1215 lines
37 KiB
Go
1215 lines
37 KiB
Go
package consul
|
|
|
|
import (
|
|
"context"
|
|
"crypto/tls"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"strings"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/armon/go-metrics"
|
|
"github.com/armon/go-metrics/prometheus"
|
|
"github.com/hashicorp/go-connlimit"
|
|
"github.com/hashicorp/go-hclog"
|
|
"github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/go-raftchunking"
|
|
"github.com/hashicorp/memberlist"
|
|
"github.com/hashicorp/raft"
|
|
"github.com/hashicorp/yamux"
|
|
"google.golang.org/grpc"
|
|
|
|
msgpackrpc "github.com/hashicorp/consul-net-rpc/net-rpc-msgpackrpc"
|
|
|
|
"github.com/hashicorp/consul/acl"
|
|
"github.com/hashicorp/consul/agent/consul/state"
|
|
"github.com/hashicorp/consul/agent/consul/wanfed"
|
|
"github.com/hashicorp/consul/agent/metadata"
|
|
"github.com/hashicorp/consul/agent/pool"
|
|
"github.com/hashicorp/consul/agent/rpc/middleware"
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/lib"
|
|
"github.com/hashicorp/consul/logging"
|
|
)
|
|
|
|
var RPCCounters = []prometheus.CounterDefinition{
|
|
{
|
|
Name: []string{"rpc", "accept_conn"},
|
|
Help: "Increments when a server accepts an RPC connection.",
|
|
},
|
|
{
|
|
Name: []string{"rpc", "raft_handoff"},
|
|
Help: "Increments when a server accepts a Raft-related RPC connection.",
|
|
},
|
|
{
|
|
Name: []string{"rpc", "request_error"},
|
|
Help: "Increments when a server returns an error from an RPC request.",
|
|
},
|
|
{
|
|
Name: []string{"rpc", "request"},
|
|
Help: "Increments when a server receives a Consul-related RPC request.",
|
|
},
|
|
{
|
|
Name: []string{"rpc", "cross-dc"},
|
|
Help: "Increments when a server sends a (potentially blocking) cross datacenter RPC query.",
|
|
},
|
|
{
|
|
Name: []string{"rpc", "query"},
|
|
Help: "Increments when a server receives a read request, indicating the rate of new read queries.",
|
|
},
|
|
}
|
|
|
|
var RPCGauges = []prometheus.GaugeDefinition{
|
|
{
|
|
Name: []string{"rpc", "queries_blocking"},
|
|
Help: "Shows the current number of in-flight blocking queries the server is handling.",
|
|
},
|
|
}
|
|
|
|
var RPCSummaries = []prometheus.SummaryDefinition{
|
|
{
|
|
Name: []string{"rpc", "consistentRead"},
|
|
Help: "Measures the time spent confirming that a consistent read can be performed.",
|
|
},
|
|
}
|
|
|
|
const (
|
|
// Warn if the Raft command is larger than this.
|
|
// If it's over 1MB something is probably being abusive.
|
|
raftWarnSize = 1024 * 1024
|
|
|
|
// enqueueLimit caps how long we will wait to enqueue
|
|
// a new Raft command. Something is probably wrong if this
|
|
// value is ever reached. However, it prevents us from blocking
|
|
// the requesting goroutine forever.
|
|
enqueueLimit = 30 * time.Second
|
|
)
|
|
|
|
var ErrChunkingResubmit = errors.New("please resubmit call for rechunking")
|
|
|
|
// partitionUnsetter is used to describe requests values that can unset their
|
|
// EnterpriseMeta.Partition value.
|
|
type partitionUnsetter interface {
|
|
// UnsetPartition is used to strip a Partition value from the request before
|
|
// it is forwarded to a remote datacenter. By unsetting the value, the server
|
|
// that handles the request can decide which partition should be used (or do nothing).
|
|
// This ensures that servers that are Partition-enabled (pre-1.11, or non-Enterprise)
|
|
// don't inadvertently cause servers that are not Partition-enabled (<= 1.10 or non-Enterprise)
|
|
// to filter their responses by Partition. In other words, this ensures upgraded servers
|
|
// remain compatible with non-upgraded servers.
|
|
UnsetPartition()
|
|
}
|
|
|
|
func (s *Server) rpcLogger() hclog.Logger {
|
|
return s.loggers.Named(logging.RPC)
|
|
}
|
|
|
|
// listen is used to listen for incoming RPC connections
|
|
func (s *Server) listen(listener net.Listener) {
|
|
for {
|
|
// Accept a connection
|
|
conn, err := listener.Accept()
|
|
if err != nil {
|
|
if s.shutdown {
|
|
return
|
|
}
|
|
s.rpcLogger().Error("failed to accept RPC conn", "error", err)
|
|
continue
|
|
}
|
|
|
|
free, err := s.rpcConnLimiter.Accept(conn)
|
|
if err != nil {
|
|
s.rpcLogger().Error("rejecting RPC conn from because rpc_max_conns_per_client exceeded", "conn", logConn(conn))
|
|
conn.Close()
|
|
continue
|
|
}
|
|
// Wrap conn so it will be auto-freed from conn limiter when it closes.
|
|
conn = connlimit.Wrap(conn, free)
|
|
|
|
go s.handleConn(conn, false)
|
|
metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1)
|
|
}
|
|
}
|
|
|
|
// logConn is a wrapper around memberlist's LogConn so that we format references
|
|
// to "from" addresses in a consistent way. This is just a shorter name.
|
|
func logConn(conn net.Conn) string {
|
|
return memberlist.LogConn(conn)
|
|
}
|
|
|
|
// handleConn is used to determine if this is a Raft or
|
|
// Consul type RPC connection and invoke the correct handler
|
|
func (s *Server) handleConn(conn net.Conn, isTLS bool) {
|
|
// Limit how long the client can hold the connection open before they send the
|
|
// magic byte (and authenticate when mTLS is enabled). If `isTLS == true` then
|
|
// this also enforces a timeout on how long it takes for the handshake to
|
|
// complete since tls.Conn.Read implicitly calls Handshake().
