package consul import ( "bufio" "bytes" "context" "crypto/x509" "encoding/binary" "errors" "fmt" "io" "io/ioutil" "math" "net" "os" "path/filepath" "strings" "sync" "testing" "time" "github.com/hashicorp/go-hclog" "github.com/hashicorp/go-memdb" "github.com/hashicorp/raft" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" "google.golang.org/grpc" "github.com/hashicorp/consul-net-rpc/go-msgpack/codec" msgpackrpc "github.com/hashicorp/consul-net-rpc/net-rpc-msgpackrpc" "github.com/hashicorp/consul/acl" "github.com/hashicorp/consul/agent/connect" "github.com/hashicorp/consul/agent/consul/state" agent_grpc "github.com/hashicorp/consul/agent/grpc/private" "github.com/hashicorp/consul/agent/pool" "github.com/hashicorp/consul/agent/structs" tokenStore "github.com/hashicorp/consul/agent/token" "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/lib" "github.com/hashicorp/consul/proto/pbsubscribe" "github.com/hashicorp/consul/sdk/testutil" "github.com/hashicorp/consul/sdk/testutil/retry" "github.com/hashicorp/consul/testrpc" "github.com/hashicorp/consul/tlsutil" ) func TestRPC_NoLeader_Fail(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 1 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // Make sure we eventually fail with a no leader error, which we should // see given the short timeout. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err == nil || err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("bad: %v", err) } // Now make sure it goes through. testrpc.WaitForTestAgent(t, s1.RPC, "dc1") err = msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err != nil { t.Fatalf("bad: %v", err) } } func TestRPC_NoLeader_Fail_on_stale_read(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 1 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // Make sure we eventually fail with a no leader error, which we should // see given the short timeout. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err == nil || err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("bad: %v", err) } // Until leader has never been known, stale should fail getKeysReq := structs.KeyListRequest{ Datacenter: "dc1", Prefix: "", Seperator: "/", QueryOptions: structs.QueryOptions{AllowStale: true}, } var keyList structs.IndexedKeyList if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err.Error() != structs.ErrNoLeader.Error() { t.Fatalf("expected %v but got err: %v", structs.ErrNoLeader, err) } testrpc.WaitForTestAgent(t, s1.RPC, "dc1") if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err != nil { t.Fatalf("Did not expect any error but got err: %v", err) } } func TestRPC_NoLeader_Retry(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 10 * time.Second }) defer os.RemoveAll(dir1) defer s1.Shutdown() codec := rpcClient(t, s1) defer codec.Close() arg := structs.RegisterRequest{ Datacenter: "dc1", Node: "foo", Address: "127.0.0.1", } var out struct{} // This isn't sure-fire but tries to check that we don't have a // leader going into the RPC, so we exercise the retry logic. if ok, _, _ := s1.getLeader(); ok { t.Fatalf("should not have a leader yet") } // The timeout is long enough to ride out any reasonable leader // election. err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out) if err != nil { t.Fatalf("bad: %v", err) } } func TestRPC_getLeader_ErrLeaderNotTracked(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } cluster := newTestCluster(t, &testClusterConfig{ Datacenter: "dc1", Servers: 3, ServerWait: func(t *testing.T, srv *Server) { // The test cluster waits for a leader to be established // but not for all the RPC tracking of all servers to be updated // so we also want to wait for that here retry.Run(t, func(r *retry.R) { if !srv.IsLeader() { _, _, err := srv.getLeader() require.NoError(r, err) } }) }, }) // At this point we know we have a cluster with a leader and all followers are tracking that // leader in the serverLookup struct. We need to find a follower to hack its server lookup // to force the error we desire var follower *Server for _, srv := range cluster.Servers { if !srv.IsLeader() { follower = srv break } } _, leaderMeta, err := follower.getLeader() require.NoError(t, err) // now do some behind the scenes trickery on the followers server lookup // to remove the leader from it so that we can force a ErrLeaderNotTracked error follower.serverLookup.RemoveServer(leaderMeta) isLeader, meta, err := follower.getLeader() require.Error(t, err) require.True(t, errors.Is(err, structs.ErrLeaderNotTracked)) require.Nil(t, meta) require.False(t, isLeader) } type MockSink struct { *bytes.Buffer cancel bool } func (m *MockSink) ID() string { return "Mock" } func (m *MockSink) Cancel() error { m.cancel = true return nil } func (m *MockSink) Close() error { return nil } func TestServer_blockingQuery(t *testing.T) { t.Parallel() _, s := testServerWithConfig(t) // Perform a non-blocking query. Note that it's significant that the meta has // a zero index in response - the implied opts.MinQueryIndex is also zero but // this should not block still. t.Run("non-blocking query", func(t *testing.T) { var opts structs.QueryOptions var meta structs.QueryMeta var calls int fn := func(_ memdb.WatchSet, _ *state.Store) error { calls++ return nil } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.Equal(t, 1, calls) }) // Perform a blocking query that gets woken up