package consul import ( "crypto/tls" "errors" "fmt" "io" "net" "strings" "time" "github.com/armon/go-metrics" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/metadata" "github.com/hashicorp/consul/agent/pool" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/lib" "github.com/hashicorp/consul/logging" connlimit "github.com/hashicorp/go-connlimit" "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/go-raftchunking" "github.com/hashicorp/memberlist" msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc" "github.com/hashicorp/raft" "github.com/hashicorp/yamux" ) const ( // jitterFraction is a the limit to the amount of jitter we apply // to a user specified MaxQueryTime. We divide the specified time by // the fraction. So 16 == 6.25% limit of jitter. This same fraction // is applied to the RPCHoldTimeout jitterFraction = 16 // Warn if the Raft command is larger than this. // If it's over 1MB something is probably being abusive. raftWarnSize = 1024 * 1024 // enqueueLimit caps how long we will wait to enqueue // a new Raft command. Something is probably wrong if this // value is ever reached. However, it prevents us from blocking // the requesting goroutine forever. enqueueLimit = 30 * time.Second ) var ( ErrChunkingResubmit = errors.New("please resubmit call for rechunking") ) func (s *Server) rpcLogger() hclog.Logger { return s.loggers.Named(logging.RPC) } // listen is used to listen for incoming RPC connections func (s *Server) listen(listener net.Listener) { for { // Accept a connection conn, err := listener.Accept() if err != nil { if s.shutdown { return } s.rpcLogger().Error("failed to accept RPC conn", "error", err) continue } free, err := s.rpcConnLimiter.Accept(conn) if err != nil { s.rpcLogger().Error("rejecting RPC conn from %s"+ " rpc_max_conns_per_client exceeded", conn.RemoteAddr().String()) conn.Close() continue } // Wrap conn so it will be auto-freed from conn limiter when it closes. conn = connlimit.Wrap(conn, free) go s.handleConn(conn, false) metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1) } } // logConn is a wrapper around memberlist's LogConn so that we format references // to "from" addresses in a consistent way. This is just a shorter name. func logConn(conn net.Conn) string { return memberlist.LogConn(conn) } // handleConn is used to determine if this is a Raft or // Consul type RPC connection and invoke the correct handler func (s *Server) handleConn(conn net.Conn, isTLS bool) { // Read a single byte buf := make([]byte, 1) // Limit how long the client can hold the connection open before they send the // magic byte (and authenticate when mTLS is enabled). If `isTLS == true` then // this also enforces a timeout on how long it takes for the handshake to // complete since tls.Conn.Read implicitly calls Handshake(). if s.config.RPCHandshakeTimeout > 0 { conn.SetReadDeadline(time.Now().Add(s.config.RPCHandshakeTimeout)) } if _, err := conn.Read(buf); err != nil { if err != io.EOF { s.rpcLogger().Error("failed to read byte", "conn", logConn(conn), "error", err, ) } conn.Close() return } typ := pool.RPCType(buf[0]) // Reset the deadline as we aren't sure what is expected next - it depends on // the protocol. if s.config.RPCHandshakeTimeout > 0 { conn.SetReadDeadline(time.Time{}) } // Enforce TLS if VerifyIncoming is set if s.tlsConfigurator.VerifyIncomingRPC() && !isTLS && typ != pool.RPCTLS && typ != pool.RPCTLSInsecure { s.rpcLogger().Warn("Non-TLS connection attempted with VerifyIncoming set", "conn", logConn(conn)) conn.Close() return } // Switch on the byte switch typ { case pool.RPCConsul: s.handleConsulConn(conn) case pool.RPCRaft: metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1) s.raftLayer.Handoff(conn) case pool.RPCTLS: // Don't allow malicious client to create TLS-in-TLS for ever. if isTLS { s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection %s", logConn(conn)) conn.Close() return } conn = tls.Server(conn, s.tlsConfigurator.IncomingRPCConfig()) s.handleConn(conn, true) case pool.RPCMultiplexV2: s.handleMultiplexV2(conn) case pool.RPCSnapshot: s.handleSnapshotConn(conn) case pool.RPCTLSInsecure: // Don't allow malicious client to create TLS-in-TLS for ever. if isTLS { s.rpcLogger().Error("TLS connection attempting to establish inner TLS connection %s", logConn(conn)) conn.Close() return } conn = tls.Server(conn, s.tlsConfigurator.IncomingInsecureRPCConfig()) s.handleInsecureConn(conn) default: if !s.handleEnterpriseRPCConn(typ, conn, isTLS) { s.rpcLogger().Error("unrecognized RPC byte", "byte", typ, "conn", logConn(conn), ) conn.Close() } } } // handleMultiplexV2 is used to multiplex a single incoming connection // using the Yamux multiplexer func (s *Server) handleMultiplexV2(conn net.Conn) { defer conn.Close() conf := yamux.DefaultConfig() conf.LogOutput = s.config.LogOutput server, _ := yamux.Server(conn, conf) for { sub, err := server.Accept() if err != nil { if err != io.EOF { s.rpcLogger().Error("multiplex conn accept failed", "conn", logConn(conn), "error", err, ) } return } go s.handleConsulConn(sub) } } // handleConsulConn is used to service a single Consul RPC connection func (s *Server) handleConsulConn(conn net.Conn) { defer conn.Close() rpcCodec := msgpackrpc.NewServerCodec(conn) for { select { case <-s.shutdownCh: return default: } if err := s.rpcServer.ServeRequest(rpcCodec); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { s.rpcLogger().Error("RPC error", "conn", logConn(conn), "error", err, ) metrics.IncrCounter([]string{"rpc", "request_error"}, 1) } return } metrics.IncrCounter([]string{"rpc", "request"}, 1) } } // handleInsecureConsulConn is used to service a single Consul INSECURERPC connection func (s *Server) handleInsecureConn(conn net.Conn) { defer conn.Close() rpcCodec := msgpackrpc.NewServerCodec(conn) for { select { case <-s.shutdownCh: return default: } if err := s.insecureRPCServer.ServeRequest(rpcCodec); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { s.rpcLogger().Error("INSECURERPC error", "conn", logConn(conn), "error", err, ) metrics.IncrCounter([]string{"rpc", "request_error"}, 1) } return } metrics.IncrCounter([]string{"rpc", "request"}, 1) } } // handleSnapshotConn is used to dispatch snapshot saves and restores, which // stream so don't use the normal RPC mechanism. func (s *Server) handleSnapshotConn(conn net.Conn) { go func() { defer conn.Close() if err := s.handleSnapshotRequest(conn); err != nil { s.rpcLogger().Error("Snapshot RPC error", "conn", logConn(conn), "error", err, ) } }() } // canRetry returns true if the given situation is safe for a retry. func canRetry(args interface{}, err error) bool { // No leader errors are always safe to retry since no state could have // been changed. if structs.IsErrNoLeader(err) { return true } // If we are chunking and it doesn't seem to have completed, try again intErr, ok := args.(error) if ok && strings.Contains(intErr.Error(), ErrChunkingResubmit.Error()) { return true } // Reads are safe to retry for stream errors, such as if a server was // being shut down. info, ok := args.(structs.RPCInfo) if ok && info.IsRead() && lib.IsErrEOF(err) { return true } return false } // forward is used to forward to a remote DC or to forward to the local leader // Returns a bool of if forwarding was performed, as well as any error func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) { var firstCheck time.Time // Handle DC forwarding dc := info.RequestDatacenter() if dc != s.config.Datacenter { err := s.forwardDC(method, dc, args, reply) return true, err } // Check if we can allow a stale read, ensure our local DB is initialized if info.IsRead() && info.AllowStaleRead() && !s.raft.LastContact().IsZero() { return false, nil } CHECK_LEADER: // Fail fast if we are in the process of leaving select { case <-s.leaveCh: return true, structs.ErrNoLeader default: } // Find the leader isLeader, leader := s.getLeader() // Handle the case we are the leader if isLeader { return false, nil } // Handle the case of a known leader rpcErr := structs.ErrNoLeader if leader != nil { rpcErr = s.connPool.RPC(s.config.Datacenter, leader.Addr, leader.Version, method, leader.UseTLS, args, reply) if rpcErr != nil && canRetry(info, rpcErr) { goto RETRY } return true, rpcErr } RETRY: // Gate the request until there is a leader if firstCheck.IsZero() { firstCheck = time.Now() } if time.Since(firstCheck) < s.config.RPCHoldTimeout { jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction) select { case <-time.After(jitter): goto CHECK_LEADER case <-s.leaveCh: case <-s.shutdownCh: } } // No leader found and hold time exceeded return true, rpcErr } // getLeader returns if the current node is the leader, and if not then it // returns the leader which is potentially nil if the cluster has not yet // elected a leader. func (s *Server) getLeader() (bool, *metadata.Server) { // Check if we are the