package consul import ( "bytes" "encoding/binary" "errors" "fmt" "io" "math" "net" "os" "strings" "sync" "testing" "time" "github.com/hashicorp/go-memdb" msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" "github.com/hashicorp/consul/acl" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/pool" "github.com/hashicorp/consul/agent/structs" tokenStore "github.com/hashicorp/consul/agent/token" "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/sdk/testutil/retry" "github.com/hashicorp/consul/testrpc" ) func TestRPC_NoLeader_Fail(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 1 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // Make sure we eventually fail with a no leader error, which we should // see given the short timeout. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err == nil || err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("bad: %v", err) } // Now make sure it goes through. testrpc.WaitForTestAgent(t, s1.RPC, "dc1") err = msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err != nil { t.Fatalf("bad: %v", err) } } func TestRPC_NoLeader_Fail_on_stale_read(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 1 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // Make sure we eventually fail with a no leader error, which we should // see given the short timeout. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err == nil || err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("bad: %v", err) } // Until leader has never been known, stale should fail getKeysReq := structs.KeyListRequest{ Datacenter: "dc1", Prefix: "", Seperator: "/", QueryOptions: structs.QueryOptions{AllowStale: true}, } var keyList structs.IndexedKeyList if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("expected %v but got err: %v", structs.ErrNoLeader, err) } testrpc.WaitForTestAgent(t, s1.RPC, "dc1") if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err != nil { t.Fatalf("Did not expect any error but got err: %v", err) } } func TestRPC_NoLeader_Retry(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 10 * time.Second }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // This isn't sure-fire but tries to check that we don't have a // leader going into the RPC, so we exercise the retry logic. if ok, _, _ := s1.getLeader(); ok { t.Fatalf("should not have a leader yet") } // The timeout is long enough to ride out any reasonable leader // election. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err != nil { t.Fatalf("bad: %v", err) } } func TestRPC_getLeader_ErrLeaderNotTracked(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } cluster := newTestCluster(t, &testClusterConfig{ Datacenter: "dc1", Servers: 3, ServerWait: func(t *testing.T, srv *Server) { // The test cluster waits for a leader to be established // but not for all the RPC tracking of all servers to be updated // so we also want to wait for that here retry.Run(t, func(r *retry.R) { if !srv.IsLeader() { _, _, err := srv.getLeader() require.NoError(r, err) } }) }, }) // At this point we know we have a cluster with a leader and all followers are tracking that // leader in the serverLookup struct. We need to find a follower to hack its server lookup // to force the error we desire var follower *Server for _, srv := range cluster.Servers { if !srv.IsLeader() { follower = srv break } } _, leaderMeta, err := follower.getLeader() require.NoError(t, err) // now do some behind the scenes trickery on the followers server lookup // to remove the leader from it so that we can force a ErrLeaderNotTracked error follower.serverLookup.RemoveServer(leaderMeta) isLeader, meta, err := follower.getLeader() require.Error(t, err) require.True(t, errors.Is(err, structs.ErrLeaderNotTracked)) require.Nil(t, meta) require.False(t, isLeader) } type MockSink struct { *bytes.Buffer cancel bool } func (m *MockSink) ID() string { return "Mock" } func (m *MockSink) Cancel() error { m.cancel = true return nil } func (m *MockSink) Close() error { return nil } func TestRPC_blockingQuery(t *testing.T) { t.Parallel() dir, s := testServer(t) defer os.RemoveAll(dir) defer s.Shutdown() require := require.New(t) assert := assert.New(t) // Perform a non-blocking query. Note that it's significant that the meta has // a zero index in response - the implied opts.MinQueryIndex is also zero but // this should not block still. { var opts structs.QueryOptions var meta structs.QueryMeta var calls int fn := func(_ memdb.WatchSet, _ *state.Store) error { calls++ return nil } if err := s.blockingQuery(&opts, &meta, fn); err != nil { t.Fatalf("err: %v", err) } if calls != 1 { t.Fatalf("bad: %d", calls) } } // Perform a blocking query that gets woken up and loops around once. { opts := structs.QueryOptions{ MinQueryIndex: 3, } var meta structs.QueryMeta var calls int fn := func(ws memdb.WatchSet, _ *state.Store) error { if calls == 0 { meta.Index = 3 fakeCh := make(chan struct{}) close(fakeCh) ws.Add(fakeCh) } else { meta.Index = 4 } calls++ return nil } if err := s.blockingQuery(&opts, &meta, fn); err != nil { t.Fatalf("err: %v", err) } if calls != 2 { t.Fatalf("bad: %d", calls) } } // Perform a blocking query that returns a zero index from blocking func (e.g. // no state yet). This should still return an empty response immediately, but // with index of 1 and then block on the next attempt. In one sense zero index // is not really a valid response from a state method that is not an error but // in practice a lot of state store operations do return it unless they // explicitly special checks to turn 0 into 1. Often this is not caught or // covered by tests but eventually when hit in the wild causes blocking // clients to busy loop and burn CPU. This test ensure that blockingQuery // systematically does the right thing to prevent future bugs like that. { opts := structs.QueryOptions{ MinQueryIndex: 0, } var meta structs.QueryMeta var calls int fn := func(ws memdb.WatchSet, _ *state.Store) error { if opts.MinQueryIndex > 0 { // If client requested blocking, block forever. This is simulating // waiting for the watched resource to be initialized/written to giving // it a non-zero index. Note the timeout on the query options is relied // on to stop the test taking forever. fakeCh := make(chan struct{}) ws.Add(fakeCh) } meta.Index = 0 calls++ return nil } require.NoError(s.blockingQuery(&opts, &meta, fn)) assert.Equal(1, calls) assert.Equal(uint64(1), meta.Index, "expect fake index of 1 to force client to block on next update") // Simulate client making next request opts.MinQueryIndex = 1 opts.MaxQueryTime = 20 * time.Millisecond // Don't wait too long // This time we should block even though the func returns index 0 still t0 := time.Now() require.NoError(s.blockingQuery(&opts, &meta, fn)) t1 := time.Now() assert.Equal(2, calls) assert.Equal(uint64(1), meta.Index, "expect fake index of 1 to force client to block on next update") assert.True(t1.Sub(t0) > 20*time.Millisecond, "should have actually blocked waiting for timeout") } // Perform a query that blocks and gets interrupted when the state store // is abandoned. { opts := structs.QueryOptions{ MinQueryIndex: 3, } var meta structs.QueryMeta var calls int fn := func(_ memdb.WatchSet, _ *state.Store) error { if calls == 0 { meta.Index = 3 snap, err := s.fsm.Snapshot() if err != nil { t.Fatalf("err: %v", err) } defer snap.Release() buf := bytes.NewBuffer(nil) sink := &MockSink{buf, false} if err := snap.Persist(sink); err != nil { t.Fatalf("err: %v", err) } if err := s.fsm.Restore(sink); err != nil { t.Fatalf("err: %v", err) } } calls++ return nil } if err := s.blockingQuery(&opts, &meta, fn); err != nil { t.Fatalf("err: %v", err) } if calls != 1 { t.Fatalf("bad: %d", calls) } } } func TestRPC_ReadyForConsistentReads(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir, s := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 2 * time.Millisecond }) defer os.RemoveAll(dir) defer s.Shutdown() testrpc.WaitForLeader(t, s.RPC, "dc1") if !s.isReadyForConsistentReads() { t.Fatal("Server should be ready for consistent reads") } s.resetConsistentReadReady() err := s.consistentRead() if err.Error() != "Not ready to serve consistent reads" { t.Fatal("Server should NOT be ready for consistent reads") } go func() { time.Sleep(100 * time.Millisecond) s.setConsistentReadReady() }() retry.Run(t, func(r *retry.R) { if err := s.consistentRead(); err != nil { r.Fatalf("Expected server to be ready for consistent reads, got error %v", err) } }) } func TestRPC_MagicByteTimeout(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHandshakeTimeout = 10 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with bare TCP to simulate a malicious client trying // to hold open resources. addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Wait for more than the timeout. This is timing dependent so could fail if // the CPU is super overloaded so the handler goroutine so I'm using a retry // loop below to be sure but this feels like a pretty generous margin for // error (10x the timeout and 100ms of scheduling time). time.Sleep(100 * time.Millisecond) // Set a read deadline on the Conn in case the timeout is not working we don't // want the read below to block forever. Needs to be much longer than what we // expect and the error should be different too. conn.SetReadDeadline(time.Now().Add(3 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a write // might not detect the close). buf := make([]byte, 10) _, err = conn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } func TestRPC_TLSHandshakeTimeout(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHandshakeTimeout = 10 * time.Millisecond c.TLSConfig.