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Now().Add(s.config.RPCHandshakeTimeout))
|
|
}
|
|
|
|
if !isTLS && s.tlsConfigurator.MutualTLSCapable() {
|
|
// See if actually this is native TLS multiplexed onto the old
|
|
// "type-byte" system.
|
|
|
|
peekedConn, nativeTLS, err := pool.PeekForTLS(conn)
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error(
|
|
"failed to read first byte",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
if nativeTLS {
|
|
s.handleNativeTLS(peekedConn)
|
|
return
|
|
}
|
|
conn = peekedConn
|
|
}
|
|
|
|
// Read a single byte
|
|
buf := make([]byte, 1)
|
|
|
|
if _, err := conn.Read(buf); err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error("failed to read byte",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
typ := pool.RPCType(buf[0])
|
|
|
|
// Reset the deadline as we aren't sure what is expected next - it depends on
|
|
// the protocol.
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Time{})
|
|
}
|
|
|
|
// Enforce TLS if VerifyIncoming is set
|
|
if s.tlsConfigurator.VerifyIncomingRPC() && !isTLS && typ != pool.RPCTLS && typ != pool.RPCTLSInsecure {
|
|
s.rpcLogger().Warn("Non-TLS connection attempted with VerifyIncoming set", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Switch on the byte
|
|
switch typ {
|
|
case pool.RPCConsul:
|
|
s.handleConsulConn(conn)
|
|
|
|
case pool.RPCRaft:
|
|
s.handleRaftRPC(conn)
|
|
|
|
case pool.RPCTLS:
|
|
// Don't allow malicious client to create TLS-in-TLS for ever.
|
|
if isTLS {
|
|
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingRPCConfig())
|
|
s.handleConn(conn, true)
|
|
|
|
case pool.RPCMultiplexV2:
|
|
s.handleMultiplexV2(conn)
|
|
|
|
case pool.RPCSnapshot:
|
|
s.handleSnapshotConn(conn)
|
|
|
|
case pool.RPCTLSInsecure:
|
|
// Don't allow malicious client to create TLS-in-TLS for ever.
|
|
if isTLS {
|
|
s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection", "conn", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingInsecureRPCConfig())
|
|
s.handleInsecureConn(conn)
|
|
|
|
case pool.RPCGRPC:
|
|
s.grpcHandler.Handle(conn)
|
|
|
|
default:
|
|
if !s.handleEnterpriseRPCConn(typ, conn, isTLS) {
|
|
s.rpcLogger().Error("unrecognized RPC byte",
|
|
"byte", typ,
|
|
"conn", logConn(conn),
|
|
)
|
|
conn.Close()
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *Server) handleNativeTLS(conn net.Conn) {
|
|
s.rpcLogger().Trace(
|
|
"detected actual TLS over RPC port",
|
|
"conn", logConn(conn),
|
|
)
|
|
|
|
tlscfg := s.tlsConfigurator.IncomingALPNRPCConfig(pool.RPCNextProtos)
|
|
tlsConn := tls.Server(conn, tlscfg)
|
|
|
|
// Force the handshake to conclude.
|
|
if err := tlsConn.Handshake(); err != nil {
|
|
s.rpcLogger().Error(
|
|
"TLS handshake failed",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Reset the deadline as we aren't sure what is expected next - it depends on
|
|
// the protocol.
|
|
if s.config.RPCHandshakeTimeout > 0 {
|
|
conn.SetReadDeadline(time.Time{})
|
|
}
|
|
|
|
var (
|
|
cs = tlsConn.ConnectionState()
|
|
sni = cs.ServerName
|
|
nextProto = cs.NegotiatedProtocol
|
|
|
|
transport = s.memberlistTransportWAN
|
|
)
|
|
|
|
s.rpcLogger().Trace(
|
|
"accepted nativeTLS RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
)
|
|
|
|
switch nextProto {
|
|
case pool.ALPN_RPCConsul:
|
|
s.handleConsulConn(tlsConn)
|
|
|
|
case pool.ALPN_RPCRaft:
|
|
s.handleRaftRPC(tlsConn)
|
|
|
|
case pool.ALPN_RPCMultiplexV2:
|
|
s.handleMultiplexV2(tlsConn)
|
|
|
|
case pool.ALPN_RPCSnapshot:
|
|
s.handleSnapshotConn(tlsConn)
|
|
|
|
case pool.ALPN_RPCGRPC:
|
|
s.grpcHandler.Handle(tlsConn)
|
|
|
|
case pool.ALPN_WANGossipPacket:
|
|
if err := s.handleALPN_WANGossipPacketStream(tlsConn); err != nil && err != io.EOF {
|
|
s.rpcLogger().Error(
|
|
"failed to ingest RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
|
|
case pool.ALPN_WANGossipStream:
|
|
// No need to defer the conn.Close() here, the Ingest methods do that.
