package consul import ( "container/ring" "context" "crypto/tls" "crypto/x509" "fmt" "github.com/hashicorp/go-hclog" "github.com/hashicorp/go-memdb" "github.com/hashicorp/go-multierror" "github.com/hashicorp/go-uuid" "golang.org/x/time/rate" "google.golang.org/grpc" "google.golang.org/grpc/credentials" "github.com/hashicorp/consul/acl" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/grpc-external/services/peerstream" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/logging" "github.com/hashicorp/consul/proto/pbpeering" "github.com/hashicorp/consul/proto/pbpeerstream" ) func (s *Server) startPeeringStreamSync(ctx context.Context) { s.leaderRoutineManager.Start(ctx, peeringStreamsRoutineName, s.runPeeringSync) } func (s *Server) runPeeringSync(ctx context.Context) error { logger := s.logger.Named("peering-syncer") cancelFns := make(map[string]context.CancelFunc) retryLoopBackoff(ctx, func() error { if err := s.syncPeeringsAndBlock(ctx, logger, cancelFns); err != nil { return err } return nil }, func(err error) { s.logger.Error("error syncing peering streams from state store", "error", err) }) return nil } func (s *Server) stopPeeringStreamSync() { // will be a no-op when not started s.leaderRoutineManager.Stop(peeringStreamsRoutineName) } // syncPeeringsAndBlock is a long-running goroutine that is responsible for watching // changes to peerings in the state store and managing streams to those peers. func (s *Server) syncPeeringsAndBlock(ctx context.Context, logger hclog.Logger, cancelFns map[string]context.CancelFunc) error { // We have to be careful not to introduce a data race here. We want to // compare the current known peerings in the state store with known // connected streams to know when we should TERMINATE stray peerings. // // If you read the current peerings from the state store, then read the // current established streams you could lose the data race and have the // sequence of events be: // // 1. list peerings [A,B,C] // 2. persist new peering [D] // 3. accept new stream for [D] // 4. list streams [A,B,C,D] // 5. terminate [D] // // Which is wrong. If we instead ensure that (4) happens before (1), given // that you can't get an established stream without first passing a "does // this peering exist in the state store?" inquiry then this happens: // // 1. list streams [A,B,C] // 2. list peerings [A,B,C] // 3. persist new peering [D] // 4. accept new stream for [D] // 5. terminate [] // // Or even this is fine: // // 1. list streams [A,B,C] // 2. persist new peering [D] // 3. accept new stream for [D] // 4. list peerings [A,B,C,D] // 5. terminate [] connectedStreams := s.peerStreamServer.ConnectedStreams() state := s.fsm.State() // Pull the state store contents and set up to block for changes. ws := memdb.NewWatchSet() ws.Add(state.AbandonCh()) ws.Add(ctx.Done()) _, peers, err := state.PeeringList(ws, *structs.NodeEnterpriseMetaInPartition(structs.WildcardSpecifier)) if err != nil { return err } // TODO(peering) Adjust this debug info. // Generate a UUID to trace different passes through this function. seq, err := uuid.GenerateUUID() if err != nil { s.logger.Debug("failed to generate sequence uuid while syncing peerings") } logger.Trace("syncing new list of peers", "num_peers", len(peers), "sequence_id", seq) // Stored tracks the unique set of peers that should be dialed. // It is used to reconcile the list of active streams. stored := make(map[string]struct{}) var merr *multierror.Error // Create connections and streams to peers in the state store that do not have an active stream. for _, peer := range peers { logger.Trace("evaluating stored peer", "peer", peer.Name, "should_dial", peer.ShouldDial(), "sequence_id", seq) if !peer.IsActive() { // The peering was marked for deletion by ourselves or our peer, no need to dial or track them. continue } // Track all active peerings,since the reconciliation loop below applies to the token generator as well. stored[peer.ID] = struct{}{} if !peer.ShouldDial() { // We do not need to dial peerings where we generated the peering token. continue } status, found := s.peerStreamServer.StreamStatus(peer.ID) // TODO(peering): If there is new peering data and a connected stream, should we tear down the stream? // If the data in the updated token is bad, the user wouldn't know until the old servers/certs become invalid. // Alternatively we could do a basic Ping from the establish peering endpoint to avoid dealing with that here. if found && status.Connected { // Nothing to do when we