package consul import ( "fmt" "time" metrics "github.com/armon/go-metrics" "github.com/armon/go-metrics/prometheus" "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" "github.com/mitchellh/copystructure" "github.com/hashicorp/consul/acl" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/structs" ) var ConfigSummaries = []prometheus.SummaryDefinition{ { Name: []string{"config_entry", "apply"}, Help: "", }, { Name: []string{"config_entry", "get"}, Help: "", }, { Name: []string{"config_entry", "list"}, Help: "", }, { Name: []string{"config_entry", "listAll"}, Help: "", }, { Name: []string{"config_entry", "delete"}, Help: "", }, { Name: []string{"config_entry", "resolve_service_config"}, Help: "", }, } // The ConfigEntry endpoint is used to query centralized config information type ConfigEntry struct { srv *Server logger hclog.Logger } // Apply does an upsert of the given config entry. func (c *ConfigEntry) Apply(args *structs.ConfigEntryRequest, reply *bool) error { if err := c.srv.validateEnterpriseRequest(args.Entry.GetEnterpriseMeta(), true); err != nil { return err } // Ensure that all config entry writes go to the primary datacenter. These will then // be replicated to all the other datacenters. args.Datacenter = c.srv.config.PrimaryDatacenter if done, err := c.srv.ForwardRPC("ConfigEntry.Apply", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "apply"}, time.Now()) entMeta := args.Entry.GetEnterpriseMeta() authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, entMeta, nil) if err != nil { return err } if err := c.preflightCheck(args.Entry.GetKind()); err != nil { return err } // Normalize and validate the incoming config entry as if it came from a user. if err := args.Entry.Normalize(); err != nil { return err } if err := args.Entry.Validate(); err != nil { return err } if !args.Entry.CanWrite(authz) { return acl.ErrPermissionDenied } if args.Op != structs.ConfigEntryUpsert && args.Op != structs.ConfigEntryUpsertCAS { args.Op = structs.ConfigEntryUpsert } resp, err := c.srv.raftApply(structs.ConfigEntryRequestType, args) if err != nil { return err } if respBool, ok := resp.(bool); ok { *reply = respBool } return nil } // Get returns a single config entry by Kind/Name. func (c *ConfigEntry) Get(args *structs.ConfigEntryQuery, reply *structs.ConfigEntryResponse) error { if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil { return err } if done, err := c.srv.ForwardRPC("ConfigEntry.Get", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "get"}, time.Now()) authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil) if err != nil { return err } // Create a dummy config entry to check the ACL permissions. lookupEntry, err := structs.MakeConfigEntry(args.Kind, args.Name) if err != nil { return err } lookupEntry.GetEnterpriseMeta().Merge(&args.EnterpriseMeta) if !lookupEntry.CanRead(authz) { return acl.ErrPermissionDenied } return c.srv.blockingQuery( &args.QueryOptions, &reply.QueryMeta, func(ws memdb.WatchSet, state *state.Store) error { index, entry, err := state.ConfigEntry(ws, args.Kind, args.Name, &args.EnterpriseMeta) if err != nil { return err } reply.Index = index if entry == nil { return nil } reply.Entry = entry return nil }) } // List returns all the config entries of the given kind. If Kind is blank, // all existing config entries will be returned. func (c *ConfigEntry) List(args *structs.ConfigEntryQuery, reply *structs.IndexedConfigEntries) error { if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil { return err } if done, err := c.srv.ForwardRPC("ConfigEntry.List", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "list"}, time.Now()) authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil) if err != nil { return err } if args.Kind != "" { if _, err := structs.MakeConfigEntry(args.Kind, ""); err != nil { return fmt.Errorf("invalid config entry kind: %s", args.Kind) } } return c.srv.blockingQuery( &args.QueryOptions, &reply.QueryMeta, func(ws memdb.WatchSet, state *state.Store) error { index, entries, err := state.ConfigEntriesByKind(ws, args.Kind, &args.EnterpriseMeta) if err != nil { return err } // Filter the entries returned by ACL permissions. filteredEntries := make([]structs.ConfigEntry, 0, len(entries)) for _, entry := range entries { if !entry.CanRead(authz) { continue } filteredEntries = append(filteredEntries, entry) } reply.Kind = args.Kind reply.Index = index reply.Entries = filteredEntries return nil }) } var configEntryKindsFromConsul_1_8_0 = []string{ structs.ServiceDefaults, structs.ProxyDefaults, structs.ServiceRouter, structs.ServiceSplitter, structs.ServiceResolver, structs.IngressGateway, structs.TerminatingGateway, } // ListAll returns all the known configuration entries func (c *ConfigEntry) ListAll(args *structs.ConfigEntryListAllRequest, reply *structs.IndexedGenericConfigEntries) error { if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil { return err } if done, err := c.srv.ForwardRPC("ConfigEntry.ListAll", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "listAll"}, time.Now()) authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, nil) if err != nil { return err } if len(args.Kinds) == 0 { args.Kinds = configEntryKindsFromConsul_1_8_0 } kindMap := make(map[string]struct{}) for _, kind := range args.Kinds { kindMap[kind] = struct{}{} } return c.srv.blockingQuery( &args.QueryOptions, &reply.QueryMeta, func(ws memdb.WatchSet, state *state.Store) error { index, entries, err := state.ConfigEntries(ws, &args.EnterpriseMeta) if err != nil { return err } // Filter the entries returned by ACL permissions or by the provided kinds. filteredEntries := make([]structs.ConfigEntry, 0, len(entries)) for _, entry := range entries { if !entry.CanRead(authz) { continue } // Doing this filter outside of memdb isn't terribly // performant. This kind filter is currently only used across // version upgrades, so in the common case we are going to // always return all of the data anyway, so it should be fine. // If that changes at some point, then we should move this down // into memdb. if _, ok := kindMap[entry.GetKind()]; !ok { continue } filteredEntries = append(filteredEntries, entry) } reply.Entries = filteredEntries reply.Index = index return nil }) } // Delete deletes a config entry. func (c *ConfigEntry) Delete(args *structs.ConfigEntryRequest, reply *struct{}) error { if err := c.srv.validateEnterpriseRequest(args.Entry.GetEnterpriseMeta(), true); err != nil { return err } // Ensure that all config entry writes go to the primary datacenter. These will then // be replicated to all the other datacenters. args.Datacenter = c.srv.config.PrimaryDatacenter if done, err := c.srv.ForwardRPC("ConfigEntry.Delete", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "delete"}, time.Now()) authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, args.Entry.GetEnterpriseMeta(), nil) if err != nil { return err } if err := c.preflightCheck(args.Entry.GetKind()); err != nil { return err } // Normalize the incoming entry. if err := args.Entry.Normalize(); err != nil { return err } if !args.Entry.CanWrite(authz) { return acl.ErrPermissionDenied } args.Op = structs.ConfigEntryDelete _, err = c.srv.raftApply(structs.ConfigEntryRequestType, args) return err } // ResolveServiceConfig func (c *ConfigEntry) ResolveServiceConfig(args *structs.ServiceConfigRequest, reply *structs.ServiceConfigResponse) error { if err := c.srv.validateEnterpriseRequest(&args.EnterpriseMeta, false); err != nil { return err } if done, err := c.srv.ForwardRPC("ConfigEntry.ResolveServiceConfig", args, reply); done { return err } defer metrics.MeasureSince([]string{"config_entry", "resolve_service_config"}, time.Now()) var authzContext acl.AuthorizerContext authz, err := c.srv.ResolveTokenAndDefaultMeta(args.Token, &args.EnterpriseMeta, &authzContext) if err != nil { return err } if authz.ServiceRead(args.Name, &authzContext) != acl.Allow { return acl.ErrPermissionDenied } return c.srv.blockingQuery( &args.QueryOptions, &reply.QueryMeta, func(ws memdb.WatchSet, state *state.Store) error { var thisReply structs.ServiceConfigResponse thisReply.MeshGateway.Mode = structs.MeshGatewayModeDefault // TODO(freddy) Refactor this into smaller set of state store functions // Pass the WatchSet to both the service and proxy config lookups. If either is updated during the // blocking query, this function will be rerun and these state store lookups will both be current. // We use the default enterprise meta to look up the global proxy defaults because they are not namespaced. _, proxyEntry, err := state.ConfigEntry(ws, structs.ProxyDefaults, structs.ProxyConfigGlobal, &args.EnterpriseMeta) if err != nil { return err } var ( proxyConf *structs.ProxyConfigEntry proxyConfGlobalProtocol string ok bool ) if proxyEntry != nil { proxyConf, ok = proxyEntry.