leader if s.IsLeader() { return true, nil } // Get the leader leader := s.raft.Leader() if leader == "" { return false, nil } // Lookup the server server := s.serverLookup.Server(leader) // Server could be nil return false, server } // forwardDC is used to forward an RPC call to a remote DC, or fail if no servers func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error { manager, server, ok := s.router.FindRoute(dc) if !ok { if s.router.HasDatacenter(dc) { s.rpcLogger().Warn("RPC request to DC is currently failing as no server can be reached", "datacenter", dc) return structs.ErrDCNotAvailable } s.rpcLogger().Warn("RPC request for DC is currently failing as no path was found", "datacenter", dc, "method", method, ) return structs.ErrNoDCPath } metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1, []metrics.Label{{Name: "datacenter", Value: dc}}) if err := s.connPool.RPC(dc, server.Addr, server.Version, method, server.UseTLS, args, reply); err != nil { manager.NotifyFailedServer(server) s.rpcLogger().Error("RPC failed to server in DC", "server", server.Addr, "datacenter", dc, "method", method, "error", err, ) return err } return nil } // globalRPC is used to forward an RPC request to one server in each datacenter. // This will only error for RPC-related errors. Otherwise, application-level // errors can be sent in the response objects. func (s *Server) globalRPC(method string, args interface{}, reply structs.CompoundResponse) error { // Make a new request into each datacenter dcs := s.router.GetDatacenters() replies, total := 0, len(dcs) errorCh := make(chan error, total) respCh := make(chan interface{}, total) for _, dc := range dcs { go func(dc string) { rr := reply.New() if err := s.forwardDC(method, dc, args, &rr); err != nil { errorCh <- err return } respCh <- rr }(dc) } for replies < total { select { case err := <-errorCh: return err case rr := <-respCh: reply.Add(rr) replies++ } } return nil } type raftEncoder func(structs.MessageType, interface{}) ([]byte, error) // raftApply is used to encode a message, run it through raft, and return // the FSM response along with any errors func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) { return s.raftApplyMsgpack(t, msg) } // raftApplyMsgpack will msgpack encode the request and then run it through raft, // then return the FSM response along with any errors. func (s *Server) raftApplyMsgpack(t structs.MessageType, msg interface{}) (interface{}, error) { return s.raftApplyWithEncoder(t, msg, structs.Encode) } // raftApplyProtobuf will protobuf encode the request and then run it through raft, // then return the FSM response along with any errors. func (s *Server) raftApplyProtobuf(t structs.MessageType, msg interface{}) (interface{}, error) { return s.raftApplyWithEncoder(t, msg, structs.EncodeProtoInterface) } // raftApplyWithEncoder is used to encode a message, run it through raft, // and return the FSM response along with any errors. Unlike raftApply this // takes the encoder to use as an argument. func (s *Server) raftApplyWithEncoder(t structs.MessageType, msg interface{}, encoder raftEncoder) (interface{}, error) { if encoder == nil { return nil, fmt.Errorf("Failed to encode request: nil encoder") } buf, err := encoder(t, msg) if err != nil { return nil, fmt.Errorf("Failed to encode request: %v", err) } // Warn if the command is very large if n := len(buf); n > raftWarnSize { s.rpcLogger().Warn("Attempting to apply large raft entry", "size_in_bytes", n) } var chunked bool var future raft.ApplyFuture switch { case len(buf) <= raft.SuggestedMaxDataSize || t != structs.KVSRequestType: future = s.raft.Apply(buf, enqueueLimit) default: chunked = true future = raftchunking.ChunkingApply(buf, nil, enqueueLimit, s.raft.ApplyLog) } if err := future.Error(); err != nil { return nil, err } resp := future.Response() if chunked { // In this case we didn't apply all chunks successfully, possibly due // to a term change; resubmit if resp == nil { // This returns the error in the interface because the raft library // returns errors from the FSM via the future, not via err from the // apply function. Downstream client code expects to see any error // from the FSM (as opposed to the apply itself) and decide whether // it can retry in the future's response. return ErrChunkingResubmit, nil } // We expect that this conversion should always work chunkedSuccess, ok := resp.