already have an active stream to the peer. continue } logger.Trace("ensuring stream to peer", "peer_id", peer.ID, "sequence_id", seq) if cancel, ok := cancelFns[peer.ID]; ok { // If the peer is known but we're not connected, clean up the retry-er and start over. // There may be new data in the state store that would enable us to get out of an error state. logger.Trace("cancelling context to re-establish stream", "peer_id", peer.ID, "sequence_id", seq) cancel() } if err := s.establishStream(ctx, logger, peer, cancelFns); err != nil { // TODO(peering): These errors should be reported in the peer status, otherwise they're only in the logs. // Lockable status isn't available here though. Could report it via the peering.Service? logger.Error("error establishing peering stream", "peer_id", peer.ID, "error", err) merr = multierror.Append(merr, err) // Continue on errors to avoid one bad peering from blocking the establishment and cleanup of others. continue } } logger.Trace("checking connected streams", "streams", s.peerStreamServer.ConnectedStreams(), "sequence_id", seq) // Clean up active streams of peerings that were deleted from the state store. // TODO(peering): This is going to trigger shutting down peerings we generated a token for. Is that OK? for stream, doneCh := range connectedStreams { if _, ok := stored[stream]; ok { // Active stream is in the state store, nothing to do. continue } select { case <-doneCh: // channel is closed, do nothing to avoid a panic default: logger.Trace("tearing down stream for deleted peer", "peer_id", stream, "sequence_id", seq) close(doneCh) } } logger.Trace("blocking for changes", "sequence_id", seq) // Block for any changes to the state store. ws.WatchCtx(ctx) logger.Trace("unblocked", "sequence_id", seq) return merr.ErrorOrNil() } func (s *Server) establishStream(ctx context.Context, logger hclog.Logger, peer *pbpeering.Peering, cancelFns map[string]context.CancelFunc) error { logger = logger.With("peer_name", peer.Name, "peer_id", peer.ID) tlsOption := grpc.WithInsecure() if len(peer.PeerCAPems) > 0 { var haveCerts bool pool := x509.NewCertPool() for _, pem := range peer.PeerCAPems { if !pool.AppendCertsFromPEM([]byte(pem)) { return fmt.Errorf("failed to parse PEM %s", pem) } if len(pem) > 0 { haveCerts = true } } if !haveCerts { return fmt.Errorf("failed to build cert pool from peer CA pems") } cfg := tls.Config{ ServerName: peer.PeerServerName, RootCAs: pool, } tlsOption = grpc.WithTransportCredentials(credentials.NewTLS(&cfg)) } // Create a ring buffer to cycle through peer addresses in the retry loop below. buffer := ring.New(len(peer.PeerServerAddresses)) for _, addr := range peer.PeerServerAddresses { buffer.Value = addr buffer = buffer.Next() } logger.Trace("establishing stream to peer") retryCtx, cancel := context.WithCancel(ctx) cancelFns[peer.ID] = cancel // Establish a stream-specific retry so that retrying stream/conn errors isn't dependent on state store changes. go retryLoopBackoff(retryCtx, func() error { // Try a new address on each iteration by advancing the ring buffer on errors. defer func() { buffer = buffer.Next() }() addr, ok := buffer.Value.(string) if !ok { return fmt.Errorf("peer server address type %T is not a string", buffer.Value) } logger.Trace("dialing peer", "addr", addr) conn, err := grpc.DialContext(retryCtx, addr, grpc.WithBlock(), tlsOption, ) if err != nil { return fmt.Errorf("failed to dial: %w", err) } defer conn.Close() client := pbpeerstream.NewPeerStreamServiceClient(conn) stream, err := client.StreamResources(retryCtx) if err != nil { return err } if peer.PeerID == "" { return fmt.Errorf("expected PeerID to be non empty; the wrong end of peering is being dialed") } streamReq := peerstream.HandleStreamRequest{ LocalID: peer.ID, RemoteID: peer.PeerID, PeerName: peer.Name, Partition: peer.Partition, Stream: stream, } err = s.peerStreamServer.HandleStream(streamReq) // A nil error indicates that the peering was deleted and the stream needs to be gracefully shutdown. if err == nil { stream.CloseSend() s.peerStreamServer.DrainStream(streamReq) // This will cancel the retry-er context, letting us break out of this loop when we want to shut down the stream. cancel() logger.Info("closed outbound stream") } return err }, func(err error) { // TODO(peering): These errors should be reported in the peer status, otherwise they're only in the logs. // Lockable status isn't available here though. Could report it via the peering.Service? logger.Error("error managing peering