and loops around once. t.Run("blocking query - single loop", func(t *testing.T) { opts := structs.QueryOptions{ MinQueryIndex: 3, } var meta structs.QueryMeta var calls int fn := func(ws memdb.WatchSet, _ *state.Store) error { if calls == 0 { meta.Index = 3 fakeCh := make(chan struct{}) close(fakeCh) ws.Add(fakeCh) } else { meta.Index = 4 } calls++ return nil } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.Equal(t, 2, calls) }) // Perform a blocking query that returns a zero index from blocking func (e.g. // no state yet). This should still return an empty response immediately, but // with index of 1 and then block on the next attempt. In one sense zero index // is not really a valid response from a state method that is not an error but // in practice a lot of state store operations do return it unless they // explicitly special checks to turn 0 into 1. Often this is not caught or // covered by tests but eventually when hit in the wild causes blocking // clients to busy loop and burn CPU. This test ensure that blockingQuery // systematically does the right thing to prevent future bugs like that. t.Run("blocking query with 0 modifyIndex from state func", func(t *testing.T) { opts := structs.QueryOptions{ MinQueryIndex: 0, } var meta structs.QueryMeta var calls int fn := func(ws memdb.WatchSet, _ *state.Store) error { if opts.MinQueryIndex > 0 { // If client requested blocking, block forever. This is simulating // waiting for the watched resource to be initialized/written to giving // it a non-zero index. Note the timeout on the query options is relied // on to stop the test taking forever. fakeCh := make(chan struct{}) ws.Add(fakeCh) } meta.Index = 0 calls++ return nil } require.NoError(t, s.blockingQuery(&opts, &meta, fn)) assert.Equal(t, 1, calls) assert.Equal(t, uint64(1), meta.Index, "expect fake index of 1 to force client to block on next update") // Simulate client making next request opts.MinQueryIndex = 1 opts.MaxQueryTime = 20 * time.Millisecond // Don't wait too long // This time we should block even though the func returns index 0 still t0 := time.Now() require.NoError(t, s.blockingQuery(&opts, &meta, fn)) t1 := time.Now() assert.Equal(t, 2, calls) assert.Equal(t, uint64(1), meta.Index, "expect fake index of 1 to force client to block on next update") assert.True(t, t1.Sub(t0) > 20*time.Millisecond, "should have actually blocked waiting for timeout") }) // Perform a query that blocks and gets interrupted when the state store // is abandoned. t.Run("blocking query interrupted by abandonCh", func(t *testing.T) { opts := structs.QueryOptions{ MinQueryIndex: 3, } var meta structs.QueryMeta var calls int fn := func(_ memdb.WatchSet, _ *state.Store) error { if calls == 0 { meta.Index = 3 snap, err := s.fsm.Snapshot() if err != nil { t.Fatalf("err: %v", err) } defer snap.Release() buf := bytes.NewBuffer(nil) sink := &MockSink{buf, false} if err := snap.Persist(sink); err != nil { t.Fatalf("err: %v", err) } if err := s.fsm.Restore(sink); err != nil { t.Fatalf("err: %v", err) } } calls++ return nil } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.Equal(t, 1, calls) }) t.Run("ResultsFilteredByACLs is reset for unauthenticated calls", func(t *testing.T) { opts := structs.QueryOptions{ Token: "", } var meta structs.QueryMeta fn := func(_ memdb.WatchSet, _ *state.Store) error { meta.ResultsFilteredByACLs = true return nil } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.False(t, meta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be reset for unauthenticated calls") }) t.Run("ResultsFilteredByACLs is honored for authenticated calls", func(t *testing.T) { token, err := lib.GenerateUUID(nil) require.NoError(t, err) opts := structs.QueryOptions{ Token: token, } var meta structs.QueryMeta fn := func(_ memdb.WatchSet, _ *state.Store) error { meta.ResultsFilteredByACLs = true return nil } err = s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.True(t, meta.ResultsFilteredByACLs, "ResultsFilteredByACLs should be honored for authenticated calls") }) t.Run("non-blocking query for item that does not exist", func(t *testing.T) { opts := structs.QueryOptions{} meta := structs.QueryMeta{} calls := 0 fn := func(_ memdb.WatchSet, _ *state.Store) error { calls++ return errNotFound } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.Equal(t, 1, calls) }) t.Run("blocking query for item that does not exist", func(t *testing.T) { opts := structs.QueryOptions{MinQueryIndex: 3, MaxQueryTime: 100 * time.Millisecond} meta := structs.QueryMeta{} calls := 0 fn := func(ws memdb.WatchSet, _ *state.Store) error { calls++ if calls == 1 { meta.Index = 3 ch := make(chan struct{}) close(ch) ws.Add(ch) return errNotFound } meta.Index = 5 return errNotFound } err := s.blockingQuery(&opts, &meta, fn) require.NoError(t, err) require.Equal(t, 2, calls) }) t.Run("blocking query for item that existed and is removed", func(t *testing.T) { opts := structs.QueryOptions{MinQueryIndex: 3, MaxQueryTime: 100 * time.Millisecond} meta := structs.QueryMeta{} calls := 0 fn := func(ws memdb.WatchSet, _ *state.Store) error { calls++ if calls == 1 { meta.Index = 3 ch := make(chan struct{}) close(ch) ws.Add(ch) return nil } meta.Index = 5 return errNotFound } start := time.Now() err := s.blockingQuery(&opts, &meta, fn) require.True(t, time.Since(start) < opts.MaxQueryTime, "query timed