(raftchunking.ChunkingSuccess) if !ok { return nil, errors.New("unknown type of response back from chunking FSM") } // Return the inner wrapped response return chunkedSuccess.Response, nil } return resp, nil } // queryFn is used to perform a query operation. If a re-query is needed, the // passed-in watch set will be used to block for changes. The passed-in state // store should be used (vs. calling fsm.State()) since the given state store // will be correctly watched for changes if the state store is restored from // a snapshot. type queryFn func(memdb.WatchSet, *state.Store) error // blockingQuery is used to process a potentially blocking query operation. func (s *Server) blockingQuery(queryOpts structs.QueryOptionsCompat, queryMeta structs.QueryMetaCompat, fn queryFn) error { var timeout *time.Timer var queryTimeout time.Duration minQueryIndex := queryOpts.GetMinQueryIndex() // Fast path right to the non-blocking query. if minQueryIndex == 0 { goto RUN_QUERY } queryTimeout = queryOpts.GetMaxQueryTime() // Restrict the max query time, and ensure there is always one. if queryTimeout > s.config.MaxQueryTime { queryTimeout = s.config.MaxQueryTime } else if queryTimeout <= 0 { queryTimeout = s.config.DefaultQueryTime } // Apply a small amount of jitter to the request. queryTimeout += lib.RandomStagger(queryTimeout / jitterFraction) // Setup a query timeout. timeout = time.NewTimer(queryTimeout) defer timeout.Stop() RUN_QUERY: // Update the query metadata. s.setQueryMeta(queryMeta) // If the read must be consistent we verify that we are still the leader. if queryOpts.GetRequireConsistent() { if err := s.consistentRead(); err != nil { return err } } // Run the query. metrics.IncrCounter([]string{"rpc", "query"}, 1) // Operate on a consistent set of state. This makes sure that the // abandon channel goes with the state that the caller is using to // build watches. state := s.fsm.State() // We can skip all watch tracking if this isn't a blocking query. var ws memdb.WatchSet if minQueryIndex > 0 { ws = memdb.NewWatchSet() // This channel will be closed if a snapshot is restored and the // whole state store is abandoned. ws.Add(state.AbandonCh()) } // Block up to the timeout if we didn't see anything fresh. err := fn(ws, state) // Note we check queryOpts.MinQueryIndex is greater than zero to determine if // blocking was requested by client, NOT meta.Index since the state function // might return zero if something is not initialized and care wasn't taken to // handle that special case (in practice this happened a lot so fixing it // systematically here beats trying to remember to add zero checks in every // state method). We also need to ensure that unless there is an error, we // return an index > 0 otherwise the client will never block and burn CPU and // requests. if err == nil && queryMeta.GetIndex() < 1 { queryMeta.SetIndex(1) } if err == nil && minQueryIndex > 0 && queryMeta.GetIndex() <= minQueryIndex { if expired := ws.Watch(timeout.C); !expired { // If a restore may have woken us up then bail out from // the query immediately. This is slightly race-ey since // this might have been interrupted for other reasons, // but it's OK to kick it back to the caller in either // case. select { case <-state.AbandonCh(): default: goto RUN_QUERY } } } return err } // setQueryMeta is used to populate the QueryMeta data for an RPC call func (s *Server) setQueryMeta(m structs.QueryMetaCompat) { if s.IsLeader() { m.SetLastContact(0) m.SetKnownLeader(true) } else { m.SetLastContact(time.Since(s.raft.LastContact())) m.SetKnownLeader(s.raft.Leader() != "") } } // consistentRead is used to ensure we do not perform a stale // read. This is done by verifying leadership before the read. func (s *Server) consistentRead() error { defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now()) future := s.raft.VerifyLeader() if err := future.Error(); err != nil { return err //fail fast if leader verification fails } // poll consistent read readiness, wait for up to RPCHoldTimeout milliseconds if s.isReadyForConsistentReads() { return nil } jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction) deadline := time.Now().Add(s.config.RPCHoldTimeout) for time.Now().Before(deadline) { select { case <-time.After(jitter): // Drop through and check before we loop again. case <-s.shutdownCh: return fmt.Errorf("shutdown waiting for leader") } if s.isReadyForConsistentReads() { return nil } } return structs.ErrNotReadyForConsistentReads }