package peerstream import ( "errors" "fmt" "strings" "github.com/golang/protobuf/proto" "google.golang.org/genproto/googleapis/rpc/code" newproto "google.golang.org/protobuf/proto" "google.golang.org/protobuf/types/known/anypb" "github.com/hashicorp/consul/agent/cache" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/proto/pbpeering" "github.com/hashicorp/consul/proto/pbpeerstream" "github.com/hashicorp/consul/proto/pbservice" "github.com/hashicorp/consul/proto/pbstatus" "github.com/hashicorp/consul/types" ) /* TODO(peering): Then if we ever fail to apply a replication message we should either tear down the entire connection (and thus force a resync on reconnect) or request a resync operation. */ // makeExportedServiceListResponse handles preparing exported service list updates to the peer cluster. // Each cache.UpdateEvent will contain all exported services. func makeExportedServiceListResponse( mst *MutableStatus, update cache.UpdateEvent, ) (*pbpeerstream.ReplicationMessage_Response, error) { exportedService, ok := update.Result.(*pbpeerstream.ExportedServiceList) if !ok { return nil, fmt.Errorf("invalid type for exported service list response: %T", update.Result) } any, _, err := marshalToProtoAny[*pbpeerstream.ExportedServiceList](exportedService) if err != nil { return nil, fmt.Errorf("failed to marshal: %w", err) } var serviceNames []structs.ServiceName for _, serviceName := range exportedService.Services { sn := structs.ServiceNameFromString(serviceName) serviceNames = append(serviceNames, sn) } mst.SetExportedServices(serviceNames) return &pbpeerstream.ReplicationMessage_Response{ ResourceURL: pbpeerstream.TypeURLExportedServiceList, ResourceID: subExportedServiceList, Operation: pbpeerstream.Operation_OPERATION_UPSERT, Resource: any, }, nil } // makeServiceResponse handles preparing exported service instance updates to the peer cluster. // Each cache.UpdateEvent will contain all instances for a service name. // If there are no instances in the event, we consider that to be a de-registration. func makeServiceResponse( mst *MutableStatus, update cache.UpdateEvent, ) (*pbpeerstream.ReplicationMessage_Response, error) { serviceName := strings.TrimPrefix(update.CorrelationID, subExportedService) csn, ok := update.Result.(*pbservice.IndexedCheckServiceNodes) if !ok { return nil, fmt.Errorf("invalid type for service response: %T", update.Result) } export := &pbpeerstream.ExportedService{ Nodes: csn.Nodes, } any, err := anypb.New(export) if err != nil { return nil, fmt.Errorf("failed to marshal: %w", err) } return &pbpeerstream.ReplicationMessage_Response{ ResourceURL: pbpeerstream.TypeURLExportedService, ResourceID: serviceName, Operation: pbpeerstream.Operation_OPERATION_UPSERT, Resource: any, }, nil } func makeCARootsResponse( update cache.UpdateEvent, ) (*pbpeerstream.ReplicationMessage_Response, error) { any, _, err := marshalToProtoAny[*pbpeering.PeeringTrustBundle](update.Result) if err != nil { return nil, fmt.Errorf("failed to marshal: %w", err) } return &pbpeerstream.ReplicationMessage_Response{ ResourceURL: pbpeerstream.TypeURLPeeringTrustBundle, ResourceID: "roots", Operation: pbpeerstream.Operation_OPERATION_UPSERT, Resource: any, }, nil } func makeServerAddrsResponse( update cache.UpdateEvent, ) (*pbpeerstream.ReplicationMessage_Response, error) { any, _, err := marshalToProtoAny[*pbpeering.PeeringServerAddresses](update.Result) if err != nil { return nil, fmt.Errorf("failed to marshal: %w", err) } return &pbpeerstream.ReplicationMessage_Response{ ResourceURL: pbpeerstream.TypeURLPeeringServerAddresses, ResourceID: "server-addrs", Operation: pbpeerstream.Operation_OPERATION_UPSERT, Resource: any, }, nil } // marshalToProtoAny takes any input and returns: // the protobuf.Any type, the asserted T type, and any errors // during marshalling or type assertion. // `in` MUST be of type T or it returns an error. func marshalToProtoAny[T newproto.Message](in any) (*anypb.Any, T, error) { typ, ok := in.