|
|
if err := transport.IngestStream(tlsConn); err != nil {
|
|
s.rpcLogger().Error(
|
|
"failed to ingest RPC",
|
|
"sni", sni,
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
|
|
default:
|
|
if !s.handleEnterpriseNativeTLSConn(nextProto, conn) {
|
|
s.rpcLogger().Error(
|
|
"discarding RPC for unknown negotiated protocol",
|
|
"failed to ingest RPC",
|
|
"protocol", nextProto,
|
|
"conn", logConn(conn),
|
|
)
|
|
conn.Close()
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleMultiplexV2 is used to multiplex a single incoming connection
|
|
// using the Yamux multiplexer
|
|
func (s *Server) handleMultiplexV2(conn net.Conn) {
|
|
defer conn.Close()
|
|
conf := yamux.DefaultConfig()
|
|
// override the default because LogOutput conflicts with Logger
|
|
conf.LogOutput = nil
|
|
// TODO: should this be created once and cached?
|
|
conf.Logger = s.logger.StandardLogger(&hclog.StandardLoggerOptions{InferLevels: true})
|
|
server, _ := yamux.Server(conn, conf)
|
|
for {
|
|
sub, err := server.Accept()
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.rpcLogger().Error("multiplex conn accept failed",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
return
|
|
}
|
|
|
|
// In the beginning only RPC was supposed to be multiplexed
|
|
// with yamux. In order to add the ability to multiplex network
|
|
// area connections, this workaround was added.
|
|
// This code peeks the first byte and checks if it is
|
|
// RPCGossip, in which case this is handled by enterprise code.
|
|
// Otherwise this connection is handled like before by the RPC
|
|
// handler.
|
|
// This wouldn't work if a normal RPC could start with
|
|
// RPCGossip(6). In messagepack a 6 encodes a positive fixint:
|
|
// https://github.com/msgpack/msgpack/blob/master/spec.md.
|
|
// None of the RPCs we are doing starts with that, usually it is
|
|
// a string for datacenter.
|
|
peeked, first, err := pool.PeekFirstByte(sub)
|
|
if err != nil {
|
|
s.rpcLogger().Error("Problem peeking connection", "conn", logConn(sub), "err", err)
|
|
sub.Close()
|
|
return
|
|
}
|
|
sub = peeked
|
|
switch first {
|
|
case byte(pool.RPCGossip):
|
|
buf := make([]byte, 1)
|
|
sub.Read(buf)
|
|
go func() {
|
|
if !s.handleEnterpriseRPCConn(pool.RPCGossip, sub, false) {
|
|
s.rpcLogger().Error("unrecognized RPC byte",
|
|
"byte", pool.RPCGossip,
|
|
"conn", logConn(conn),
|
|
)
|
|
sub.Close()
|
|
}
|
|
}()
|
|
default:
|
|
go s.handleConsulConn(sub)
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleConsulConn is used to service a single Consul RPC connection
|
|
func (s *Server) handleConsulConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.rpcServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.rpcLogger().Error("RPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleInsecureConsulConn is used to service a single Consul INSECURERPC connection
|
|
func (s *Server) handleInsecureConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewCodecFromHandle(true, true, conn, structs.MsgpackHandle)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.insecureRPCServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.rpcLogger().Error("INSECURERPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleSnapshotConn is used to dispatch snapshot saves and restores, which
|
|
// stream so don't use the normal RPC mechanism.
|
|
func (s *Server) handleSnapshotConn(conn net.Conn) {
|
|
go func() {
|
|
defer conn.Close()
|
|
if err := s.handleSnapshotRequest(conn); err != nil {
|
|
s.rpcLogger().Error("Snapshot RPC error",
|
|
"conn", logConn(conn),
|
|
"error", err,
|
|
)
|
|
}
|
|
}()
|
|
}
|
|
|
|
func (s *Server) handleRaftRPC(conn net.Conn) {
|
|
if tlsConn, ok := conn.(*tls.Conn); ok {
|
|
err := s.tlsConfigurator.AuthorizeServerConn(s.config.Datacenter, tlsConn)
|
|
if err != nil {
|
|
s.rpcLogger().Warn(err.Error(), "from", conn.RemoteAddr(), "operation", "raft RPC")
|
|
conn.Close()
|
|
return
|
|
}
|
|
}
|
|
|
|
metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1)
|
|
s.raftLayer.Handoff(conn)
|
|
}
|
|
|
|
func (s *Server) handleALPN_WANGossipPacketStream(conn net.Conn) error {
|
|
defer conn.Close()
|
|
|
|
transport := s.memberlistTransportWAN
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return nil
|
|
default:
|
|
}
|
|
|
|
// Note: if we need to change this format to have additional header
|
|
// information we can just negotiate a different ALPN protocol instead
|
|
// of needing any sort of version field here.
|
|
prefixLen, err := readUint32(conn, wanfed.GossipPacketMaxIdleTime)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Avoid a memory exhaustion DOS vector here by capping how large this
|
|
// packet can be to something reasonable.
|
|
if prefixLen > wanfed.GossipPacketMaxByteSize {
|
|
return fmt.Errorf("gossip packet size %d exceeds threshold of %d", prefixLen, wanfed.GossipPacketMaxByteSize)
|
|
}
|
|
|
|
lc := &limitedConn{
|
|
Conn: conn,
|
|
lr: io.LimitReader(conn, int64(prefixLen)),
|
|
}
|
|
|
|
if err := transport.IngestPacket(lc, conn.RemoteAddr(), time.Now(), false); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
func readUint32(conn net.Conn, timeout time.Duration) (uint32, error) {
|
|
// Since requests are framed we can easily just set a deadline on
|
|
// reading that frame and then disable it for the rest of the body.
