package consul import ( "fmt" "net" "strconv" "strings" "time" "github.com/armon/go-metrics" "github.com/hashicorp/consul/consul/structs" "github.com/hashicorp/raft" "github.com/hashicorp/serf/serf" ) const ( SerfCheckID = "serfHealth" SerfCheckName = "Serf Health Status" SerfCheckAliveOutput = "Agent alive and reachable" SerfCheckFailedOutput = "Agent not live or unreachable" ConsulServiceID = "consul" ConsulServiceName = "consul" newLeaderEvent = "consul:new-leader" ) // monitorLeadership is used to monitor if we acquire or lose our role // as the leader in the Raft cluster. There is some work the leader is // expected to do, so we must react to changes func (s *Server) monitorLeadership() { leaderCh := s.raft.LeaderCh() var stopCh chan struct{} for { select { case isLeader := <-leaderCh: if isLeader { stopCh = make(chan struct{}) go s.leaderLoop(stopCh) s.logger.Printf("[INFO] consul: cluster leadership acquired") } else if stopCh != nil { close(stopCh) stopCh = nil s.logger.Printf("[INFO] consul: cluster leadership lost") } case <-s.shutdownCh: return } } } // leaderLoop runs as long as we are the leader to run various // maintenance activities func (s *Server) leaderLoop(stopCh chan struct{}) { // Ensure we revoke leadership on stepdown defer s.revokeLeadership() // Fire a user event indicating a new leader payload := []byte(s.config.NodeName) if err := s.serfLAN.UserEvent(newLeaderEvent, payload, false); err != nil { s.logger.Printf("[WARN] consul: failed to broadcast new leader event: %v", err) } // Reconcile channel is only used once initial reconcile // has succeeded var reconcileCh chan serf.Member establishedLeader := false RECONCILE: // Setup a reconciliation timer reconcileCh = nil interval := time.After(s.config.ReconcileInterval) // Apply a raft barrier to ensure our FSM is caught up start := time.Now() barrier := s.raft.Barrier(0) if err := barrier.Error(); err != nil { s.logger.Printf("[ERR] consul: failed to wait for barrier: %v", err) goto WAIT } metrics.MeasureSince([]string{"consul", "leader", "barrier"}, start) // Check if we need to handle initial leadership actions if !establishedLeader { if err := s.establishLeadership(); err != nil { s.logger.Printf("[ERR] consul: failed to establish leadership: %v", err) goto WAIT } establishedLeader = true } // Reconcile any missing data if err := s.reconcile(); err != nil { s.logger.Printf("[ERR] consul: failed to reconcile: %v", err) goto WAIT } // Initial reconcile worked, now we can process the channel // updates reconcileCh = s.reconcileCh WAIT: // Periodically reconcile as long as we are the leader, // or when Serf events arrive for { select { case <-stopCh: return case <-s.shutdownCh: return case <-interval: goto RECONCILE case member := <-reconcileCh: s.reconcileMember(member) case index := <-s.tombstoneGC.ExpireCh(): go s.reapTombstones(index) } } } // establishLeadership is invoked once we become leader and are able // to invoke an initial barrier. The barrier is used to ensure any // previously inflight transactions have been committed and that our // state is up-to-date. func (s *Server) establishLeadership() error { // Hint the tombstone expiration timer. When we freshly establish leadership // we become the authoritative timer, and so we need to start the clock // on any pending GC events. s.tombstoneGC.SetEnabled(true) lastIndex := s.raft.LastIndex() s.tombstoneGC.Hint(lastIndex) s.logger.Printf("[DEBUG] consul: reset tombstone GC to index %d", lastIndex) // Setup ACLs if we are the leader and need to if err := s.initializeACL(); err != nil { s.logger.Printf("[ERR] consul: ACL initialization failed: %v", err) return err } // Setup the session timers. This is done both when starting up or when // a leader fail over happens. Since the timers are maintained by the leader // node along, effectively this means all the timers are renewed at the // time of failover. The TTL contract is that the session will not be expired // before the TTL, so expiring it later is