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.VerifyServerHostname = true c.TLSConfig.VerifyOutgoing = true c.TLSConfig.VerifyIncoming = true }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with TLS magic byte delivered on time addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Write TLS byte to avoid being closed by either the (outer) first byte // timeout or the fact that server requires TLS _, err = conn.Write([]byte{pool.RPCTLS}) require.NoError(t, err) // Wait for more than the timeout before we start a TLS handshake. This is // timing dependent so could fail if the CPU is super overloaded so the // handler goroutine so I'm using a retry loop below to be sure but this feels // like a pretty generous margin for error (10x the timeout and 100ms of // scheduling time). time.Sleep(100 * time.Millisecond) // Set a read deadline on the Conn in case the timeout is not working we don't // want the read below to block forever. Needs to be much longer than what we // expect and the error should be different too. conn.SetReadDeadline(time.Now().Add(3 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a write // might not detect the close). buf := make([]byte, 10) _, err = conn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } func TestRPC_PreventsTLSNesting(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() cases := []struct { name string outerByte pool.RPCType innerByte pool.RPCType wantClose bool }{ { // Base case, sanity check normal RPC in TLS works name: "RPC in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCConsul, wantClose: false, }, { // Nested TLS-in-TLS name: "TLS in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCTLS, wantClose: true, }, { // Nested TLS-in-TLS name: "TLS in Insecure TLS", outerByte: pool.RPCTLSInsecure, innerByte: pool.RPCTLS, wantClose: true, }, { // Nested TLS-in-TLS name: "Insecure TLS in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCTLSInsecure, wantClose: true, }, { // Nested TLS-in-TLS name: "Insecure TLS in Insecure TLS", outerByte: pool.RPCTLSInsecure, innerByte: pool.RPCTLSInsecure, wantClose: true, }, } for _, tc := range cases { t.Run(tc.name, func(t *testing.T) { dir1, s1 := testServerWithConfig(t, func(c *Config) { c.TLSConfig.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.VerifyServerHostname = true c.TLSConfig.VerifyOutgoing = true c.TLSConfig.VerifyIncoming = false // saves us getting client cert setup c.TLSConfig.Domain = "consul" }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with TLS magic byte delivered on time addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Write Outer magic byte _, err = conn.Write([]byte{byte(tc.outerByte)}) require.NoError(t, err) // Start tls client tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper() tlsConn, err := tlsWrap("dc1", conn) require.NoError(t, err) // Write Inner magic byte _, err = tlsConn.Write([]byte{byte(tc.innerByte)}) require.NoError(t, err) if tc.wantClose { // Allow up to a second for a read failure to indicate conn was closed by // server. conn.SetReadDeadline(time.Now().Add(1 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a // write might not detect the close). buf := make([]byte, 10) _, err = tlsConn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } else { // Set a shorter read deadline that should typically be enough to detect // immediate close but will also not make test hang forever. This // positive case is mostly just a sanity check that the test code here // is actually not failing just due to some other error in the way we // setup TLS. It also sanity checks that we still allow valid TLS conns // but if it produces possible false-positives in CI sometimes that's // not such a huge deal - CI won't be brittle and it will have done it's // job as a sanity check most of the time. conn.SetReadDeadline(time.Now().Add(50 * time.Millisecond)) buf := make([]byte, 10) _, err = tlsConn.Read(buf) require.Error(t, err) require.Contains(t, err.Error(), "i/o timeout") } }) } } func connectClient(t *testing.T, s1 *Server, mb pool.RPCType, useTLS, wantOpen bool, message string) net.Conn { t.Helper() addr := s1.config.RPCAdvertise tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper() conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) // Write magic byte so we aren't timed out outerByte := mb if useTLS { outerByte = pool.RPCTLS } _, err = conn.Write([]byte{byte(outerByte)}) require.NoError(t, err) if useTLS { tlsConn, err := tlsWrap(s1.config.Datacenter, conn) // Subtly, tlsWrap will NOT actually do a handshake in this case - it only // does so for some configs, so even if the server closed the conn before // handshake this won't fail and it's only when we attempt to read or write // that we'll see the broken pipe. require.NoError(t, err, "%s: wanted open conn, failed TLS handshake: %s", message, err) conn = tlsConn // Write Inner magic byte _, err = conn.Write([]byte{byte(mb)}) if !wantOpen { // TLS Handshake will be done on this attempt to write and should fail require.Error(t, err, "%s: wanted closed conn, TLS Handshake succeeded", message) } else { require.NoError(t, err, "%s: wanted open conn, failed writing inner magic byte: %s", message, err) } } // Check if the conn is in the state we want. retry.Run(t, func(r *retry.R) { // Don't wait around as server won't be sending data but the read will fail // immediately if the conn is closed. conn.SetReadDeadline(time.Now().Add(1 * time.Millisecond)) buf := make([]byte, 10) _, err := conn.Read(buf) require.Error(r, err) if wantOpen { require.Contains(r, err.Error(), "i/o timeout", "%s: wanted an open conn (read timeout)", message) } else { if useTLS { require.Error(r, err) // TLS may fail during either read or write of the handshake so there // are a few different errors that come up. if !strings.Contains(err.Error(), "read: connection reset by peer") && !strings.Contains(err.Error(), "write: connection reset by peer") && !strings.Contains(err.Error(), "write: broken pipe") { r.Fatalf("%s: wanted closed conn got err: %s", message, err) } } else { require.Contains(r, err.Error(), "EOF", "%s: wanted a closed conn", message) } } }) return conn } func TestRPC_RPCMaxConnsPerClient(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() cases := []struct { name string magicByte pool.RPCType tlsEnabled bool }{ {"RPC", pool.RPCMultiplexV2, false}, {"RPC TLS", pool.RPCMultiplexV2, true}, {"Raft", pool.RPCRaft, false}, {"Raft TLS", pool.RPCRaft, true}, } for _, tc := range cases { tc := tc t.Run(tc.name, func(t *testing.T) { dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCMaxConnsPerClient = 2 if tc.tlsEnabled { c.TLSConfig.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.VerifyServerHostname = true c.TLSConfig.VerifyOutgoing = true c.TLSConfig.VerifyIncoming = false // saves us getting client cert setup c.TLSConfig.Domain = "consul" } }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with bare TCP conn1 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn1") defer conn1.Close() // Two conns should succeed conn2 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn2") defer conn2.Close() // Third should be closed byt the limiter conn3 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, false, "conn3") defer conn3.Close() // If we close one of the earlier ones, we should be able to open another addr := conn1.RemoteAddr() conn1.Close() retry.Run(t, func(r *retry.R) { if n := s1.rpcConnLimiter.NumOpen(addr); n >= 2 { r.Fatal("waiting for open conns to drop") } }) conn4 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn4") defer conn4.Close() // Reload config with higher limit rc := ReloadableConfig{ RPCRateLimit: s1.config.RPCRateLimit, RPCMaxBurst: s1.config.RPCMaxBurst, RPCMaxConnsPerClient: 10, } require.NoError(t, s1.ReloadConfig(rc)) // Now another conn should be allowed conn5 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn5") defer conn5.Close() }) } } func TestRPC_readUint32(t *testing.T) { cases := []struct { name string writeFn func(net.Conn) readFn func(*testing.T, net.Conn) }{ { name: "timeouts irrelevant", writeFn: func(conn net.Conn) { _ = binary.Write(conn, binary.BigEndian, uint32(42)) _ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32)) _ = binary.Write(conn, binary.BigEndian, uint32(1)) }, readFn: func(t *testing.T, conn net.Conn) { t.Helper() v, err := readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(42), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(math.MaxUint32), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(1), v) }, }, { name: "triggers timeout on last read", writeFn: func(conn net.Conn) { _ = binary.Write(conn, binary.BigEndian, uint32(42)) _ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32)) _ = binary.Write(conn, binary.BigEndian, uint16(1)) // half as many bytes as expected }, readFn: func(t *testing.T, conn net.Conn) { t.Helper() v, err := readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(42), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(math.MaxUint32), v) _, err = readUint32(conn, 50*time.Millisecond) require.Error(t, err) nerr, ok := err.