing data, the CA machinery for
// providing access to CA data and the RPC system for forwarding requests to
// other servers.
type Backend interface {
// ResolveTokenAndDefaultMeta returns an acl.Authorizer which authorizes
// actions based on the permissions granted to the token.
// If either entMeta or authzContext are non-nil they will be populated with the
// partition and namespace from the token.
ResolveTokenAndDefaultMeta(token string, entMeta *acl.EnterpriseMeta, authzCtx *acl.AuthorizerContext) (resolver.Result, error)
// GetAgentCACertificates returns the CA certificate to be returned in the peering token data
GetAgentCACertificates() ([]string, error)
// GetServerAddresses returns the addresses used for establishing a peering connection
GetServerAddresses() ([]string, error)
// GetServerName returns the SNI to be returned in the peering token data which
// will be used by peers when establishing peering connections over TLS.
GetServerName() string
// EncodeToken packages a peering token into a slice of bytes.
EncodeToken(tok *structs.PeeringToken) ([]byte, error)
// DecodeToken unpackages a peering token from a slice of bytes.
DecodeToken([]byte) (*structs.PeeringToken, error)
EnterpriseCheckPartitions(partition string) error
EnterpriseCheckNamespaces(namespace string) error
Subscribe(req *stream.SubscribeRequest) (*stream.Subscription, error)
// IsLeader indicates whether the consul server is in a leader state or not.
IsLeader() bool
// SetLeaderAddress is called on a raft.LeaderObservation in a go routine
// in the consul server; see trackLeaderChanges()
SetLeaderAddress(string)
// GetLeaderAddress provides the best hint for the current address of the
// leader. There is no guarantee that this is the actual address of the
// leader.
GetLeaderAddress() string
// CheckPeeringUUID returns true if the given UUID is not associated with
// an existing peering.
CheckPeeringUUID(id string) (bool, error)
ValidateProposedPeeringSecret(id string) (bool, error)
PeeringWrite(req *pbpeering.PeeringWriteRequest) error
Store() Store
}
// Store provides a read-only interface for querying Peering data.
type Store interface {
PeeringRead(ws memdb.WatchSet, q state.Query) (uint64, *pbpeering.Peering, error)
PeeringReadByID(ws memdb.WatchSet, id string) (uint64, *pbpeering.Peering, error)
PeeringList(ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.Peering, error)
PeeringTrustBundleRead(ws memdb.WatchSet, q state.Query) (uint64, *pbpeering.PeeringTrustBundle, error)
PeeringTrustBundleList(ws memdb.WatchSet, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.PeeringTrustBundle, error)
TrustBundleListByService(ws memdb.WatchSet, service, dc string, entMeta acl.EnterpriseMeta) (uint64, []*pbpeering.PeeringTrustBundle, error)
}
var peeringNotEnabledErr = grpcstatus.Error(codes.FailedPrecondition, "peering must be enabled to use this endpoint")
// GenerateToken implements the PeeringService RPC method to generate a
// peering token which is the initial step in establishing a peering relationship
// with other Consul clusters.
func (s *Server) GenerateToken(
ctx context.Context,
req *pbpeering.GenerateTokenRequest,
) (*pbpeering.GenerateTokenResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
// validate prior to forwarding to the leader, this saves a network hop
if err := dns.ValidateLabel(req.PeerName); err != nil {
return nil, fmt.Errorf("%s is not a valid peer name: %w", req.PeerName, err)
}
if err := structs.ValidateMetaTags(req.Meta); err != nil {
return nil, fmt.Errorf("meta tags failed validation: %w", err)
}
defer metrics.MeasureSince([]string{"peering", "generate_token"}, time.Now())
resp := &pbpeering.GenerateTokenResponse{}
handled, err := s.ForwardRPC(&writeRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).GenerateToken(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringWriteAllowed(&authzCtx); err != nil {
return nil, err
}
var (
peering *pbpeering.Peering
secretID string
)
// This loop ensures at most one retry in the case of a race condition.
for canRetry := true; canRetry; canRetry = false {
peering, err = s.getExistingPeering(req.PeerName, entMeta.PartitionOrDefault())
if err != nil {
return nil, err
}
if peering == nil {
id, err := lib.GenerateUUID(s.Backend.CheckPeeringUUID)
if err != nil {
return resp, err
}
peering = &pbpeering.Peering{
ID: id,
Name: req.PeerName,
Meta: req.Meta,
// PartitionOrEmpty is used to avoid writing "default" in OSS.