|
|
if err := conn.SetReadDeadline(time.Now().Add(timeout)); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
var v uint32
|
|
if err := binary.Read(conn, binary.BigEndian, &v); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
if err := conn.SetReadDeadline(time.Time{}); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
return v, nil
|
|
}
|
|
|
|
type limitedConn struct {
|
|
net.Conn
|
|
lr io.Reader
|
|
}
|
|
|
|
func (c *limitedConn) Read(b []byte) (n int, err error) {
|
|
return c.lr.Read(b)
|
|
}
|
|
|
|
// canRetry returns true if the request and error indicate that a retry is safe.
|
|
func canRetry(info structs.RPCInfo, err error, start time.Time, config *Config) bool {
|
|
if info != nil {
|
|
timedOut, timeoutError := info.HasTimedOut(start, config.RPCHoldTimeout, config.MaxQueryTime, config.DefaultQueryTime)
|
|
if timeoutError != nil {
|
|
return false
|
|
}
|
|
|
|
if timedOut {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if info == nil && time.Since(start) > config.RPCHoldTimeout {
|
|
// When not RPCInfo, timeout is only RPCHoldTimeout
|
|
return false
|
|
}
|
|
// No leader errors are always safe to retry since no state could have
|
|
// been changed.
|
|
if structs.IsErrNoLeader(err) {
|
|
return true
|
|
}
|
|
|
|
// If we are chunking and it doesn't seem to have completed, try again.
|
|
if err != nil && strings.Contains(err.Error(), ErrChunkingResubmit.Error()) {
|
|
return true
|
|
}
|
|
|
|
// Reads are safe to retry for stream errors, such as if a server was
|
|
// being shut down.
|
|
return info != nil && info.IsRead() && lib.IsErrEOF(err)
|
|
}
|
|
|
|
// ForwardRPC is used to potentially forward an RPC request to a remote DC or
|
|
// to the local leader depending upon the request.
|
|
//
|
|
// Returns a bool of if forwarding was performed, as well as any error. If
|
|
// false is returned (with no error) it is assumed that the current server
|
|
// should handle the request.
|
|
func (s *Server) ForwardRPC(method string, info structs.RPCInfo, reply interface{}) (bool, error) {
|
|
forwardToDC := func(dc string) error {
|
|
return s.forwardDC(method, dc, info, reply)
|
|
}
|
|
forwardToLeader := func(leader *metadata.Server) error {
|
|
return s.connPool.RPC(s.config.Datacenter, leader.ShortName, leader.Addr,
|
|
method, info, reply)
|
|
}
|
|
return s.forwardRPC(info, forwardToDC, forwardToLeader)
|
|
}
|
|
|
|
// ForwardGRPC is used to potentially forward an RPC request to a remote DC or
|
|
// to the local leader depending upon the request.
|
|
//
|
|
// Returns a bool of if forwarding was performed, as well as any error. If
|
|
// false is returned (with no error) it is assumed that the current server
|
|
// should handle the request.
|
|
func (s *Server) ForwardGRPC(connPool GRPCClientConner, info structs.RPCInfo, f func(*grpc.ClientConn) error) (handled bool, err error) {
|
|
forwardToDC := func(dc string) error {
|
|
conn, err := connPool.ClientConn(dc)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return f(conn)
|
|
}
|
|
forwardToLeader := func(leader *metadata.Server) error {
|
|
conn, err := connPool.ClientConnLeader()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return f(conn)
|
|
}
|
|
return s.forwardRPC(info, forwardToDC, forwardToLeader)
|
|
}
|
|
|
|
// forwardRPC is used to potentially forward an RPC request to a remote DC or
|
|
// to the local leader depending upon the request.
|
|
//
|
|
// If info.RequestDatacenter() does not match the local datacenter, then the
|
|
// request will be forwarded to the DC using forwardToDC.
|
|
//
|
|
// Stale read requests will be handled locally if the current node has an
|
|
// initialized raft database, otherwise requests will be forwarded to the local
|
|
// leader using forwardToLeader.
|
|
//
|
|
// Returns a bool of if forwarding was performed, as well as any error. If
|
|
// false is returned (with no error) it is assumed that the current server
|
|
// should handle the request.
|
|
func (s *Server) forwardRPC(
|
|
info structs.RPCInfo,
|
|
forwardToDC func(dc string) error,
|
|
forwardToLeader func(leader *metadata.Server) error,
|
|
) (handled bool, err error) {
|
|
// Forward the request to the requested datacenter.
|
|
if handled, err := s.forwardRequestToOtherDatacenter(info, forwardToDC); handled || err != nil {
|
|
return handled, err
|
|
}
|
|
|
|
// See if we should let this server handle the read request without
|
|
// shipping the request to the leader.
|
|
if s.canServeReadRequest(info) {
|
|
return false, nil
|
|
}
|
|
|
|
return s.forwardRequestToLeader(info, forwardToLeader)
|
|
}
|
|
|
|
// forwardRequestToOtherDatacenter is an implementation detail of forwardRPC.
|
|
// See the comment for forwardRPC for more details.
|
|
func (s *Server) forwardRequestToOtherDatacenter(info structs.RPCInfo, forwardToDC func(dc string) error) (handled bool, err error) {
|
|
// Handle DC forwarding
|
|
dc := info.RequestDatacenter()
|
|
if dc == "" {
|
|
dc = s.config.Datacenter
|
|
}
|
|
if dc != s.config.Datacenter {
|
|
// Local tokens only work within the current datacenter. Check to see
|
|
// if we are attempting to forward one to a remote datacenter and strip
|
|
// it, falling back on the anonymous token on the other end.