stream", "peer_id", peer.ID, "error", err) }) return nil } func (s *Server) startPeeringDeferredDeletion(ctx context.Context) { s.leaderRoutineManager.Start(ctx, peeringDeletionRoutineName, s.runPeeringDeletions) } // runPeeringDeletions watches for peerings marked for deletions and then cleans up data for them. func (s *Server) runPeeringDeletions(ctx context.Context) error { logger := s.loggers.Named(logging.Peering) // This limiter's purpose is to control the rate of raft applies caused by the deferred deletion // process. This includes deletion of the peerings themselves in addition to any peering data raftLimiter := rate.NewLimiter(defaultDeletionApplyRate, int(defaultDeletionApplyRate)) for { ws := memdb.NewWatchSet() state := s.fsm.State() _, peerings, err := s.fsm.State().PeeringListDeleted(ws) if err != nil { logger.Warn("encountered an error while searching for deleted peerings", "error", err) continue } if len(peerings) == 0 { ws.Add(state.AbandonCh()) // wait for a peering to be deleted or the routine to be cancelled if err := ws.WatchCtx(ctx); err != nil { return err } continue } for _, p := range peerings { s.removePeeringAndData(ctx, logger, raftLimiter, p) } } } // removepPeeringAndData removes data imported for a peering and the peering itself. func (s *Server) removePeeringAndData(ctx context.Context, logger hclog.Logger, limiter *rate.Limiter, peer *pbpeering.Peering) { logger = logger.With("peer_name", peer.Name, "peer_id", peer.ID) entMeta := *structs.NodeEnterpriseMetaInPartition(peer.Partition) // First delete all imported data. // By deleting all imported nodes we also delete all services and checks registered on them. if err := s.deleteAllNodes(ctx, limiter, entMeta, peer.Name); err != nil { logger.Error("Failed to remove Nodes for peer", "error", err) return } if err := s.deleteTrustBundleFromPeer(ctx, limiter, entMeta, peer.Name); err != nil { logger.Error("Failed to remove trust bundle for peer", "error", err) return } if err := limiter.Wait(ctx); err != nil { return } if peer.State == pbpeering.PeeringState_TERMINATED { // For peerings terminated by our peer we only clean up the local data, we do not delete the peering itself. // This is to avoid a situation where the peering disappears without the local operator's knowledge. return } // Once all imported data is deleted, the peering itself is also deleted. req := &pbpeering.PeeringDeleteRequest{ Name: peer.Name, Partition: acl.PartitionOrDefault(peer.Partition), } _, err := s.raftApplyProtobuf(structs.PeeringDeleteType, req) if err != nil { logger.Error("failed to apply full peering deletion", "error", err) return } } // deleteAllNodes will delete all nodes in a partition or all nodes imported from a given peer name. func (s *Server) deleteAllNodes(ctx context.Context, limiter *rate.Limiter, entMeta acl.EnterpriseMeta, peerName string) error { // Same as ACL batch upsert size nodeBatchSizeBytes := 256 * 1024 _, nodes, err := s.fsm.State().NodeDump(nil, &entMeta, peerName) if err != nil { return err } if len(nodes) == 0 { return nil } i := 0 for { var ops structs.TxnOps for batchSize := 0; batchSize < nodeBatchSizeBytes && i < len(nodes); i++ { entry := nodes[i] op := structs.TxnOp{ Node: &structs.TxnNodeOp{ Verb: api.NodeDelete, Node: structs.Node{ Node: entry.Node, Partition: entry.Partition, PeerName: entry.PeerName, }, }, } ops = append(ops, &op) // Add entries to the transaction until it reaches the max batch size batchSize += len(entry.Node) + len(entry.Partition) + len(entry.PeerName) } // Send each batch as a TXN Req to avoid sending one at a time req := structs.TxnRequest{ Datacenter: s.config.Datacenter, Ops: ops, } if len(req.Ops) > 0 { if err := limiter.Wait(ctx); err != nil { return err } _, err := s.raftApplyMsgpack(structs.TxnRequestType, &req) if err != nil { return err } } else { break } } return nil } // deleteTrustBundleFromPeer deletes the trust bundle imported from a peer, if present. func (s *Server) deleteTrustBundleFromPeer(ctx context.Context, limiter *rate.Limiter, entMeta acl.EnterpriseMeta, peerName string) error { _, bundle, err := s.fsm.State().PeeringTrustBundleRead(nil, state.Query{Value: peerName, EnterpriseMeta: entMeta}) if err != nil { return err } if bundle == nil { return nil } if err := limiter.Wait(ctx); err != nil { return err } req := &pbpeering.PeeringTrustBundleDeleteRequest{ Name: peerName, Partition: entMeta.PartitionOrDefault(), } _, err = s.raftApplyProtobuf(structs.PeeringTrustBundleDeleteType, req) return err }