Partition: entMeta.PartitionOrEmpty(),
}
} else {
// validate that this peer name is not being used as a dialer already
if err := validatePeer(peering, false); err != nil {
return nil, err
}
}
// A new establishment secret is generated on every GenerateToken request.
// This allows for rotating secrets by generating a new token for a peering and then
// using the new token to re-establish the peering.
secretID, err = s.generateNewEstablishmentSecret()
if err != nil {
return nil, fmt.Errorf("failed to generate secret for peering establishment: %w", err)
}
writeReq := &pbpeering.PeeringWriteRequest{
Peering: peering,
SecretsRequest: &pbpeering.SecretsWriteRequest{
PeerID: peering.ID,
Request: &pbpeering.SecretsWriteRequest_GenerateToken{
GenerateToken: &pbpeering.SecretsWriteRequest_GenerateTokenRequest{
EstablishmentSecret: secretID,
},
},
},
}
if err := s.Backend.PeeringWrite(writeReq); err != nil {
// There's a possible race where two servers call Generate Token at the
// same time with the same peer name for the first time. They both
// generate an ID and try to insert and only one wins. This detects the
// collision and forces the loser to discard its generated ID and use
// the one from the other server.
if strings.Contains(err.Error(), "A peering already exists with the name") {
// retry to fetch existing peering
continue
}
return nil, fmt.Errorf("failed to write peering: %w", err)
}
// write succeeded, break loop early
break
}
ca, err := s.Backend.GetAgentCACertificates()
if err != nil {
return nil, err
}
// ServerExternalAddresses must be formatted as addr:port.
var serverAddrs []string
if len(req.ServerExternalAddresses) > 0 {
serverAddrs = req.ServerExternalAddresses
} else {
serverAddrs, err = s.Backend.GetServerAddresses()
if err != nil {
return nil, err
}
}
tok := structs.PeeringToken{
// Store the UUID so that we can do a global search when handling inbound streams.
PeerID: peering.ID,
CA: ca,
ServerAddresses: serverAddrs,
ServerName: s.Backend.GetServerName(),
EstablishmentSecret: secretID,
}
encoded, err := s.Backend.EncodeToken(&tok)
if err != nil {
return nil, err
}
resp.PeeringToken = string(encoded)
return resp, err
}
// Establish implements the PeeringService RPC method to finalize peering
// registration. Given a valid token output from a peer's GenerateToken endpoint,
// a peering is registered.
func (s *Server) Establish(
ctx context.Context,
req *pbpeering.EstablishRequest,
) (*pbpeering.EstablishResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
// validate prior to forwarding to the leader, this saves a network hop
if err := dns.ValidateLabel(req.PeerName); err != nil {
return nil, fmt.Errorf("%s is not a valid peer name: %w", req.PeerName, err)
}
tok, err := s.Backend.DecodeToken([]byte(req.PeeringToken))
if err != nil {
return nil, err
}
if err := validatePeeringToken(tok); err != nil {
return nil, err
}
if err := structs.ValidateMetaTags(req.Meta); err != nil {
return nil, fmt.Errorf("meta tags failed validation: %w", err)
}
resp := &pbpeering.EstablishResponse{}
handled, err := s.ForwardRPC(&writeRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).Establish(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "establish"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringWriteAllowed(&authzCtx); err != nil {
return nil, err
}
existing, err := s.getExistingPeering(req.PeerName, entMeta.PartitionOrDefault())
if err != nil {
return nil, err
}
if err := s.validatePeeringInPartition(tok.PeerID, entMeta.PartitionOrEmpty()); err != nil {
return nil, err
}
var id string
serverAddrs := tok.ServerAddresses
if existing == nil {
id, err = lib.GenerateUUID(s.Backend.CheckPeeringUUID)
if err != nil {
return nil, err
}
} else {
id = existing.ID
// If there is a connected stream, assume that the existing ServerAddresses
// are up to date and do not try to overwrite them with the token's addresses.
if status, ok := s.Tracker.StreamStatus(id); ok && status.Connected {
serverAddrs = existing.PeerServerAddresses
}
}
// validate that this peer name is not being used as an acceptor already
if err := validatePeer(existing, true); err != nil {
return nil, err
}
peering := &pbpeering.Peering{
ID: id,
Name: req.PeerName,
PeerCAPems: tok.CA,
PeerServerAddresses: serverAddrs,
PeerServerName: tok.ServerName,
PeerID: tok.PeerID,
Meta: req.Meta,
State: pbpeering.PeeringState_ESTABLISHING,
// PartitionOrEmpty is used to avoid writing "default" in OSS.