|
|
if token := info.TokenSecret(); token != "" {
|
|
done, ident, err := s.ResolveIdentityFromToken(token)
|
|
if done {
|
|
if err != nil && !acl.IsErrNotFound(err) {
|
|
return false, err
|
|
}
|
|
if ident != nil && ident.IsLocal() {
|
|
// Strip it from the request.
|
|
info.SetTokenSecret("")
|
|
defer info.SetTokenSecret(token)
|
|
}
|
|
}
|
|
}
|
|
// In order to interoperate with servers that can interpret Partition, but
|
|
// may not handle it correctly (eg. 1.10 servers), we need to unset the value.
|
|
// Unsetting the Partition ensures that the server that handles the request
|
|
// uses its Partition, or an empty value (aka doing nothing).
|
|
// For requests that are not Partition-aware, this is a no-op.
|
|
if v, ok := info.(partitionUnsetter); ok {
|
|
v.UnsetPartition()
|
|
}
|
|
|
|
return true, forwardToDC(dc)
|
|
}
|
|
|
|
return false, nil
|
|
}
|
|
|
|
// canServeReadRequest determines if the request is a stale read request and
|
|
// the current node can safely process that request.
|
|
func (s *Server) canServeReadRequest(info structs.RPCInfo) bool {
|
|
// Check if we can allow a stale read, ensure our local DB is initialized
|
|
return info.IsRead() && info.AllowStaleRead() && !s.raft.LastContact().IsZero()
|
|
}
|
|
|
|
// forwardRequestToLeader is an implementation detail of forwardRPC.
|
|
// See the comment for forwardRPC for more details.
|
|
func (s *Server) forwardRequestToLeader(info structs.RPCInfo, forwardToLeader func(leader *metadata.Server) error) (handled bool, err error) {
|
|
firstCheck := time.Now()
|
|
CHECK_LEADER:
|
|
// Fail fast if we are in the process of leaving
|
|
select {
|
|
case <-s.leaveCh:
|
|
return true, structs.ErrNoLeader
|
|
default:
|
|
}
|
|
|
|
// Find the leader
|
|
isLeader, leader, rpcErr := s.getLeader()
|
|
|
|
// Handle the case we are the leader
|
|
if isLeader {
|
|
return false, nil
|
|
}
|
|
|
|
// Handle the case of a known leader
|
|
if leader != nil {
|
|
rpcErr = forwardToLeader(leader)
|
|
if rpcErr == nil {
|
|
return true, nil
|
|
}
|
|
}
|
|
|
|
if retry := canRetry(info, rpcErr, firstCheck, s.config); retry {
|
|
// Gate the request until there is a leader
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / structs.JitterFraction)
|
|
select {
|
|
case <-time.After(jitter):
|
|
goto CHECK_LEADER
|
|
case <-s.leaveCh:
|
|
case <-s.shutdownCh:
|
|
}
|
|
}
|
|
|
|
// No leader found and hold time exceeded
|
|
return true, rpcErr
|
|
}
|
|
|
|
// getLeader returns if the current node is the leader, and if not then it
|
|
// returns the leader which is potentially nil if the cluster has not yet
|
|
// elected a leader. In the case of not having a leader elected yet
|
|
// then a NoClusterLeader error gets returned. In the case of Raft having
|
|
// a leader but out internal tracking failing to find the leader we
|
|
// return a LeaderNotTracked error. Therefore if the err is nil AND
|
|
// the bool is false then the Server will be non-nil
|
|
func (s *Server) getLeader() (bool, *metadata.Server, error) {
|
|
// Check if we are the leader
|
|
if s.IsLeader() {
|
|
return true, nil, nil
|
|
}
|
|
|
|
// Get the leader
|
|
leader := s.raft.Leader()
|
|
if leader == "" {
|
|
return false, nil, structs.ErrNoLeader
|
|
}
|
|
|
|
// Lookup the server
|
|
server := s.serverLookup.Server(leader)
|
|
|
|
// if server is nil this indicates that while we have a Raft leader
|
|
// something has caused that node to be considered unhealthy which
|
|
// cascades into its removal from the serverLookup struct. In this case
|
|
// we should not report no cluster leader but instead report a different
|
|
// error so as not to confuse our users as to the what the root cause of
|
|
// an issue might be.
|
|
if server == nil {
|
|
s.logger.Warn("Raft has a leader but other tracking of the node would indicate that the node is unhealthy or does not exist. The network may be misconfigured.", "leader", leader)
|
|
return false, nil, structs.ErrLeaderNotTracked
|
|
}
|
|
|
|
return false, server, nil
|
|
}
|
|
|
|
// forwardDC is used to forward an RPC call to a remote DC, or fail if no servers
|
|
func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error {
|
|
manager, server, ok := s.router.FindRoute(dc)
|
|
if !ok {
|
|
if s.router.HasDatacenter(dc) {
|
|
s.rpcLogger().Warn("RPC request to DC is currently failing as no server can be reached", "datacenter", dc)
|
|
return structs.ErrDCNotAvailable
|
|
}
|
|
s.rpcLogger().Warn("RPC request for DC is currently failing as no path was found",
|
|
"datacenter", dc,
|
|
"method", method,
|
|
)
|
|
return structs.ErrNoDCPath
|
|
}
|
|
|
|
metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1,
|
|
[]metrics.Label{{Name: "datacenter", Value: dc}})
|
|
if err := s.connPool.RPC(dc, server.ShortName, server.Addr, method, args, reply); err != nil {
|
|
manager.NotifyFailedServer(server)
|
|
s.rpcLogger().Error("RPC failed to server in DC",
|
|
"server", server.Addr,
|
|
"datacenter", dc,
|
|
"method", method,
|
|
"error", err,
|
|
)
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// keyringRPCs is used to forward an RPC request to a server in each dc. This
|
|
// will only error for RPC-related errors. Otherwise, application-level errors
|
|
// can be sent in the response objects.