(*structs.ProxyConfigEntry) if !ok { return fmt.Errorf("invalid proxy config type %T", proxyEntry) } // Apply the proxy defaults to the sidecar's proxy config mapCopy, err := copystructure.Copy(proxyConf.Config) if err != nil { return fmt.Errorf("failed to copy global proxy-defaults: %v", err) } thisReply.ProxyConfig = mapCopy.(map[string]interface{}) thisReply.Mode = proxyConf.Mode thisReply.TransparentProxy = proxyConf.TransparentProxy thisReply.MeshGateway = proxyConf.MeshGateway thisReply.Expose = proxyConf.Expose // Extract the global protocol from proxyConf for upstream configs. rawProtocol := proxyConf.Config["protocol"] if rawProtocol != nil { proxyConfGlobalProtocol, ok = rawProtocol.(string) if !ok { return fmt.Errorf("invalid protocol type %T", rawProtocol) } } } index, serviceEntry, err := state.ConfigEntry(ws, structs.ServiceDefaults, args.Name, &args.EnterpriseMeta) if err != nil { return err } thisReply.Index = index var serviceConf *structs.ServiceConfigEntry if serviceEntry != nil { serviceConf, ok = serviceEntry.(*structs.ServiceConfigEntry) if !ok { return fmt.Errorf("invalid service config type %T", serviceEntry) } if serviceConf.Expose.Checks { thisReply.Expose.Checks = true } if len(serviceConf.Expose.Paths) >= 1 { thisReply.Expose.Paths = serviceConf.Expose.Paths } if serviceConf.MeshGateway.Mode != structs.MeshGatewayModeDefault { thisReply.MeshGateway.Mode = serviceConf.MeshGateway.Mode } if serviceConf.Protocol != "" { if thisReply.ProxyConfig == nil { thisReply.ProxyConfig = make(map[string]interface{}) } thisReply.ProxyConfig["protocol"] = serviceConf.Protocol } if serviceConf.TransparentProxy.OutboundListenerPort != 0 { thisReply.TransparentProxy.OutboundListenerPort = serviceConf.TransparentProxy.OutboundListenerPort } if serviceConf.TransparentProxy.DialedDirectly { thisReply.TransparentProxy.DialedDirectly = serviceConf.TransparentProxy.DialedDirectly } if serviceConf.Mode != structs.ProxyModeDefault { thisReply.Mode = serviceConf.Mode } } // First collect all upstreams into a set of seen upstreams. // Upstreams can come from: // - Explicitly from proxy registrations, and therefore as an argument to this RPC endpoint // - Implicitly from centralized upstream config in service-defaults seenUpstreams := map[structs.ServiceID]struct{}{} upstreamIDs := args.UpstreamIDs legacyUpstreams := false var ( noUpstreamArgs = len(upstreamIDs) == 0 && len(args.Upstreams) == 0 // Check the args and the resolved value. If it was exclusively set via a config entry, then args.Mode // will never be transparent because the service config request does not use the resolved value. tproxy = args.Mode == structs.ProxyModeTransparent || thisReply.Mode == structs.ProxyModeTransparent ) // The upstreams passed as arguments to this endpoint are the upstreams explicitly defined in a proxy registration. // If no upstreams were passed, then we should only returned the resolved config if the proxy in transparent mode. // Otherwise we would return a resolved upstream config to a proxy with no configured upstreams. if noUpstreamArgs && !tproxy { *reply = thisReply return nil } // The request is considered legacy if the deprecated args.Upstream was used if len(upstreamIDs) == 0 && len(args.Upstreams) > 0 { legacyUpstreams = true upstreamIDs = make([]structs.ServiceID, 0) for _, upstream := range args.Upstreams { // Before Consul namespaces were released, the Upstreams provided to the endpoint did not contain the namespace. // Because of this we attach the enterprise meta of the request, which will just be the default namespace. sid := structs.NewServiceID(upstream, &args.EnterpriseMeta) upstreamIDs = append(upstreamIDs, sid) } } // First store all upstreams that were provided in the request for _, sid := range upstreamIDs { if _, ok := seenUpstreams[sid]; !ok { seenUpstreams[sid] = struct{}{} } } // Then store upstreams inferred from service-defaults and mapify the overrides. var ( upstreamConfigs = make(map[structs.ServiceID]*structs.UpstreamConfig) upstreamDefaults *structs.UpstreamConfig // usConfigs stores the opaque config