out") require.NoError(t, err) require.Equal(t, 2, calls) }) t.Run("blocking query for non-existent item that is created", func(t *testing.T) { opts := structs.QueryOptions{MinQueryIndex: 3, MaxQueryTime: 100 * time.Millisecond} meta := structs.QueryMeta{} calls := 0 fn := func(ws memdb.WatchSet, _ *state.Store) error { calls++ if calls == 1 { meta.Index = 3 ch := make(chan struct{}) close(ch) ws.Add(ch) return errNotFound } meta.Index = 5 return nil } start := time.Now() err := s.blockingQuery(&opts, &meta, fn) require.True(t, time.Since(start) < opts.MaxQueryTime, "query timed out") require.NoError(t, err) require.Equal(t, 2, calls) }) } func TestRPC_ReadyForConsistentReads(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir, s := testServerWithConfig(t, func(c *Config) { c.RPCHoldTimeout = 2 * time.Millisecond }) defer os.RemoveAll(dir) defer s.Shutdown() testrpc.WaitForLeader(t, s.RPC, "dc1") if !s.isReadyForConsistentReads() { t.Fatal("Server should be ready for consistent reads") } s.resetConsistentReadReady() err := s.consistentRead() if err.Error() != "Not ready to serve consistent reads" { t.Fatal("Server should NOT be ready for consistent reads") } go func() { time.Sleep(100 * time.Millisecond) s.setConsistentReadReady() }() retry.Run(t, func(r *retry.R) { if err := s.consistentRead(); err != nil { r.Fatalf("Expected server to be ready for consistent reads, got error %v", err) } }) } func TestRPC_MagicByteTimeout(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHandshakeTimeout = 10 * time.Millisecond }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with bare TCP to simulate a malicious client trying // to hold open resources. addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Wait for more than the timeout. This is timing dependent so could fail if // the CPU is super overloaded so the handler goroutine so I'm using a retry // loop below to be sure but this feels like a pretty generous margin for // error (10x the timeout and 100ms of scheduling time). time.Sleep(100 * time.Millisecond) // Set a read deadline on the Conn in case the timeout is not working we don't // want the read below to block forever. Needs to be much longer than what we // expect and the error should be different too. conn.SetReadDeadline(time.Now().Add(3 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a write // might not detect the close). buf := make([]byte, 10) _, err = conn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } func TestRPC_TLSHandshakeTimeout(t *testing.T) { // if this test is failing because of expired certificates // use the procedure in test/CA-GENERATION.md if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCHandshakeTimeout = 10 * time.Millisecond c.TLSConfig.InternalRPC.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.InternalRPC.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.InternalRPC.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.InternalRPC.VerifyServerHostname = true c.TLSConfig.InternalRPC.VerifyOutgoing = true c.TLSConfig.InternalRPC.VerifyIncoming = true }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with TLS magic byte delivered on time addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Write TLS byte to avoid being closed by either the (outer) first byte // timeout or the fact that server requires TLS _, err = conn.Write([]byte{byte(pool.RPCTLS)}) require.NoError(t, err) // Wait for more than the timeout before we start a TLS handshake. This is // timing dependent so could fail if the CPU is super overloaded so the // handler goroutine so I'm using a retry loop below to be sure but this feels // like a pretty generous margin for error (10x the timeout and 100ms of // scheduling time). time.Sleep(100 * time.Millisecond) // Set a read deadline on the Conn in case the timeout is not working we don't // want the read below to block forever. Needs to be much longer than what we // expect and the error should be different too. conn.SetReadDeadline(time.Now().Add(3 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a write // might not detect the close). buf := make([]byte, 10) _, err = conn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } func TestRPC_PreventsTLSNesting(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() cases := []struct { name string outerByte pool.RPCType innerByte pool.RPCType wantClose bool }{ { // Base case, sanity check normal RPC in TLS works name: "RPC in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCConsul, wantClose: false, }, { // Nested TLS-in-TLS name: "TLS in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCTLS, wantClose: true, }, { // Nested TLS-in-TLS name: "TLS in Insecure TLS", outerByte: pool.RPCTLSInsecure, innerByte: pool.RPCTLS, wantClose: true, }, { // Nested TLS-in-TLS name: "Insecure TLS in TLS", outerByte: pool.RPCTLS, innerByte: pool.RPCTLSInsecure, wantClose: true, }, { // Nested TLS-in-TLS name: "Insecure TLS in Insecure TLS", outerByte: pool.RPCTLSInsecure, innerByte: pool.RPCTLSInsecure, wantClose: true, }, } for _, tc := range cases { t.Run(tc.name, func(t *testing.T) { dir1, s1 := testServerWithConfig(t, func(c *Config) { c.TLSConfig.InternalRPC.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.InternalRPC.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.InternalRPC.