|
|
func (s *Server) keyringRPCs(method string, args interface{}, dcs []string) (*structs.KeyringResponses, error) {
|
|
|
|
errorCh := make(chan error, len(dcs))
|
|
respCh := make(chan *structs.KeyringResponses, len(dcs))
|
|
|
|
for _, dc := range dcs {
|
|
go func(dc string) {
|
|
rr := &structs.KeyringResponses{}
|
|
if err := s.forwardDC(method, dc, args, &rr); err != nil {
|
|
errorCh <- err
|
|
return
|
|
}
|
|
respCh <- rr
|
|
}(dc)
|
|
}
|
|
|
|
responses := &structs.KeyringResponses{}
|
|
for i := 0; i < len(dcs); i++ {
|
|
select {
|
|
case err := <-errorCh:
|
|
return nil, err
|
|
case rr := <-respCh:
|
|
responses.Add(rr)
|
|
}
|
|
}
|
|
return responses, nil
|
|
}
|
|
|
|
type raftEncoder func(structs.MessageType, interface{}) ([]byte, error)
|
|
|
|
// leaderRaftApply is used by the leader to persist data to Raft for internal cluster management activities.
|
|
// This method MUST not be called from RPC endpoints, since it would result in duplicated RPC metrics.
|
|
func (s *Server) leaderRaftApply(method string, t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
start := time.Now()
|
|
|
|
resp, err := s.raftApplyMsgpack(t, msg)
|
|
s.rpcRecorder.Record(method, middleware.RPCTypeInternal, start, &msg, err != nil)
|
|
|
|
return resp, err
|
|
}
|
|
|
|
// raftApplyMsgpack encodes the msg using msgpack and calls raft.Apply. See
|
|
// raftApplyWithEncoder.
|
|
// Deprecated: use raftApplyMsgpack
|
|
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyMsgpack(t, msg)
|
|
}
|
|
|
|
// raftApplyMsgpack encodes the msg using msgpack and calls raft.Apply. See
|
|
// raftApplyWithEncoder.
|
|
func (s *Server) raftApplyMsgpack(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyWithEncoder(t, msg, structs.Encode)
|
|
}
|
|
|
|
// raftApplyProtobuf encodes the msg using protobuf and calls raft.Apply. See
|
|
// raftApplyWithEncoder.
|
|
func (s *Server) raftApplyProtobuf(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
return s.raftApplyWithEncoder(t, msg, structs.EncodeProtoInterface)
|
|
}
|
|
|
|
// raftApplyWithEncoder encodes a message, and then calls raft.Apply with the
|
|
// encoded message. Returns the FSM response along with any errors. If the
|
|
// FSM.Apply response is an error it will be returned as the error return
|
|
// value with a nil response.
|
|
func (s *Server) raftApplyWithEncoder(
|
|
t structs.MessageType,
|
|
msg interface{},
|
|
encoder raftEncoder,
|
|
) (response interface{}, err error) {
|
|
if encoder == nil {
|
|
return nil, fmt.Errorf("Failed to encode request: nil encoder")
|
|
}
|
|
buf, err := encoder(t, msg)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Failed to encode request: %v", err)
|
|
}
|
|
|
|
// Warn if the command is very large
|
|
if n := len(buf); n > raftWarnSize {
|
|
s.rpcLogger().Warn("Attempting to apply large raft entry", "size_in_bytes", n)
|
|
}
|
|
|
|
var chunked bool
|
|
var future raft.ApplyFuture
|
|
switch {
|
|
case len(buf) <= raft.SuggestedMaxDataSize || t != structs.KVSRequestType:
|
|
future = s.raft.Apply(buf, enqueueLimit)
|
|
default:
|
|
chunked = true
|
|
future = raftchunking.ChunkingApply(buf, nil, enqueueLimit, s.raft.ApplyLog)
|
|
}
|
|
|
|
if err := future.Error(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resp := future.Response()
|
|
|
|
if chunked {
|
|
// In this case we didn't apply all chunks successfully, possibly due
|
|
// to a term change; resubmit
|
|
if resp == nil {
|
|
return nil, ErrChunkingResubmit
|
|
}
|
|
// We expect that this conversion should always work
|
|
chunkedSuccess, ok := resp.(raftchunking.ChunkingSuccess)
|
|
if !ok {
|
|
return nil, errors.New("unknown type of response back from chunking FSM")
|
|
}
|
|
resp = chunkedSuccess.Response
|
|
}
|
|
|
|
if err, ok := resp.(error); ok {
|
|
return nil, err
|
|
}
|
|
return resp, nil
|
|
}
|
|
|
|
// queryFn is used to perform a query operation. See Server.blockingQuery for
|
|
// the requirements of this function.
|
|
type queryFn func(memdb.WatchSet, *state.Store) error
|
|
|
|
// blockingQueryOptions are options used by Server.blockingQuery to modify the
|
|
// behaviour of the query operation, or to populate response metadata.