(T) if !ok { var outType T return nil, typ, fmt.Errorf("input type is not %T: %T", outType, in) } any, err := anypb.New(typ) if err != nil { return nil, typ, err } return any, typ, nil } func (s *Server) processResponse( peerName string, partition string, mutableStatus *MutableStatus, resp *pbpeerstream.ReplicationMessage_Response, ) (*pbpeerstream.ReplicationMessage, error) { if !pbpeerstream.KnownTypeURL(resp.ResourceURL) { err := fmt.Errorf("received response for unknown resource type %q", resp.ResourceURL) return makeNACKReply( resp.ResourceURL, resp.Nonce, code.Code_INVALID_ARGUMENT, err.Error(), ), err } if resp.Nonce == "" { err := fmt.Errorf("received response without a nonce for: %s:%s", resp.ResourceURL, resp.ResourceID) return makeNACKReply( resp.ResourceURL, resp.Nonce, code.Code_INVALID_ARGUMENT, err.Error(), ), err } switch resp.Operation { case pbpeerstream.Operation_OPERATION_UPSERT: if resp.Resource == nil { err := fmt.Errorf("received upsert response with no content") return makeNACKReply( resp.ResourceURL, resp.Nonce, code.Code_INVALID_ARGUMENT, err.Error(), ), err } if err := s.handleUpsert(peerName, partition, mutableStatus, resp.ResourceURL, resp.ResourceID, resp.Resource); err != nil { return makeNACKReply( resp.ResourceURL, resp.Nonce, code.Code_INTERNAL, fmt.Sprintf("upsert error, ResourceURL: %q, ResourceID: %q: %v", resp.ResourceURL, resp.ResourceID, err), ), fmt.Errorf("upsert error: %w", err) } return makeACKReply(resp.ResourceURL, resp.Nonce), nil default: var errMsg string if op := pbpeerstream.Operation_name[int32(resp.Operation)]; op != "" { errMsg = fmt.Sprintf("unsupported operation: %q", op) } else { errMsg = fmt.Sprintf("unsupported operation: %d", resp.Operation) } return makeNACKReply( resp.ResourceURL, resp.Nonce, code.Code_INVALID_ARGUMENT, errMsg, ), errors.New(errMsg) } } func (s *Server) handleUpsert( peerName string, partition string, mutableStatus *MutableStatus, resourceURL string, resourceID string, resource *anypb.Any, ) error { if resource.TypeUrl != resourceURL { return fmt.Errorf("mismatched resourceURL %q and Any typeUrl %q", resourceURL, resource.TypeUrl) } switch resourceURL { case pbpeerstream.TypeURLExportedServiceList: export := &pbpeerstream.ExportedServiceList{} if err := resource.UnmarshalTo(export); err != nil { return fmt.Errorf("failed to unmarshal resource: %w", err) } err := s.handleUpsertExportedServiceList(mutableStatus, peerName, partition, export) if err != nil { return fmt.Errorf("did not update imported services based on the exported service list event: %w", err) } return nil case pbpeerstream.TypeURLExportedService: sn := structs.ServiceNameFromString(resourceID) sn.OverridePartition(partition) export := &pbpeerstream.ExportedService{} if err := resource.UnmarshalTo(export); err != nil { return fmt.Errorf("failed to unmarshal resource: %w", err) } err := s.handleUpdateService(peerName, partition, sn, export) if err != nil { return fmt.Errorf("did not increment imported services count for service=%q: %w", sn.String(), err) } return nil case pbpeerstream.TypeURLPeeringTrustBundle: roots := &pbpeering.PeeringTrustBundle{} if err := resource.UnmarshalTo(roots); err != nil { return fmt.Errorf("failed to unmarshal resource: %w", err) } return s.handleUpsertRoots(peerName, partition, roots) case pbpeerstream.TypeURLPeeringServerAddresses: addrs := &pbpeering.PeeringServerAddresses{} if err := resource.UnmarshalTo(addrs); err != nil { return fmt.Errorf("failed to unmarshal resource: %w", err) } return s.handleUpsertServerAddrs(peerName, partition, addrs) default: return fmt.Errorf("unexpected resourceURL: %s", resourceURL) } } func (s *Server) handleUpsertExportedServiceList( mutableStatus *MutableStatus, peerName string, partition string, export *pbpeerstream.ExportedServiceList, ) error { exportedServices := make(map[structs.ServiceName]struct{}) var serviceNames []structs.ServiceName for _, service := range export.Services { sn := structs.ServiceNameFromString(service) sn.OverridePartition(partition) // This ensures that we don't delete exported service's sidecars below. snSidecarProxy := structs.ServiceNameFromString(service + syntheticProxyNameSuffix) snSidecarProxy.OverridePartition(partition) exportedServices[sn] = struct{}{} exportedServices[snSidecarProxy] = struct{}{} serviceNames = append(serviceNames, sn) } entMeta := structs.NodeEnterpriseMetaInPartition(partition) _, serviceList, err := s.GetStore().ServiceList(nil, entMeta, peerName) if err != nil { return err } for _, sn := range serviceList { if _, ok := exportedServices[sn]; !ok { err := s.handleUpdateService(peerName, partition, sn, nil) if err != nil { return fmt.Errorf("failed to delete unexported service: %w", err) } } } mutableStatus.SetImportedServices(serviceNames) return nil } // handleUpdateService handles both deletion and upsert events for a service. // // On an UPSERT event: // - All nodes, services, checks in the input pbNodes are re-applied through Raft. // - Any nodes, services, or checks in the catalog that were not in the input pbNodes get deleted. // // On a DELETE