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.InternalRPC.VerifyServerHostname = true c.TLSConfig.InternalRPC.VerifyOutgoing = true c.TLSConfig.InternalRPC.VerifyIncoming = false // saves us getting client cert setup c.TLSConfig.Domain = "consul" }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with TLS magic byte delivered on time addr := s1.config.RPCAdvertise conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) defer conn.Close() // Write Outer magic byte _, err = conn.Write([]byte{byte(tc.outerByte)}) require.NoError(t, err) // Start tls client tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper() tlsConn, err := tlsWrap("dc1", conn) require.NoError(t, err) // Write Inner magic byte _, err = tlsConn.Write([]byte{byte(tc.innerByte)}) require.NoError(t, err) if tc.wantClose { // Allow up to a second for a read failure to indicate conn was closed by // server. conn.SetReadDeadline(time.Now().Add(1 * time.Second)) retry.Run(t, func(r *retry.R) { // Sanity check the conn was closed by attempting to read from it (a // write might not detect the close). buf := make([]byte, 10) _, err = tlsConn.Read(buf) require.Error(r, err) require.Contains(r, err.Error(), "EOF") }) } else { // Set a shorter read deadline that should typically be enough to detect // immediate close but will also not make test hang forever. This // positive case is mostly just a sanity check that the test code here // is actually not failing just due to some other error in the way we // setup TLS. It also sanity checks that we still allow valid TLS conns // but if it produces possible false-positives in CI sometimes that's // not such a huge deal - CI won't be brittle and it will have done it's // job as a sanity check most of the time. conn.SetReadDeadline(time.Now().Add(50 * time.Millisecond)) buf := make([]byte, 10) _, err = tlsConn.Read(buf) require.Error(t, err) require.Contains(t, err.Error(), "i/o timeout") } }) } } func connectClient(t *testing.T, s1 *Server, mb pool.RPCType, useTLS, wantOpen bool, message string) net.Conn { t.Helper() addr := s1.config.RPCAdvertise tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper() conn, err := net.DialTimeout("tcp", addr.String(), time.Second) require.NoError(t, err) // Write magic byte so we aren't timed out outerByte := mb if useTLS { outerByte = pool.RPCTLS } _, err = conn.Write([]byte{byte(outerByte)}) require.NoError(t, err) if useTLS { tlsConn, err := tlsWrap(s1.config.Datacenter, conn) // Subtly, tlsWrap will NOT actually do a handshake in this case - it only // does so for some configs, so even if the server closed the conn before // handshake this won't fail and it's only when we attempt to read or write // that we'll see the broken pipe. require.NoError(t, err, "%s: wanted open conn, failed TLS handshake: %s", message, err) conn = tlsConn // Write Inner magic byte _, err = conn.Write([]byte{byte(mb)}) if !wantOpen { // TLS Handshake will be done on this attempt to write and should fail require.Error(t, err, "%s: wanted closed conn, TLS Handshake succeeded", message) } else { require.NoError(t, err, "%s: wanted open conn, failed writing inner magic byte: %s", message, err) } } // Check if the conn is in the state we want. retry.Run(t, func(r *retry.R) { // Don't wait around as server won't be sending data but the read will fail // immediately if the conn is closed. conn.SetReadDeadline(time.Now().Add(1 * time.Millisecond)) buf := make([]byte, 10) _, err := conn.Read(buf) require.Error(r, err) if wantOpen { require.Contains(r, err.Error(), "i/o timeout", "%s: wanted an open conn (read timeout)", message) } else { if useTLS { require.Error(r, err) // TLS may fail during either read or write of the handshake so there // are a few different errors that come up. if !strings.Contains(err.Error(), "read: connection reset by peer") && !strings.Contains(err.Error(), "write: connection reset by peer") && !strings.Contains(err.Error(), "write: broken pipe") { r.Fatalf("%s: wanted closed conn got err: %s", message, err) } } else { require.Contains(r, err.Error(), "EOF", "%s: wanted a closed conn", message) } } }) return conn } func TestRPC_RPCMaxConnsPerClient(t *testing.T) { // if this test is failing because of expired certificates // use the procedure in test/CA-GENERATION.md if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() cases := []struct { name string magicByte pool.RPCType tlsEnabled bool }{ {"RPC v2", pool.RPCMultiplexV2, false}, {"RPC v2 TLS", pool.RPCMultiplexV2, true}, {"RPC", pool.RPCConsul, false}, {"RPC TLS", pool.RPCConsul, true}, } for _, tc := range cases { tc := tc t.Run(tc.name, func(t *testing.T) { dir1, s1 := testServerWithConfig(t, func(c *Config) { c.RPCMaxConnsPerClient = 2 if tc.tlsEnabled { c.TLSConfig.InternalRPC.CAFile = "../../test/hostname/CertAuth.crt" c.TLSConfig.InternalRPC.CertFile = "../../test/hostname/Alice.crt" c.TLSConfig.InternalRPC.KeyFile = "../../test/hostname/Alice.key" c.TLSConfig.InternalRPC.VerifyServerHostname = true c.TLSConfig.InternalRPC.VerifyOutgoing = true c.TLSConfig.InternalRPC.VerifyIncoming = false // saves us getting client cert setup c.TLSConfig.Domain = "consul" } }) defer os.RemoveAll(dir1) defer s1.Shutdown() // Connect to the server with bare TCP conn1 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn1") defer conn1.Close() // Two conns should succeed conn2 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn2") defer