|
|
type blockingQueryOptions interface {
|
|
GetToken() string
|
|
GetMinQueryIndex() uint64
|
|
GetMaxQueryTime() (time.Duration, error)
|
|
GetRequireConsistent() bool
|
|
}
|
|
|
|
// blockingQueryResponseMeta is an interface used to populate the response struct
|
|
// with metadata about the query and the state of the server.
|
|
type blockingQueryResponseMeta interface {
|
|
SetLastContact(time.Duration)
|
|
SetKnownLeader(bool)
|
|
GetIndex() uint64
|
|
SetIndex(uint64)
|
|
SetResultsFilteredByACLs(bool)
|
|
}
|
|
|
|
// blockingQuery performs a blocking query if opts.GetMinQueryIndex is
|
|
// greater than 0, otherwise performs a non-blocking query. Blocking queries will
|
|
// block until responseMeta.Index is greater than opts.GetMinQueryIndex,
|
|
// or opts.GetMaxQueryTime is reached. Non-blocking queries return immediately
|
|
// after performing the query.
|
|
//
|
|
// If opts.GetRequireConsistent is true, blockingQuery will first verify it is
|
|
// still the cluster leader before performing the query.
|
|
//
|
|
// The query function is expected to be a closure that has access to responseMeta
|
|
// so that it can set the Index. The actual result of the query is opaque to blockingQuery.
|
|
//
|
|
// The query function can return errNotFound, which is a sentinel error. Returning
|
|
// errNotFound indicates that the query found no results, which allows
|
|
// blockingQuery to keep blocking until the query returns a non-nil error.
|
|
// The query function must take care to set the actual result of the query to
|
|
// nil in these cases, otherwise when blockingQuery times out it may return
|
|
// a previous result. errNotFound will never be returned to the caller, it is
|
|
// converted to nil before returning.
|
|
//
|
|
// The query function can return errNotChanged, which is a sentinel error. This
|
|
// can only be returned on calls AFTER the first call, as it would not be
|
|
// possible to detect the absence of a change on the first call. Returning
|
|
// errNotChanged indicates that the query results are identical to the prior
|
|
// results which allows blockingQuery to keep blocking until the query returns
|
|
// a real changed result.
|
|
//
|
|
// The query function must take care to ensure the actual result of the query
|
|
// is either left unmodified or explicitly left in a good state before
|
|
// returning, otherwise when blockingQuery times out it may return an
|
|
// incomplete or unexpected result. errNotChanged will never be returned to the
|
|
// caller, it is converted to nil before returning.
|
|
//
|
|
// If query function returns any other error, the error is returned to the caller
|
|
// immediately.
|
|
//
|
|
// The query function must follow these rules:
|
|
//
|
|
// 1. to access data it must use the passed in state.Store.
|
|
// 2. it must set the responseMeta.Index to an index greater than
|
|
// opts.GetMinQueryIndex if the results return by the query have changed.
|
|
// 3. any channels added to the memdb.WatchSet must unblock when the results
|
|
// returned by the query have changed.
|
|
//
|
|
// To ensure optimal performance of the query, the query function should make a
|
|
// best-effort attempt to follow these guidelines:
|
|
//
|
|
// 1. only set responseMeta.Index to an index greater than
|
|
// opts.GetMinQueryIndex when the results returned by the query have changed.
|
|
// 2. any channels added to the memdb.WatchSet should only unblock when the
|
|
// results returned by the query have changed.
|
|
func (s *Server) blockingQuery(
|
|
opts blockingQueryOptions,
|
|
responseMeta blockingQueryResponseMeta,
|
|
query queryFn,
|
|
) error {
|
|
var ctx context.Context = &lib.StopChannelContext{StopCh: s.shutdownCh}
|
|
|
|
metrics.IncrCounter([]string{"rpc", "query"}, 1)
|
|
|
|
minQueryIndex := opts.GetMinQueryIndex()
|
|
// Perform a non-blocking query
|
|
if minQueryIndex == 0 {
|
|
if opts.GetRequireConsistent() {
|
|
if err := s.consistentRead(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
var ws memdb.WatchSet
|
|
err := query(ws, s.fsm.State())
|
|
s.setQueryMeta(responseMeta, opts.GetToken())
|
|
if errors.Is(err, errNotFound) || errors.Is(err, errNotChanged) {
|
|
return nil
|
|
}
|
|
return err
|
|
}
|
|
|
|
maxQueryTimeout, err := opts.GetMaxQueryTime()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
timeout := s.rpcQueryTimeout(maxQueryTimeout)
|
|
ctx, cancel := context.WithTimeout(ctx, timeout)
|
|
defer cancel()
|
|
|
|
count := atomic.AddUint64(&s.queriesBlocking, 1)
|
|
metrics.SetGauge([]string{"rpc", "queries_blocking"}, float32(count))
|
|
// decrement the count when the function returns.
|
|
defer atomic.AddUint64(&s.queriesBlocking, ^uint64(0))
|
|
|
|
var (
|
|
notFound bool
|
|
ranOnce bool
|
|
)
|
|
|
|
for {
|
|
if opts.GetRequireConsistent() {
|
|
if err := s.consistentRead(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Operate on a consistent set of state. This makes sure that the
|
|
// abandon channel goes with the state that the caller is using to
|
|
// build watches.
|
|
state := s.fsm.State()
|
|
|
|
ws := memdb.NewWatchSet()
|
|
// This channel will be closed if a snapshot is restored and the
|
|
// whole state store is abandoned.