Partition: entMeta.PartitionOrEmpty(),
}
tlsOption, err := peering.TLSDialOption()
if err != nil {
return nil, fmt.Errorf("failed to build TLS dial option from peering: %w", err)
}
exchangeReq := pbpeerstream.ExchangeSecretRequest{
PeerID: peering.PeerID,
EstablishmentSecret: tok.EstablishmentSecret,
}
var exchangeResp *pbpeerstream.ExchangeSecretResponse
// Loop through the known server addresses once, attempting to fetch the long-lived stream secret.
var dialErrors error
for _, addr := range serverAddrs {
exchangeResp, err = exchangeSecret(ctx, addr, tlsOption, &exchangeReq)
if err != nil {
dialErrors = multierror.Append(dialErrors, fmt.Errorf("failed to exchange peering secret with %q: %w", addr, err))
}
if exchangeResp != nil {
break
}
}
if exchangeResp == nil {
return nil, dialErrors
}
// As soon as a peering is written with a non-empty list of ServerAddresses
// and an active stream secret, a leader routine will see the peering and
// attempt to establish a peering stream with the remote peer.
//
// This peer now has a record of both the LocalPeerID(ID) and
// RemotePeerID(PeerID) but at this point the other peer does not.
writeReq := &pbpeering.PeeringWriteRequest{
Peering: peering,
SecretsRequest: &pbpeering.SecretsWriteRequest{
PeerID: peering.ID,
Request: &pbpeering.SecretsWriteRequest_Establish{
Establish: &pbpeering.SecretsWriteRequest_EstablishRequest{
ActiveStreamSecret: exchangeResp.StreamSecret,
},
},
},
}
if err := s.Backend.PeeringWrite(writeReq); err != nil {
return nil, fmt.Errorf("failed to write peering: %w", err)
}
// TODO(peering): low prio: consider adding response details
return resp, nil
}
// validatePeeringInPartition makes sure that we don't create a peering in the same partition. We validate by looking at
// the remotePeerID from the PeeringToken and looking up for a peering in the partition. If there is one and the
// request partition is the same, then we are attempting to peer within the partition, which we shouldn't.
func (s *Server) validatePeeringInPartition(remotePeerID, partition string) error {
_, peering, err := s.Backend.Store().PeeringReadByID(nil, remotePeerID)
if err != nil {
return fmt.Errorf("cannot read peering by ID: %w", err)
}
if peering != nil && acl.EqualPartitions(peering.GetPartition(), partition) {
return fmt.Errorf("cannot create a peering within the same partition (ENT) or cluster (OSS)")
}
return nil
}
func exchangeSecret(ctx context.Context, addr string, tlsOption grpc.DialOption, req *pbpeerstream.ExchangeSecretRequest) (*pbpeerstream.ExchangeSecretResponse, error) {
dialCtx, cancel := context.WithTimeout(ctx, 10*time.Second)
defer cancel()
conn, err := grpc.DialContext(dialCtx, addr,
tlsOption,
)
if err != nil {
return nil, fmt.Errorf("failed to dial peer: %w", err)
}
defer conn.Close()
client := pbpeerstream.NewPeerStreamServiceClient(conn)
return client.ExchangeSecret(ctx, req)
}
// OPTIMIZE: Handle blocking queries
func (s *Server) PeeringRead(ctx context.Context, req *pbpeering.PeeringReadRequest) (*pbpeering.PeeringReadResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
var resp *pbpeering.PeeringReadResponse
handled, err := s.ForwardRPC(&readRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).PeeringRead(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "read"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringReadAllowed(&authzCtx); err != nil {
return nil, err
}
q := state.Query{
Value: strings.ToLower(req.Name),
EnterpriseMeta: *entMeta,
}
_, peering, err := s.Backend.Store().PeeringRead(nil, q)
if err != nil {
return nil, err
}
if peering == nil {
return &pbpeering.PeeringReadResponse{Peering: nil}, nil
}
cp := s.reconcilePeering(peering)
return &pbpeering.PeeringReadResponse{Peering: cp}, nil
}
// OPTIMIZE: Handle blocking queries
func (s *Server) PeeringList(ctx context.Context, req *pbpeering.PeeringListRequest) (*pbpeering.PeeringListResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
var resp *pbpeering.PeeringListResponse
handled, err := s.ForwardRPC(&readRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).PeeringList(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringReadAllowed(&authzCtx); err != nil {
return nil, err
}
defer metrics.MeasureSince([]string{"peering", "list"}, time.Now())
_, peerings, err := s.Backend.Store().PeeringList(nil, *entMeta)
if err != nil {
return nil, err