conn2.Close() // Third should be closed byt the limiter conn3 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, false, "conn3") defer conn3.Close() // If we close one of the earlier ones, we should be able to open another addr := conn1.RemoteAddr() conn1.Close() retry.Run(t, func(r *retry.R) { if n := s1.rpcConnLimiter.NumOpen(addr); n >= 2 { r.Fatal("waiting for open conns to drop") } }) conn4 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn4") defer conn4.Close() // Reload config with higher limit rc := ReloadableConfig{ RPCRateLimit: s1.config.RPCRateLimit, RPCMaxBurst: s1.config.RPCMaxBurst, RPCMaxConnsPerClient: 10, } require.NoError(t, s1.ReloadConfig(rc)) // Now another conn should be allowed conn5 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn5") defer conn5.Close() }) } } func TestRPC_readUint32(t *testing.T) { cases := []struct { name string writeFn func(net.Conn) readFn func(*testing.T, net.Conn) }{ { name: "timeouts irrelevant", writeFn: func(conn net.Conn) { _ = binary.Write(conn, binary.BigEndian, uint32(42)) _ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32)) _ = binary.Write(conn, binary.BigEndian, uint32(1)) }, readFn: func(t *testing.T, conn net.Conn) { t.Helper() v, err := readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(42), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(math.MaxUint32), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(1), v) }, }, { name: "triggers timeout on last read", writeFn: func(conn net.Conn) { _ = binary.Write(conn, binary.BigEndian, uint32(42)) _ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32)) _ = binary.Write(conn, binary.BigEndian, uint16(1)) // half as many bytes as expected }, readFn: func(t *testing.T, conn net.Conn) { t.Helper() v, err := readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(42), v) v, err = readUint32(conn, 5*time.Second) require.NoError(t, err) require.Equal(t, uint32(math.MaxUint32), v) _, err = readUint32(conn, 50*time.Millisecond) require.Error(t, err) nerr, ok := err.(net.Error) require.True(t, ok) require.True(t, nerr.Timeout()) }, }, } for _, tc := range cases { tc := tc t.Run(tc.name, func(t *testing.T) { var doneWg sync.WaitGroup defer doneWg.Wait() client, server := net.Pipe() defer client.Close() defer server.Close() // Client pushes some data. doneWg.Add(1) go func() { doneWg.Done() tc.writeFn(client) }() // The server tests the function for us. tc.readFn(t, server) }) } } func TestRPC_LocalTokenStrippedOnForward(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLInitialManagementToken = "root" }) defer os.RemoveAll(dir1) defer s1.Shutdown() testrpc.WaitForLeader(t, s1.RPC, "dc1") codec := rpcClient(t, s1) defer codec.Close() dir2, s2 := testServerWithConfig(t, func(c *Config) { c.Datacenter = "dc2" c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLTokenReplication = true c.ACLReplicationRate = 100 c.ACLReplicationBurst = 100 c.ACLReplicationApplyLimit = 1000000 }) s2.tokens.UpdateReplicationToken("root", tokenStore.TokenSourceConfig) testrpc.WaitForLeader(t, s2.RPC, "dc2") defer os.RemoveAll(dir2) defer s2.Shutdown() codec2 := rpcClient(t, s2) defer codec2.Close() // Try to join. joinWAN(t, s2, s1) testrpc.WaitForLeader(t, s1.RPC, "dc1") testrpc.WaitForLeader(t, s1.RPC, "dc2") waitForNewACLReplication(t, s2, structs.ACLReplicateTokens, 1, 1, 0) // create simple kv policy kvPolicy, err := upsertTestPolicyWithRules(codec, "root", "dc1", ` key_prefix "" { policy = "write" } `) require.NoError(t, err) // Wait for it to replicate retry.Run(t, func(r *retry.R) { _, p, err := s2.fsm.State().ACLPolicyGetByID(nil, kvPolicy.ID, &acl.EnterpriseMeta{}) require.Nil(r, err) require.NotNil(r, p) }) // create local token that only works in DC2 localToken2, err := upsertTestToken(codec, "root", "dc2", func(token *structs.ACLToken) { token.Local = true token.Policies = []structs.ACLTokenPolicyLink{ {ID: kvPolicy.ID}, } }) require.NoError(t, err) // Try to use it locally (it should work) arg := structs.KVSRequest{ Datacenter: "dc2", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } var out bool err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) require.NoError(t, err) require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped") // Try to use it remotely arg = structs.KVSRequest{ Datacenter: "dc1", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) if !acl.IsErrPermissionDenied(err) { t.Fatalf("err: %v", err) } // Update the anon token to also be able to write to kv { tokenUpsertReq := structs.ACLTokenSetRequest{ Datacenter: "dc1", ACLToken: structs.ACLToken{ AccessorID: structs.ACLTokenAnonymousID, Policies: []structs.ACLTokenPolicyLink{ { ID: kvPolicy.ID, }, }, }, WriteRequest: structs.WriteRequest{Token: "root"}, } token := structs.ACLToken{} err = msgpackrpc.CallWithCodec(codec, "ACL.TokenSet", &tokenUpsertReq, &token) require.NoError(t, err) require.NotEmpty(t, token.SecretID) } // Try to use it remotely again, but this time it should fallback to anon arg = structs.KVSRequest{ Datacenter: "dc1", Op: api.KVSet, DirEnt: structs.DirEntry{ Key: "foo", Value: []byte("bar"), }, WriteRequest: structs.WriteRequest{Token: localToken2.SecretID}, } err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out) require.NoError(t, err) require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped") } func TestRPC_LocalTokenStrippedOnForward_GRPC(t *testing.T) { if testing.Short() { t.Skip("too slow for testing.Short") } t.Parallel() dir1, s1 := testServerWithConfig(t, func(c *Config) { c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLInitialManagementToken = "root" c.RPCConfig.EnableStreaming = true }) s1.tokens.UpdateAgentToken("root", tokenStore.TokenSourceConfig) defer os.RemoveAll(dir1) defer s1.Shutdown() testrpc.WaitForLeader(t, s1.RPC, "dc1") codec := rpcClient(t, s1) defer codec.Close() dir2, s2 := testServerWithConfig(t, func(c *Config) { c.Datacenter = "dc2" c.PrimaryDatacenter = "dc1" c.ACLsEnabled = true c.ACLResolverSettings.ACLDefaultPolicy = "deny" c.ACLTokenReplication = true c.ACLReplicationRate = 100 c.ACLReplicationBurst = 100 c.ACLReplicationApplyLimit = 1000000 c.RPCConfig.EnableStreaming = true }) s2.tokens.UpdateReplicationToken("root", tokenStore.TokenSourceConfig) s2.tokens.UpdateAgentToken("root", tokenStore.TokenSourceConfig) testrpc.WaitForLeader(t, s2.RPC, "dc2") defer os.RemoveAll(dir2) defer s2.Shutdown() codec2 := rpcClient(t, s2) defer codec2.Close() // Try to join. joinWAN(t, s2, s1) testrpc.WaitForLeader(t, s1.RPC, "dc1") testrpc.WaitForLeader(t, s1.RPC, "dc2") waitForNewACLReplication(t, s2, structs.ACLReplicateTokens, 1, 1, 0) // create simple service policy policy, err := upsertTestPolicyWithRules(codec, "root", "dc1", ` node_prefix "" { policy = "read" } service_prefix "" { policy = "read" } `) require.NoError(t, err) // Wait for it to replicate retry.Run(t, func(r *retry.R) { _, p, err := s2.fsm.State().ACLPolicyGetByID(nil, policy.ID, &acl.EnterpriseMeta{}) require.Nil(r, err) require.NotNil(r, p) }) // create local token that only works in DC2 localToken2, err := upsertTestToken(codec, "root", "dc2", func(token *structs.ACLToken) { token.Local = true token.Policies = []structs.ACLTokenPolicyLink{ {ID: policy.ID}, } }) require.NoError(t, err) runStep(t, "Register a dummy node with a service", func(t *testing.T) { req := &structs.RegisterRequest{ Node: "node1", Address: "3.4.5.6", Datacenter: "dc1", Service: &structs.NodeService{ ID: "redis1", Service: "redis", Address: "3.4.5.6", Port: 8080, }, WriteRequest: structs.WriteRequest{Token: "root"}, } var out struct{} require.NoError(t, s1.RPC("Catalog.Register", &req, &out)) }) var conn *grpc.ClientConn { client, builder := newClientWithGRPCResolver(t, func(c *Config) { c.Datacenter = "dc2" c.PrimaryDatacenter = "dc1" c.RPCConfig.EnableStreaming = true }) joinLAN(t, client, s2) testrpc.WaitForTestAgent(t, client.RPC, "dc2", testrpc.WithToken("root")) pool := agent_grpc.NewClientConnPool(agent_grpc.ClientConnPoolConfig{ Servers: builder, DialingFromServer: false, DialingFromDatacenter: "dc2", }) conn, err = pool.ClientConn("dc2") require.NoError(t, err) } // Try to use it locally (it should work) runStep(t, "token used locally should work", func(t *testing.T) { arg := &pbsubscribe.SubscribeRequest{ Topic: pbsubscribe.Topic_ServiceHealth, Key: "redis", Token: localToken2.SecretID, Datacenter: "dc2", } event, err := getFirstSubscribeEventOrError(conn, arg) require.NoError(t, err) require.NotNil(t, event) // make sure that token restore defer works require.Equal(t, localToken2.SecretID, arg.Token, "token should not be stripped") }) runStep(t, "token used remotely should not work", func(t *testing.T) { arg := &pbsubscribe.SubscribeRequest{ Topic: pbsubscribe.Topic_ServiceHealth, Key: "redis", Token: localToken2.SecretID, Datacenter: "dc1", } event, err := getFirstSubscribeEventOrError(conn, arg) // NOTE: the subscription endpoint is a filtering style instead of a // hard-fail style so when the token isn't present 100% of the data is // filtered out leading to a stream with an empty snapshot. require.NoError(t, err) require.IsType(t, &pbsubscribe.Event_EndOfSnapshot{}, event.Payload) require.True(t, event.Payload.(*pbsubscribe.Event_EndOfSnapshot).EndOfSnapshot) }) runStep(t, "update anonymous token to read services", func(t *testing.T) { tokenUpsertReq := structs.ACLTokenSetRequest{ Datacenter: "dc1", ACLToken: structs.ACLToken{ AccessorID: structs.ACLTokenAnonymousID, Policies: []structs.ACLTokenPolicyLink{ {ID: policy.ID}, }, }, WriteRequest: structs.WriteRequest{Token: "root"}, } token := structs.ACLToken{} err = msgpackrpc.CallWithCodec(codec, "ACL.TokenSet", &tokenUpsertReq, &token) require.NoError(t, err) require.NotEmpty(t, token.SecretID) }) runStep(t, "token used remotely should fallback on anonymous token now", func(t *testing.T) { arg := &pbsubscribe.SubscribeRequest{ Topic: pbsubscribe.Topic_ServiceHealth, Key: "redis", Token: localToken2.SecretID, Datacenter: "dc1", } event, err := getFirstSubscribeEventOrError(conn, arg) require.NoError(t, err) require.NotNil(t, event) // So now that we can read data, we should get a snapshot with just instances of the "consul" service. require.NoError(t, err) require.IsType(t, &pbsubscribe.Event_ServiceHealth{}, event.Payload) esh := event.Payload.