|
|
ws.Add(state.AbandonCh())
|
|
|
|
err := query(ws, state)
|
|
s.setQueryMeta(responseMeta, opts.GetToken())
|
|
|
|
switch {
|
|
case errors.Is(err, errNotFound):
|
|
if notFound {
|
|
// query result has not changed
|
|
minQueryIndex = responseMeta.GetIndex()
|
|
}
|
|
notFound = true
|
|
case errors.Is(err, errNotChanged):
|
|
if ranOnce {
|
|
// query result has not changed
|
|
minQueryIndex = responseMeta.GetIndex()
|
|
}
|
|
case err != nil:
|
|
return err
|
|
}
|
|
ranOnce = true
|
|
|
|
if responseMeta.GetIndex() > minQueryIndex {
|
|
return nil
|
|
}
|
|
|
|
// block until something changes, or the timeout
|
|
if err := ws.WatchCtx(ctx); err != nil {
|
|
// exit if we've reached the timeout, or other cancellation
|
|
return nil
|
|
}
|
|
|
|
// exit if the state store has been abandoned
|
|
select {
|
|
case <-state.AbandonCh():
|
|
return nil
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
|
|
var (
|
|
errNotFound = fmt.Errorf("no data found for query")
|
|
errNotChanged = fmt.Errorf("data did not change for query")
|
|
)
|
|
|
|
// setQueryMeta is used to populate the QueryMeta data for an RPC call
|
|
//
|
|
// Note: This method must be called *after* filtering query results with ACLs.
|
|
func (s *Server) setQueryMeta(m blockingQueryResponseMeta, token string) {
|
|
if s.IsLeader() {
|
|
m.SetLastContact(0)
|
|
m.SetKnownLeader(true)
|
|
} else {
|
|
m.SetLastContact(time.Since(s.raft.LastContact()))
|
|
m.SetKnownLeader(s.raft.Leader() != "")
|
|
}
|
|
maskResultsFilteredByACLs(token, m)
|
|
|
|
// Always set a non-zero QueryMeta.Index. Generally we expect the
|
|
// QueryMeta.Index to be set to structs.RaftIndex.ModifyIndex. If the query
|
|
// returned no results we expect it to be set to the max index of the table,
|
|
// however we can't guarantee this always happens.
|
|
// To prevent a client from accidentally performing many non-blocking queries
|
|
// (which causes lots of unnecessary load), we always set a default value of 1.
|
|
// This is sufficient to prevent the unnecessary load in most cases.
|
|
if m.GetIndex() < 1 {
|
|
m.SetIndex(1)
|
|
}
|
|
}
|
|
|
|
// consistentRead is used to ensure we do not perform a stale
|
|
// read. This is done by verifying leadership before the read.
|
|
func (s *Server) consistentRead() error {
|
|
defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now())
|
|
future := s.raft.VerifyLeader()
|
|
if err := future.Error(); err != nil {
|
|
return err // fail fast if leader verification fails
|
|
}
|
|
// poll consistent read readiness, wait for up to RPCHoldTimeout milliseconds
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / structs.JitterFraction)
|
|
deadline := time.Now().Add(s.config.RPCHoldTimeout)
|
|
|
|
for time.Now().Before(deadline) {
|
|
|
|
select {
|
|
case <-time.After(jitter):
|
|
// Drop through and check before we loop again.
|
|
|
|
case <-s.shutdownCh:
|
|
return fmt.Errorf("shutdown waiting for leader")
|
|
}
|
|
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
return structs.ErrNotReadyForConsistentReads
|
|
}
|
|
|
|
// rpcQueryTimeout calculates the timeout for the query, ensures it is
|
|
// constrained to the configured limit, and adds jitter to prevent multiple
|
|
// blocking queries from all timing out at the same time.
|
|
func (s *Server) rpcQueryTimeout(queryTimeout time.Duration) time.Duration {
|
|
// Restrict the max query time, and ensure there is always one.
|
|
if queryTimeout > s.config.MaxQueryTime {
|
|
queryTimeout = s.config.MaxQueryTime
|
|
} else if queryTimeout <= 0 {
|
|
queryTimeout = s.config.DefaultQueryTime
|
|
}
|
|
|
|
// Apply a small amount of jitter to the request.
|
|
queryTimeout += lib.RandomStagger(queryTimeout / structs.JitterFraction)
|
|
return queryTimeout
|
|
}
|
|
|
|
// maskResultsFilteredByACLs blanks out the ResultsFilteredByACLs flag if the
|
|
// request is unauthenticated, to limit information leaking.
|
|
//
|
|
// Endpoints that support bexpr filtering could be used in combination with
|
|
// this flag/header to discover the existence of resources to which the user
|
|
// does not have access, therefore we only expose it when the user presents
|
|
// a valid ACL token. This doesn't completely remove the risk (by nature the
|
|
// purpose of this flag is to let the user know there are resources they can
|
|
// not access) but it prevents completely unauthenticated users from doing so.
|
|
//
|
|
// Notes:
|
|
//
|
|
// - The definition of "unauthenticated" here is incomplete, as it doesn't
|
|
// account for the fact that operators can modify the anonymous token with
|
|
// custom policies, or set namespace default policies. As these scenarios
|
|
// are less common and this flag is a best-effort UX improvement, we think
|
|
// the trade-off for reduced complexity is acceptable.
|
|
//
|
|
// - This method assumes that the given token has already been validated (and
|
|
// will only check whether it is blank or not). It's a safe assumption because
|
|
// ResultsFilteredByACLs is only set to try when applying the already-resolved
|
|
// token's policies.
|
|
func maskResultsFilteredByACLs(token string, meta blockingQueryResponseMeta) {
|
|
if token == "" {
|
|
meta.SetResultsFilteredByACLs(false)
|
|
}
|
|
}
|