}
// reconcile the actual peering state; need to copy over the ds for peering
var cPeerings []*pbpeering.Peering
for _, p := range peerings {
cp := s.reconcilePeering(p)
cPeerings = append(cPeerings, cp)
}
return &pbpeering.PeeringListResponse{Peerings: cPeerings}, nil
}
// TODO(peering): Get rid of this func when we stop using the stream tracker for imported/ exported services and the peering state
// reconcilePeering enriches the peering with the following information:
// -- PeeringState.Active if the peering is active
// -- ImportedServicesCount and ExportedServicesCount
// NOTE: we return a new peering with this additional data
func (s *Server) reconcilePeering(peering *pbpeering.Peering) *pbpeering.Peering {
streamState, found := s.Tracker.StreamStatus(peering.ID)
if !found {
s.Logger.Warn("did not find peer in stream tracker; cannot populate imported and"+
" exported services count or reconcile peering state", "peerID", peering.ID)
return peering
} else {
cp := copyPeering(peering)
// reconcile pbpeering.PeeringState_Active
if streamState.Connected {
cp.State = pbpeering.PeeringState_ACTIVE
} else if streamState.DisconnectErrorMessage != "" {
cp.State = pbpeering.PeeringState_FAILING
}
// add imported & exported services counts
cp.ImportedServiceCount = streamState.GetImportedServicesCount()
cp.ExportedServiceCount = streamState.GetExportedServicesCount()
return cp
}
}
// TODO(peering): As of writing, this method is only used in tests to set up Peerings in the state store.
// Consider removing if we can find another way to populate state store in peering_endpoint_test.go
func (s *Server) PeeringWrite(ctx context.Context, req *pbpeering.PeeringWriteRequest) (*pbpeering.PeeringWriteResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Peering.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
var resp *pbpeering.PeeringWriteResponse
handled, err := s.ForwardRPC(&writeRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).PeeringWrite(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "write"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Peering.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringWriteAllowed(&authzCtx); err != nil {
return nil, err
}
if req.Peering == nil {
return nil, fmt.Errorf("missing required peering body")
}
var id string
peering, err := s.getExistingPeering(req.Peering.Name, entMeta.PartitionOrDefault())
if err != nil {
return nil, err
}
if peering == nil {
id, err = lib.GenerateUUID(s.Backend.CheckPeeringUUID)
if err != nil {
return nil, err
}
} else {
id = peering.ID
}
req.Peering.ID = id
err = s.Backend.PeeringWrite(req)
if err != nil {
return nil, err
}
return &pbpeering.PeeringWriteResponse{}, nil
}
func (s *Server) PeeringDelete(ctx context.Context, req *pbpeering.PeeringDeleteRequest) (*pbpeering.PeeringDeleteResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
var resp *pbpeering.PeeringDeleteResponse
handled, err := s.ForwardRPC(&writeRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).PeeringDelete(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "delete"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().PeeringWriteAllowed(&authzCtx); err != nil {
return nil, err
}
q := state.Query{
Value: strings.ToLower(req.Name),
EnterpriseMeta: *entMeta,
}
_, existing, err := s.Backend.Store().PeeringRead(nil, q)
if err != nil {
return nil, err
}
if existing == nil || existing.State == pbpeering.PeeringState_DELETING {
// Return early when the Peering doesn't exist or is already marked for deletion.
// We don't return nil because the pb will fail to marshal.
return &pbpeering.PeeringDeleteResponse{}, nil
}
// We are using a write request due to needing to perform a deferred deletion.
// The peering gets marked for deletion by setting the DeletedAt field,
// and a leader routine will handle deleting the peering.
writeReq := &pbpeering.PeeringWriteRequest{
Peering: &pbpeering.Peering{
// We only need to include the name and partition for the peering to be identified.
// All other data associated with the peering can be discarded because once marked
// for deletion the peering is effectively gone.
ID: existing.ID,
Name: req.Name,
State: pbpeering.PeeringState_DELETING,
PeerServerAddresses: existing.PeerServerAddresses,
DeletedAt: structs.TimeToProto(time.Now().UTC()),
// PartitionOrEmpty is used to avoid writing "default" in OSS.