map for each upstream and is keyed on the upstream's ID. usConfigs = make(map[structs.ServiceID]map[string]interface{}) ) if serviceConf != nil && serviceConf.UpstreamConfig != nil { for i, override := range serviceConf.UpstreamConfig.Overrides { if override.Name == "" { c.logger.Warn( "Skipping UpstreamConfig.Overrides entry without a required name field", "entryIndex", i, "kind", serviceConf.GetKind(), "name", serviceConf.GetName(), "namespace", serviceConf.GetEnterpriseMeta().NamespaceOrEmpty(), ) continue // skip this impossible condition } seenUpstreams[override.ServiceID()] = struct{}{} upstreamConfigs[override.ServiceID()] = override } if serviceConf.UpstreamConfig.Defaults != nil { upstreamDefaults = serviceConf.UpstreamConfig.Defaults // Store the upstream defaults under a wildcard key so that they can be applied to // upstreams that are inferred from intentions and do not have explicit upstream configuration. cfgMap := make(map[string]interface{}) upstreamDefaults.MergeInto(cfgMap) wildcard := structs.NewServiceID(structs.WildcardSpecifier, structs.WildcardEnterpriseMetaInDefaultPartition()) usConfigs[wildcard] = cfgMap } } for upstream := range seenUpstreams { resolvedCfg := make(map[string]interface{}) // The protocol of an upstream is resolved in this order: // 1. Default protocol from proxy-defaults (how all services should be addressed) // 2. Protocol for upstream service defined in its service-defaults (how the upstream wants to be addressed) // 3. Protocol defined for the upstream in the service-defaults.(upstream_config.defaults|upstream_config.overrides) of the downstream // (how the downstream wants to address it) protocol := proxyConfGlobalProtocol _, upstreamSvcDefaults, err := state.ConfigEntry(ws, structs.ServiceDefaults, upstream.ID, &upstream.EnterpriseMeta) if err != nil { return err } if upstreamSvcDefaults != nil { cfg, ok := upstreamSvcDefaults.(*structs.ServiceConfigEntry) if !ok { return fmt.Errorf("invalid service config type %T", upstreamSvcDefaults) } if cfg.Protocol != "" { protocol = cfg.Protocol } } if protocol != "" { resolvedCfg["protocol"] = protocol } // Merge centralized defaults for all upstreams before configuration for specific upstreams if upstreamDefaults != nil { upstreamDefaults.MergeInto(resolvedCfg) } // The MeshGateway value from the proxy registration overrides the one from upstream_defaults // because it is specific to the proxy instance. // // The goal is to flatten the mesh gateway mode in this order: // 0. Value from centralized upstream_defaults // 1. Value from local proxy registration // 2. Value from centralized upstream_config // 3. Value from local upstream definition. This last step is done in the client's service manager. if !args.MeshGateway.IsZero() { resolvedCfg["mesh_gateway"] = args.MeshGateway } if upstreamConfigs[upstream] != nil { upstreamConfigs[upstream].MergeInto(resolvedCfg) } if len(resolvedCfg) > 0 { usConfigs[upstream] = resolvedCfg } } // don't allocate the slices just to not fill them if len(usConfigs) == 0 { *reply = thisReply return nil } if legacyUpstreams { // For legacy upstreams we return a map that is only keyed on the string ID, since they precede namespaces thisReply.UpstreamConfigs = make(map[string]map[string]interface{}) for us, conf := range usConfigs { thisReply.UpstreamConfigs[us.ID] = conf } } else { thisReply.UpstreamIDConfigs = make(structs.OpaqueUpstreamConfigs, 0, len(usConfigs)) for us, conf := range usConfigs { thisReply.UpstreamIDConfigs = append(thisReply.UpstreamIDConfigs, structs.OpaqueUpstreamConfig{Upstream: us, Config: conf}) } } *reply = thisReply return nil }) } // preflightCheck is meant to have kind-specific system validation outside of // content validation. The initial use case is restricting the ability to do // writes of service-intentions until the system is finished migration. func (c *ConfigEntry) preflightCheck(kind string) error { switch kind { case structs.ServiceIntentions: // Exit early if Connect hasn't been enabled. if !c.srv.config.ConnectEnabled { return ErrConnectNotEnabled } usingConfigEntries, err := c.srv.fsm.State().AreIntentionsInConfigEntries() if err != nil { return fmt.Errorf("system metadata lookup failed: %v", err) } if !usingConfigEntries { return ErrIntentionsNotUpgradedYet } } return nil }