allowable. // // This MUST be done after the initial barrier to ensure the latest Sessions // are available to be initialized. Otherwise initialization may use stale // data. if err := s.initializeSessionTimers(); err != nil { s.logger.Printf("[ERR] consul: Session Timers initialization failed: %v", err) return err } return nil } // revokeLeadership is invoked once we step down as leader. // This is used to cleanup any state that may be specific to a leader. func (s *Server) revokeLeadership() error { // Disable the tombstone GC, since it is only useful as a leader s.tombstoneGC.SetEnabled(false) // Clear the session timers on either shutdown or step down, since we // are no longer responsible for session expirations. if err := s.clearAllSessionTimers(); err != nil { s.logger.Printf("[ERR] consul: Clearing session timers failed: %v", err) return err } return nil } // initializeACL is used to setup the ACLs if we are the leader // and need to do this. func (s *Server) initializeACL() error { // Bail if not configured or we are not authoritative authDC := s.config.ACLDatacenter if len(authDC) == 0 || authDC != s.config.Datacenter { return nil } // Purge the cache, since it could've changed while we // were not the leader s.aclAuthCache.Purge() // Look for the anonymous token state := s.fsm.StateNew() acl, err := state.ACLGet(anonymousToken) if err != nil { return fmt.Errorf("failed to get anonymous token: %v", err) } // Create anonymous token if missing if acl == nil { req := structs.ACLRequest{ Datacenter: authDC, Op: structs.ACLSet, ACL: structs.ACL{ ID: anonymousToken, Name: "Anonymous Token", Type: structs.ACLTypeClient, }, } _, err := s.raftApply(structs.ACLRequestType, &req) if err != nil { return fmt.Errorf("failed to create anonymous token: %v", err) } } // Check for configured master token master := s.config.ACLMasterToken if len(master) == 0 { return nil } // Look for the master token acl, err = state.ACLGet(master) if err != nil { return fmt.Errorf("failed to get master token: %v", err) } if acl == nil { req := structs.ACLRequest{ Datacenter: authDC, Op: structs.ACLSet, ACL: structs.ACL{ ID: master, Name: "Master Token", Type: structs.ACLTypeManagement, }, } _, err := s.raftApply(structs.ACLRequestType, &req) if err != nil { return fmt.Errorf("failed to create master token: %v", err) } } return nil } // reconcile is used to reconcile the differences between Serf // membership and what is reflected in our strongly consistent store. // Mainly we need to ensure all live nodes are registered, all failed // nodes are marked as such, and all left nodes are de-registered. func (s *Server) reconcile() (err error) { defer metrics.MeasureSince([]string{"consul", "leader", "reconcile"}, time.Now()) members := s.serfLAN.Members() knownMembers := make(map[string]struct{}) for _, member := range members { if err := s.reconcileMember(member); err != nil { return err } knownMembers[member.Name] = struct{}{} } // Reconcile any members that have been reaped while we were not the leader return s.reconcileReaped(knownMembers) } // reconcileReaped is used to reconcile nodes that have failed and been reaped // from Serf but remain in the catalog. This is done by looking for SerfCheckID // in a critical state that does not correspond to a known Serf member. We generate // a "reap" event to cause the node to be cleaned up. func (s *Server) reconcileReaped(known map[string]struct{}) error { state := s.fsm.State() _, checks := state.ChecksInState(structs.HealthAny) for _, check := range checks { // Ignore any non serf checks if check.CheckID != SerfCheckID { continue } // Check if this node is "known" by serf if _, ok := known[check.Node]; ok { continue } // Create a fake member member := serf.Member{ Name: check.Node, Tags: map[string]string{ "dc": s.config.Datacenter, "role": "node", }, } // Get the node services, look for ConsulServiceID _, services := state.NodeServices(check.Node) serverPort := 0 for _, service := range services.Services { if service.ID == ConsulServiceID { serverPort = service.Port break } } // Create the appropriate tags if this was a server node if serverPort > 0 { member.Tags["role"] = "consul" member.Tags["port"] = strconv.FormatUint(uint64(serverPort), 10) } // Attempt to reap this member if err := s.handleReapMember(member); err != nil { return err } } return nil } // reconcileMember is used to do an async reconcile of a single // serf member func (s *Server) reconcileMember(member serf.Member) error { // Check if this is a member we should handle if !s.shouldHandleMember(member) { s.logger.Printf("[WARN] consul: skipping reconcile of node %v", member) return nil } defer metrics.MeasureSince([]string{"consul", "leader", "reconcileMember"}, time.Now()) var err error switch member.Status { case serf.StatusAlive: err = s.handleAliveMember(member) case serf.StatusFailed: err = s.handleFailedMember(member) case serf.StatusLeft: err = s.handleLeftMember(member) case StatusReap: err = s.handleReapMember(member) } if err != nil { s.logger.Printf("[ERR] consul: failed to reconcile member: %v: %v", member, err) // Permission denied should not bubble up if strings.Contains(err.Error(), permissionDenied) { return nil } return err } return nil } // shouldHandleMember checks if this is a Consul pool member func (s *Server) shouldHandleMember(member serf.Member) bool { if valid, dc := isConsulNode(member); valid && dc == s.config.Datacenter { return true } if valid, parts := isConsulServer(member); valid && parts.Datacenter == s.config.Datacenter { return true } return false } // handleAliveMember is used to ensure the node // is registered, with a passing health check. func (s *Server) handleAliveMember(member serf.Member) error { state := s.fsm.State() // Register consul service if a server var service *structs.NodeService if valid, parts := isConsulServer(member); valid { service = &structs.NodeService{ ID: ConsulServiceID, Service: ConsulServiceName, Port: parts.Port, } // Attempt to join the consul server if err := s.joinConsulServer(member, parts); err != nil { return err } } // Check if the node exists _, found, addr := state.GetNode(member.Name) if found && addr == member.Addr.String() { // Check if the associated service is available if service != nil { match := false _, services := state.NodeServices(member.Name) if services != nil { for id, _ := range services.Services { if id == service.ID { match = true } } } if !match { goto AFTER_CHECK } } // Check if the serfCheck is in the passing state _, checks := state.NodeChecks(member.Name) for _, check := range checks { if check.CheckID == SerfCheckID && check.Status == structs.HealthPassing { return nil } } } AFTER_CHECK: s.logger.Printf("[INFO] consul: member '%s' joined, marking health alive", member.Name) // Register with the catalog req := structs.RegisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, Address: member.Addr.String(), Service: service, Check: &structs.HealthCheck{ Node: member.Name, CheckID: SerfCheckID, Name: SerfCheckName, Status: structs.HealthPassing, Output: SerfCheckAliveOutput, }, WriteRequest: structs.WriteRequest{Token: s.config.ACLToken}, } var out struct{} return s.endpoints.Catalog.Register(&req, &out) } // handleFailedMember is used to mark the node's status // as being critical, along with all checks as unknown. func (s *Server) handleFailedMember(member serf.Member) error { state := s.fsm.State() // Check if the node exists _, found, addr := state.GetNode(member.Name) if found && addr == member.Addr.String() { // Check if the serfCheck is in the critical state _, checks := state.NodeChecks(member.Name) for _, check := range checks { if check.CheckID == SerfCheckID && check.Status == structs.HealthCritical { return nil } } } s.logger.Printf("[INFO] consul: member '%s' failed, marking health critical", member.Name) // Register with the catalog req := structs.RegisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, Address: member.Addr.String(), Check: &structs.HealthCheck{ Node: member.Name, CheckID: SerfCheckID, Name: SerfCheckName, Status: structs.HealthCritical, Output: SerfCheckFailedOutput, }, WriteRequest: structs.WriteRequest{Token: s.config.ACLToken}, } var out struct{} return s.endpoints.Catalog.Register(&req, &out) } // handleLeftMember is used to handle members that gracefully // left. They are deregistered if necessary. func (s *Server) handleLeftMember(member serf.Member) error { return s.handleDeregisterMember("left", member) } // handleReapMember is used to handle members that have been // reaped after a prolonged failure. They are deregistered. func (s *Server) handleReapMember(member serf.Member) error { return s.handleDeregisterMember("reaped", member) } // handleDeregisterMember is used to deregister a member of a given reason func (s *Server) handleDeregisterMember(reason string, member serf.Member) error { state := s.fsm.State() // Do not deregister ourself. This can only happen if the current leader // is leaving. Instead, we should allow a follower to take-over and // deregister us later. if member.Name == s.config.NodeName { s.logger.Printf("[WARN] consul: deregistering self (%s) should be done by follower", s.config.NodeName) return nil } // Remove from Raft peers if this was a server if valid, parts := isConsulServer(member); valid { if err := s.removeConsulServer(member, parts.Port); err != nil { return err } } // Check if the node does not exists _, found, _ := state.GetNode(member.Name) if !found { return nil } // Deregister the node s.logger.Printf("[INFO] consul: member '%s' %s, deregistering", member.Name, reason) req := structs.DeregisterRequest{ Datacenter: s.config.Datacenter, Node: member.Name, } var out struct{} return s.endpoints.Catalog.Deregister(&req, &out) } // joinConsulServer is used to try to join another consul server func (s *Server) joinConsulServer(m serf.Member, parts *serverParts) error { // Do not join ourself if m.Name == s.config.NodeName { return nil } // Check for possibility of multiple bootstrap nodes if parts.Bootstrap { members := s.serfLAN.Members() for _, member := range members { valid, p := isConsulServer(member) if valid && member.Name != m.Name && p.Bootstrap { s.logger.Printf("[ERR] consul: '%v' and '%v' are both in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.", m.Name, member.Name) return nil } } } // Attempt to add as a peer var addr net.Addr = &net.TCPAddr{IP: m.Addr, Port: parts.Port} future := s.raft.AddPeer(addr.String()) if err := future.Error(); err != nil && err != raft.ErrKnownPeer { s.logger.Printf("[ERR] consul: failed to add raft peer: %v", err) return err } return nil } // removeConsulServer is used to try to remove a consul server that has left func (s *Server) removeConsulServer(m serf.Member, port int) error { // Attempt to remove as peer peer := &net.TCPAddr{IP: m.Addr, Port: port} future := s.raft.RemovePeer(peer.String()) if err := future.Error(); err != nil && err != raft.ErrUnknownPeer { s.logger.Printf("[ERR] consul: failed to remove raft peer '%v': %v", peer, err) return err } else if err == nil { s.logger.Printf("[INFO] consul: removed server '%s' as peer", m.Name) } return nil } // reapTombstones is invoked by the current leader to manage garbage // collection of tombstones. When a key is deleted, we trigger a tombstone // GC clock. Once the expiration is reached, this routine is invoked // to clear all tombstones before this index. This must be replicated // through Raft to ensure consistency. We do this outside the leader loop // to avoid blocking. func (s *Server) reapTombstones(index uint64) { defer metrics.MeasureSince([]string{"consul", "leader", "reapTombstones"}, time.Now()) req := structs.TombstoneRequest{ Datacenter: s.config.Datacenter, Op: structs.TombstoneReap, ReapIndex: index, WriteRequest: structs.WriteRequest{Token: s.config.ACLToken}, } _, err := s.raftApply(structs.TombstoneRequestType, &req) if err != nil { s.logger.Printf("[ERR] consul: failed to reap tombstones up to %d: %v", index, err) } }