Partition: entMeta.PartitionOrEmpty(),
},
}
err = s.Backend.PeeringWrite(writeReq)
if err != nil {
return nil, err
}
return &pbpeering.PeeringDeleteResponse{}, nil
}
// OPTIMIZE: Handle blocking queries
func (s *Server) TrustBundleRead(ctx context.Context, req *pbpeering.TrustBundleReadRequest) (*pbpeering.TrustBundleReadResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
var resp *pbpeering.TrustBundleReadResponse
handled, err := s.ForwardRPC(&readRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).TrustBundleRead(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "trust_bundle_read"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := structs.DefaultEnterpriseMetaInPartition(req.Partition)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().ServiceWriteAnyAllowed(&authzCtx); err != nil {
return nil, err
}
idx, trustBundle, err := s.Backend.Store().PeeringTrustBundleRead(nil, state.Query{
Value: req.Name,
EnterpriseMeta: *entMeta,
})
if err != nil {
return nil, fmt.Errorf("failed to read trust bundle for peer %s: %w", req.Name, err)
}
return &pbpeering.TrustBundleReadResponse{
Index: idx,
Bundle: trustBundle,
}, nil
}
// TODO(peering): rename rpc & request/response to drop the "service" part
// OPTIMIZE: Handle blocking queries
func (s *Server) TrustBundleListByService(ctx context.Context, req *pbpeering.TrustBundleListByServiceRequest) (*pbpeering.TrustBundleListByServiceResponse, error) {
if !s.Config.PeeringEnabled {
return nil, peeringNotEnabledErr
}
if err := s.Backend.EnterpriseCheckPartitions(req.Partition); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
if err := s.Backend.EnterpriseCheckNamespaces(req.Namespace); err != nil {
return nil, grpcstatus.Error(codes.InvalidArgument, err.Error())
}
if req.ServiceName == "" {
return nil, errors.New("missing service name")
}
var resp *pbpeering.TrustBundleListByServiceResponse
handled, err := s.ForwardRPC(&readRequest, func(conn *grpc.ClientConn) error {
ctx := external.ForwardMetadataContext(ctx)
var err error
resp, err = pbpeering.NewPeeringServiceClient(conn).TrustBundleListByService(ctx, req)
return err
})
if handled || err != nil {
return resp, err
}
defer metrics.MeasureSince([]string{"peering", "trust_bundle_list_by_service"}, time.Now())
var authzCtx acl.AuthorizerContext
entMeta := acl.NewEnterpriseMetaWithPartition(req.Partition, req.Namespace)
authz, err := s.Backend.ResolveTokenAndDefaultMeta(external.TokenFromContext(ctx), &entMeta, &authzCtx)
if err != nil {
return nil, err
}
if err := authz.ToAllowAuthorizer().ServiceWriteAllowed(req.ServiceName, &authzCtx); err != nil {
return nil, err
}
var (
idx uint64
bundles []*pbpeering.PeeringTrustBundle
)
switch {
case req.Kind == string(structs.ServiceKindMeshGateway):
idx, bundles, err = s.Backend.Store().PeeringTrustBundleList(nil, entMeta)
case req.ServiceName != "":
idx, bundles, err = s.Backend.Store().TrustBundleListByService(nil, req.ServiceName, s.Datacenter, entMeta)
case req.Kind != "":
return nil, grpcstatus.Error(codes.InvalidArgument, "kind must be mesh-gateway if set")
default:
return nil, grpcstatus.Error(codes.InvalidArgument, "one of service or kind is required")
}
if err != nil {
return nil, err
}
return &pbpeering.TrustBundleListByServiceResponse{Index: idx, Bundles: bundles}, nil
}
func (s *Server) getExistingPeering(peerName, partition string) (*pbpeering.Peering, error) {
q := state.Query{
Value: strings.ToLower(peerName),
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(partition),
}
_, peering, err := s.Backend.Store().PeeringRead(nil, q)
if err != nil {
return nil, err
}
return peering, nil
}
func (s *Server) generateNewEstablishmentSecret() (string, error) {
id, err := lib.GenerateUUID(s.Backend.ValidateProposedPeeringSecret)
if err != nil {
return "", err
}
return id, nil
}
// validatePeer enforces the following rule for an existing peering:
// - if a peering already exists, it can only be used as an acceptor or dialer
//
// We define a DIALER as a peering that has server addresses (or a peering that is created via the Establish endpoint)
// Conversely, we define an ACCEPTOR as a peering that is created via the GenerateToken endpoint
func validatePeer(peering *pbpeering.Peering, shouldDial bool) error {
if peering != nil && peering.ShouldDial() != shouldDial {
if shouldDial {
return fmt.Errorf("cannot create peering with name: %q; there is an existing peering expecting to be dialed", peering.Name)
} else {
return fmt.Errorf("cannot create peering with name: %q; there is already an established peering", peering.Name)
}
}
return nil
}
func copyPeering(p *pbpeering.Peering) *pbpeering.Peering {
var copyP pbpeering.Peering
proto.Merge(&copyP, p)
return &copyP
}