(net.Error) require.True(t, ok) require.True(t, nerr.Timeout()) }, }, } for _, tc := range cases { tc := tc t.Run(tc.name, func(t *testing.T) { var doneWg sync.WaitGroup defer doneWg.Wait() client, server := net.Pipe() defer client.Close() defer server.Close() // Client pushes some data. doneWg.Add(1) go func() { doneWg.Done() tc.writeFn(client) }() // The server tests the function for us. tc.readFn(t, server) }) } } func TestRPC_LocalTokenStrippedOnForward(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLMasterToken = "root" }) defer os.RemoveAll(dir1) defer s1.Shutdown() testrpc.WaitForLeader(t, s1.RPC, "dc1") codec := rpcClient(t, s1) defer codec.Close() dir2, s2 := testServerWithConfig(t, func(c *Config) { c.Datacenter = "dc2" c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLTokenReplication = true c.ACLReplicationRate = 100 c.ACLReplicationBurst = 100 c.ACLReplicationApplyLimit = 1000000 }) s2.tokens.UpdateReplicationToken("root", tokenStore.TokenSourceConfig) testrpc.WaitForLeader(t, s2.RPC, "dc2") defer os.RemoveAll(dir2) defer s2.Shutdown() codec2 := rpcClient(t, s2) defer codec2.Close() // Try to join. joinWAN(t, s2, s1) testrpc.WaitForLeader(t, s1.RPC, "dc1") testrpc.WaitForLeader(t, s1.RPC, "dc2") // Wait for legacy acls to be disabled so we are clear that // legacy replication isn't meddling. waitForNewACLs(t, s1) waitForNewACLs(t, s2) waitForNewACLReplication(t, s2, structs.ACLReplicateTokens, 1, 1, 0) // create simple kv policy kvPolicy, err := upsertTestPolicyWithRules(codec, "root", "dc1", ` key_prefix "" { policy = "write" } `) require.NoError(t, err) // Wait for it to replicate retry.Run(t, func(r *retry.R) { _, p, err := s2.fsm.State().ACLPolicyGetByID(nil, kvPolicy.ID, &structs.EnterpriseMeta{}) require.Nil(r, err) require.NotNil(r, p) }) // create local token that only works in DC2 localToken2, err := upsertTestToken(codec, "root", "dc2", func(token *structs.ACLToken) { token.Local = true token.Policies = []structs.ACLTokenPolicyLink{ {ID: kvPolicy.ID}, } }) require.NoError(t, err) // Try to use it locally (it should work) arg := structs.KVSRequest{ Datacenter: "dc2", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } var out bool err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) require.NoError(t, err) require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped") // Try to use it remotely arg = structs.KVSRequest{ Datacenter: "dc1", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) if !acl.IsErrPermissionDenied(err) { t.Fatalf("err: %v", err) } // Update the anon token to also be able to write to kv { tokenUpsertReq := structs.ACLTokenSetRequest{ Datacenter: "dc1", ACLToken: structs.ACLToken{ AccessorID: structs.ACLTokenAnonymousID, Policies: []structs.ACLTokenPolicyLink{ { ID: kvPolicy.ID, }, }, }, WriteRequest: structs.WriteRequest{Token: "root"}, } token := structs.ACLToken{} err = msgpackrpc.CallWithCodec(codec, "ACL.TokenSet", &tokenUpsertReq, &token) require.NoError(t, err) require.NotEmpty(t, token.SecretID) } // Try to use it remotely again, but this time it should fallback to anon arg = structs.KVSRequest{ Datacenter: "dc1", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) require.NoError(t, err) require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped") } func TestCanRetry(t *testing.T) { type testCase struct { name string req structs.RPCInfo err error expected bool timeout time.Time } config := DefaultConfig() now := time.Now() config.RPCHoldTimeout = 7 * time.Second run := func(t *testing.T, tc testCase) { timeOutValue := tc.timeout if timeOutValue.IsZero() { timeOutValue = now } require.Equal(t, tc.expected, canRetry(tc.req, tc.err, timeOutValue, config)) } var testCases = []testCase{ { name: "unexpected error", err: fmt.Errorf("some arbitrary error"), expected: false, }, { name: "checking error", err: fmt.Errorf("some wrapping :%w", ErrChunkingResubmit), expected: true, }, { name: "no leader error", err: fmt.Errorf("some wrapping: %w", structs.ErrNoLeader), expected: true, }, { name: "EOF on read request", req: isReadRequest{}, err: io.EOF, expected: true, }, { name: "EOF error", req: &structs.DCSpecificRequest{}, err: io.EOF, expected: true, }, { name: "HasTimedOut implementation with no error", req: &structs.DCSpecificRequest{}, err: nil, expected: false, }, { name: "HasTimedOut implementation timedOut with no error", req: &structs.DCSpecificRequest{}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + time.Second)), }, { name: "HasTimedOut implementation timedOut (with EOF error)", req: &structs.DCSpecificRequest{}, err: io.EOF, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + time.Second)), }, { name: "HasTimedOut implementation timedOut blocking call", req: &structs.DCSpecificRequest{QueryOptions: structs.QueryOptions{MaxQueryTime: 300, MinQueryIndex: 1}}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + config.MaxQueryTime + time.Second)), }, { name: "HasTimedOut implementation timedOut blocking call (MaxQueryTime not set)", req: &structs.DCSpecificRequest{QueryOptions: structs.QueryOptions{MinQueryIndex: 1}}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + config.MaxQueryTime + time.Second)), }, { name: "EOF on write request", err: io.EOF, expected: false, }, } for _, tc := range testCases { t.Run(tc.name, func(t *testing.T) { run(t, tc) }) } } type isReadRequest struct { structs.RPCInfo } func (r isReadRequest) IsRead() bool { return true } func (r isReadRequest) HasTimedOut(since time.Time, rpcHoldTimeout, maxQueryTime, defaultQueryTime time.Duration) bool { return false }