event: // - A reconciliation against nil or empty input pbNodes leads to deleting all stored catalog resources // associated with the service name. func (s *Server) handleUpdateService( peerName string, partition string, sn structs.ServiceName, export *pbpeerstream.ExportedService, ) error { // Capture instances in the state store for reconciliation later. _, storedInstances, err := s.GetStore().CheckServiceNodes(nil, sn.Name, &sn.EnterpriseMeta, peerName) if err != nil { return fmt.Errorf("failed to read imported services: %w", err) } structsNodes, err := export.CheckServiceNodesToStruct() if err != nil { return fmt.Errorf("failed to convert protobuf instances to structs: %w", err) } // Normalize the data into a convenient form for operation. snap := newHealthSnapshot(structsNodes, partition, peerName) for _, nodeSnap := range snap.Nodes { // First register the node req := nodeSnap.Node.ToRegisterRequest() if err := s.Backend.CatalogRegister(&req); err != nil { return fmt.Errorf("failed to register node: %w", err) } // Then register all services on that node for _, svcSnap := range nodeSnap.Services { req.Service = svcSnap.Service if err := s.Backend.CatalogRegister(&req); err != nil { return fmt.Errorf("failed to register service: %w", err) } } req.Service = nil // Then register all checks on that node var chks structs.HealthChecks for _, svcSnap := range nodeSnap.Services { for _, c := range svcSnap.Checks { chks = append(chks, c) } } req.Checks = chks if err := s.Backend.CatalogRegister(&req); err != nil { return fmt.Errorf("failed to register check: %w", err) } } // // Now that the data received has been stored in the state store, the rest of this // function is responsible for cleaning up data in the catalog that wasn't in the snapshot. // // nodeCheckTuple uniquely identifies a node check in the catalog. // The partition is not needed because we are only operating on one partition's catalog. type nodeCheckTuple struct { checkID types.CheckID node string } var ( // unusedNodes tracks node names that were not present in the latest response. // Missing nodes are not assumed to be deleted because there may be other service names // registered on them. // Inside we also track a map of node checks associated with the node. unusedNodes = make(map[string]struct{}) // deletedNodeChecks tracks node checks that were not present in the latest response. // A single node check will be attached to all service instances of a node, so this // deduplication prevents issuing multiple deregistrations for a single check. deletedNodeChecks = make(map[nodeCheckTuple]struct{}) ) for _, csn := range storedInstances { if _, ok := snap.Nodes[csn.Node.Node]; !ok { unusedNodes[csn.Node.Node] = struct{}{} // Since the node is not in the snapshot we can know the associated service // instance is not in the snapshot either, since a service instance can't // exist without a node. // This will also delete all service checks. err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{ Node: csn.Node.Node, ServiceID: csn.Service.ID, EnterpriseMeta: csn.Service.EnterpriseMeta, PeerName: peerName, }) if err != nil { return fmt.Errorf("failed to deregister service %q: %w", csn.Service.CompoundServiceID(), err) } // We can't know if a node check was deleted from the exporting cluster // (but not the node itself) if the node wasn't in the snapshot, // so we do not loop over checks here. // If the unusedNode gets deleted below that will also delete node checks. continue } // Delete the service instance if not in the snapshot. sid := csn.Service.CompoundServiceID() if _, ok := snap.Nodes[csn.Node.Node].Services[sid]; !ok { err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{ Node: csn.Node.Node, ServiceID: csn.Service.ID, EnterpriseMeta: csn.Service.EnterpriseMeta, PeerName: peerName, }) if err != nil { ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/ns:%s/service_id:%s", csn.Service.PartitionOrDefault(), peerName, csn.Node.Node, csn.Service.NamespaceOrDefault(), csn.Service.ID) return fmt.Errorf("failed to deregister service %q: %w", ident, err) } // When a service is deleted all associated checks also get deleted as a side effect. continue } // Reconcile checks. for _, chk := range csn.Checks { if _, ok := snap.Nodes[csn.Node.Node].Services[sid].Checks[chk.CheckID]; !ok { // Checks without a ServiceID are node checks. // If the node exists but the check does not then the check was deleted. if chk.ServiceID == "" { // Deduplicate node checks to avoid deregistering a check multiple times. tuple := nodeCheckTuple{ checkID: chk.CheckID, node: chk.Node, } deletedNodeChecks[tuple] = struct{}{} continue } // If the check isn't a node check then it's a service check. // Service checks that were not present can be deleted immediately because // checks for a given service ID will only be attached to a single CheckServiceNode. err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{ Node: chk.Node, CheckID: chk.CheckID, EnterpriseMeta: chk.EnterpriseMeta, PeerName: peerName, }) if err != nil { ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/ns:%s/check_id:%s", chk.PartitionOrDefault(), peerName, chk.Node, chk.NamespaceOrDefault(), chk.CheckID) return fmt.Errorf("failed to deregister check %q: %w", ident, err) } } } } // Delete all deduplicated node checks. for chk := range deletedNodeChecks { nodeMeta := structs.NodeEnterpriseMetaInPartition(sn.PartitionOrDefault()) err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{ Node: chk.node, CheckID: chk.checkID, EnterpriseMeta: *nodeMeta, PeerName: peerName, }) if err != nil { ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/check_id:%s", nodeMeta.PartitionOrDefault(), peerName, chk.node, chk.checkID) return fmt.Errorf("failed to deregister node check %q: %w", ident, err) } } // Delete any nodes that do not have any other services registered on them. for node := range unusedNodes { nodeMeta := structs.NodeEnterpriseMetaInPartition(sn.PartitionOrDefault()) _, ns, err := s.GetStore().NodeServices(nil, node, nodeMeta, peerName) if err != nil { return fmt.Errorf("failed to query services on node: %w", err) } if ns != nil && len(ns.Services) >= 1 { // At least one service is still registered on this node, so we keep it. continue } // All services on the node were deleted, so the node is also cleaned up. err = s.Backend.CatalogDeregister(&structs.DeregisterRequest{ Node: node, PeerName: peerName, EnterpriseMeta: *nodeMeta, }) if err != nil { ident := fmt.Sprintf("partition:%s/peer:%s/node:%s", nodeMeta.PartitionOrDefault(), peerName, node) return fmt.Errorf("failed to deregister node %q: %w", ident, err) } } return nil } func (s *Server) handleUpsertRoots( peerName string, partition string, trustBundle *pbpeering.PeeringTrustBundle, ) error { // We override the partition and peer name so that the trust bundle gets stored // in the importing partition with a reference to the peer it was imported from. trustBundle.Partition = partition trustBundle.PeerName = peerName req := &pbpeering.PeeringTrustBundleWriteRequest{ PeeringTrustBundle: trustBundle, } return s.Backend.PeeringTrustBundleWrite(req) } func (s *Server) handleUpsertServerAddrs( peerName string, partition string, addrs *pbpeering.PeeringServerAddresses, ) error { q := state.Query{ Value: peerName, EnterpriseMeta: *structs.DefaultEnterpriseMetaInPartition(partition), } _, existing, err := s.GetStore().PeeringRead(nil, q) if err != nil { return fmt.Errorf("failed to read peering: %w", err) } if existing == nil || !existing.IsActive() { return fmt.Errorf("peering does not exist or has been marked for deletion") } // Clone to avoid mutating the existing data p := proto.Clone(existing).(*pbpeering.Peering) p.PeerServerAddresses = addrs.GetAddresses() req := &pbpeering.PeeringWriteRequest{ Peering: p, } return s.Backend.PeeringWrite(req) } func makeACKReply(resourceURL, nonce string) *pbpeerstream.ReplicationMessage { return makeReplicationRequest(&pbpeerstream.ReplicationMessage_Request{ ResourceURL: resourceURL, ResponseNonce: nonce, }) } func makeNACKReply(resourceURL, nonce string, errCode code.Code, errMsg string) *pbpeerstream.ReplicationMessage { var rpcErr *pbstatus.Status if errCode != code.Code_OK || errMsg != "" { rpcErr = &pbstatus.Status{ Code: int32(errCode), Message: errMsg, } } return makeReplicationRequest(&pbpeerstream.ReplicationMessage_Request{ ResourceURL: resourceURL, ResponseNonce: nonce, Error: rpcErr, }) } // makeReplicationRequest is a convenience method to make a Request-type ReplicationMessage. func makeReplicationRequest(req *pbpeerstream.ReplicationMessage_Request) *pbpeerstream.ReplicationMessage { return &pbpeerstream.ReplicationMessage{ Payload: &pbpeerstream.ReplicationMessage_Request_{ Request: req, }, } } // makeReplicationResponse is a convenience method to make a Response-type ReplicationMessage. func makeReplicationResponse(resp *pbpeerstream.ReplicationMessage_Response) *pbpeerstream.ReplicationMessage { return &pbpeerstream.ReplicationMessage{ Payload: &pbpeerstream.ReplicationMessage_Response_{ Response: resp, }, } }