(*pbsubscribe.Event_ServiceHealth) require.Equal(t, pbsubscribe.CatalogOp_Register, esh.ServiceHealth.Op) csn := esh.ServiceHealth.CheckServiceNode require.NotNil(t, csn) require.NotNil(t, csn.Node) require.Equal(t, "node1", csn.Node.Node) require.Equal(t, "3.4.5.6", csn.Node.Address) require.NotNil(t, csn.Service) require.Equal(t, "redis1", csn.Service.ID) require.Equal(t, "redis", csn.Service.Service) // make sure that token restore defer works require.Equal(t, localToken2.SecretID, arg.Token, "token should not be stripped") }) } func TestCanRetry(t *testing.T) { type testCase struct { name string req structs.RPCInfo err error expected bool timeout time.Time } config := DefaultConfig() now := time.Now() config.RPCHoldTimeout = 7 * time.Second run := func(t *testing.T, tc testCase) { timeOutValue := tc.timeout if timeOutValue.IsZero() { timeOutValue = now } require.Equal(t, tc.expected, canRetry(tc.req, tc.err, timeOutValue, config)) } var testCases = []testCase{ { name: "unexpected error", err: fmt.Errorf("some arbitrary error"), expected: false, }, { name: "checking error", err: fmt.Errorf("some wrapping :%w", ErrChunkingResubmit), expected: true, }, { name: "no leader error", err: fmt.Errorf("some wrapping: %w", structs.ErrNoLeader), expected: true, }, { name: "EOF on read request", req: isReadRequest{}, err: io.EOF, expected: true, }, { name: "EOF error", req: &structs.DCSpecificRequest{}, err: io.EOF, expected: true, }, { name: "HasTimedOut implementation with no error", req: &structs.DCSpecificRequest{}, err: nil, expected: false, }, { name: "HasTimedOut implementation timedOut with no error", req: &structs.DCSpecificRequest{}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + time.Second)), }, { name: "HasTimedOut implementation timedOut (with EOF error)", req: &structs.DCSpecificRequest{}, err: io.EOF, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + time.Second)), }, { name: "HasTimedOut implementation timedOut blocking call", req: &structs.DCSpecificRequest{QueryOptions: structs.QueryOptions{MaxQueryTime: 300, MinQueryIndex: 1}}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + config.MaxQueryTime + time.Second)), }, { name: "HasTimedOut implementation timedOut blocking call (MaxQueryTime not set)", req: &structs.DCSpecificRequest{QueryOptions: structs.QueryOptions{MinQueryIndex: 1}}, err: nil, expected: false, timeout: now.Add(-(config.RPCHoldTimeout + config.MaxQueryTime + time.Second)), }, { name: "EOF on write request", err: io.EOF, expected: false, }, } for _, tc := range testCases { t.Run(tc.name, func(t *testing.T) { run(t, tc) }) } } type isReadRequest struct { structs.RPCInfo } func (r isReadRequest) IsRead() bool { return true } func (r isReadRequest) HasTimedOut(since time.Time, rpcHoldTimeout, maxQueryTime, defaultQueryTime time.Duration) (bool, error) { return false, nil } func TestRPC_AuthorizeRaftRPC(t *testing.T) { caPEM, caPK, err := tlsutil.GenerateCA(tlsutil.CAOpts{Days: 5, Domain: "consul"}) require.NoError(t, err) caSigner, err := tlsutil.ParseSigner(caPK) require.NoError(t, err) dir := testutil.TempDir(t, "certs") err = ioutil.WriteFile(filepath.Join(dir, "ca.pem"), []byte(caPEM), 0600) require.NoError(t, err) intermediatePEM, intermediatePK, err := tlsutil.GenerateCert(tlsutil.CertOpts{IsCA: true, CA: caPEM, Signer: caSigner, Days: 5}) require.NoError(t, err) err = ioutil.WriteFile(filepath.Join(dir, "intermediate.pem"), []byte(intermediatePEM), 0600) require.NoError(t, err) newCert := func(t *testing.T, caPEM, pk, node, name string) { t.Helper() signer, err := tlsutil.ParseSigner(pk) require.NoError(t, err) pem, key, err := tlsutil.GenerateCert(tlsutil.CertOpts{ Signer: signer, CA: caPEM, Name: name, Days: 5, DNSNames: []string{node + "." + name, name, "localhost"}, ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth, x509.ExtKeyUsageClientAuth}, }) require.NoError(t, err) err = ioutil.WriteFile(filepath.Join(dir, node+"-"+name+".pem"), []byte(pem), 0600) require.NoError(t, err) err = ioutil.WriteFile(filepath.Join(dir, node+"-"+name+".key"), []byte(key), 0600) require.NoError(t, err) } newCert(t, caPEM, caPK, "srv1", "server.dc1.consul") _, connectCApk, err := connect.GeneratePrivateKey() require.NoError(t, err) _, srv := testServerWithConfig(t, func(c *Config) { c.TLSConfig.Domain = "consul." // consul. is the default value in agent/config c.TLSConfig.InternalRPC.CAFile = filepath.Join(dir, "ca.pem") c.TLSConfig.InternalRPC.CertFile = filepath.Join(dir, "srv1-server.dc1.consul.pem") c.TLSConfig.InternalRPC.KeyFile = filepath.Join(dir, "srv1-server.dc1.consul.key") c.TLSConfig.InternalRPC.VerifyIncoming = true c.TLSConfig.InternalRPC.VerifyServerHostname = true // Enable Auto-Encrypt so that Connect CA roots are added to the // tlsutil.Configurator. c.AutoEncryptAllowTLS = true c.CAConfig = &structs.CAConfiguration{ ClusterID: connect.TestClusterID, Provider: structs.ConsulCAProvider, Config: map[string]interface{}{"PrivateKey": connectCApk}, } }) defer srv.Shutdown() // Wait for ConnectCA initiation to complete. retry.Run(t, func(r *retry.R) { _, root := srv.caManager.getCAProvider() if root == nil { r.Fatal("ConnectCA root is still nil") } }) useTLSByte := func(t *testing.T, c *tlsutil.Configurator) net.Conn { wrapper := tlsutil.SpecificDC("dc1", c.OutgoingRPCWrapper()) tlsEnabled := func(_ raft.ServerAddress) bool { return true } rl := NewRaftLayer(nil, nil, wrapper, tlsEnabled) conn, err := rl.Dial(raft.ServerAddress(srv.Listener.Addr().String()), 100*time.Millisecond) require.NoError(t, err) return conn } useNativeTLS := func(t *testing.T, c *tlsutil.Configurator) net.Conn { wrapper := c.OutgoingALPNRPCWrapper() dialer := &net.Dialer{Timeout: 100 * time.Millisecond} rawConn, err := dialer.Dial("tcp", srv.Listener.Addr().String()) require.NoError(t, err) tlsConn, err := wrapper("dc1", "srv1", pool.ALPN_RPCRaft, rawConn) require.NoError(t, err) return tlsConn } setupAgentTLSCert := func(name string) func(t *testing.T) string { return func(t *testing.T) string { newCert(t, caPEM, caPK, "node1", name) return filepath.Join(dir, "node1-"+name) } } setupAgentTLSCertWithIntermediate := func(name string) func(t *testing.T) string { return func(t *testing.T) string { newCert(t, intermediatePEM, intermediatePK, "node1", name) certPrefix := filepath.Join(dir, "node1-"+name) f, err := os.OpenFile(certPrefix+".pem", os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644) if err != nil { t.Fatal(err) } if _, err := f.Write([]byte(intermediatePEM)); err != nil { t.Fatal(err) } if err := f.Close(); err != nil { t.Fatal(err) } return certPrefix } } setupConnectCACert := func(name string) func(t *testing.T) string { return func(t *testing.T) string { _, caRoot := srv.caManager.getCAProvider() newCert(t, caRoot.RootCert, connectCApk, "node1", name) return filepath.Join(dir, "node1-"+name) } } type testCase struct { name string conn func(t *testing.T, c *tlsutil.Configurator) net.Conn setupCert func(t *testing.T) string expectError bool } run := func(t *testing.T, tc testCase) { certPath := tc.setupCert(t) cfg := tlsutil.Config{ InternalRPC: tlsutil.ProtocolConfig{ VerifyOutgoing: true, VerifyServerHostname: true, CAFile: filepath.Join(dir, "ca.pem"), CertFile: certPath + ".pem", KeyFile: certPath + ".key", }, Domain: "consul", } c, err := tlsutil.NewConfigurator(cfg, hclog.New(nil)) require.NoError(t, err) _, err = doRaftRPC(tc.conn(t, c), srv.config.NodeName) if tc.expectError { if !isConnectionClosedError(err) { t.Fatalf("expected a connection closed error, got: %v", err) } return } require.NoError(t, err) } var testCases = []testCase{ { name: "TLS byte with client cert", setupCert: setupAgentTLSCert("client.dc1.consul"), conn: useTLSByte, expectError: true, }, { name: "TLS byte with server cert in different DC", setupCert: setupAgentTLSCert("server.dc2.consul"), conn: useTLSByte, expectError: true, }, { name: "TLS byte with server cert in same DC", setupCert: setupAgentTLSCert("server.dc1.consul"), conn: useTLSByte, }, { name: "TLS byte with server cert in same DC and with unknown intermediate", setupCert: setupAgentTLSCertWithIntermediate("server.dc1.consul"), conn: useTLSByte, }, { name: "TLS byte with ConnectCA leaf cert", setupCert: setupConnectCACert("server.dc1.consul"), conn: useTLSByte, expectError: true, }, { name: "native TLS with client cert", setupCert: setupAgentTLSCert("client.dc1.consul"), conn: useNativeTLS, expectError: true, }, { name: "native TLS with server cert in different DC", setupCert: setupAgentTLSCert("server.dc2.consul"), conn: useNativeTLS, expectError: true, }, { name: "native TLS with server cert in same DC", setupCert: setupAgentTLSCert("server.dc1.consul"), conn: useNativeTLS, }, { name: "native TLS with ConnectCA leaf cert", setupCert: setupConnectCACert("server.dc1.consul"), conn: useNativeTLS, expectError: true, }, } for _, tc := range testCases { t.Run(tc.name, func(t *testing.T) { run(t, tc) }) } } func doRaftRPC(conn net.Conn, leader string) (raft.AppendEntriesResponse, error) { var resp raft.AppendEntriesResponse var term uint64 = 0xc a := raft.AppendEntriesRequest{ RPCHeader: raft.RPCHeader{ProtocolVersion: 3}, Term: 0, Leader: []byte(leader), PrevLogEntry: 0, PrevLogTerm: term, LeaderCommitIndex: 50, } if err := appendEntries(conn, a, &resp); err != nil { return resp, err } return resp, nil } func appendEntries(conn net.Conn, req raft.AppendEntriesRequest, resp *raft.AppendEntriesResponse) error { w := bufio.NewWriter(conn) enc := codec.NewEncoder(w, &codec.MsgpackHandle{}) const rpcAppendEntries = 0 if err := w.WriteByte(rpcAppendEntries); err != nil { return fmt.Errorf("failed to write raft-RPC byte: %w", err) } if err := enc.Encode(req); err != nil { return fmt.Errorf("failed to send append entries RPC: %w", err) } if err := w.Flush(); err != nil { return fmt.Errorf("failed to flush RPC: %w", err) } if err := decodeRaftRPCResponse(conn, resp); err != nil { return fmt.Errorf("response error: %w", err) } return nil } // copied and modified from raft/net_transport.go func decodeRaftRPCResponse(conn net.Conn, resp *raft.AppendEntriesResponse) error { r := bufio.NewReader(conn) dec := codec.NewDecoder(r, &codec.MsgpackHandle{}) var rpcError string if err := dec.Decode(&rpcError); err != nil { return fmt.Errorf("failed to decode response error: %w", err) } if err := dec.Decode(resp); err != nil { return fmt.Errorf("failed to decode response: %w", err) } if rpcError != "" { return fmt.Errorf("rpc error: %v", rpcError) } return nil } func isConnectionClosedError(err error) bool { switch { case err == nil: return false case errors.Is(err, io.EOF): return true case strings.Contains(err.Error(), "connection reset by peer"): return true default: return false } } func getFirstSubscribeEventOrError(conn *grpc.ClientConn, req *pbsubscribe.SubscribeRequest) (*pbsubscribe.Event, error) { streamClient := pbsubscribe.NewStateChangeSubscriptionClient(conn) ctx, cancel := context.WithCancel(context.Background()) defer cancel() handle, err := streamClient.Subscribe(ctx, req) if err != nil { return nil, err } event, err := handle.Recv() if err == io.EOF { return nil, nil } if err != nil { return nil, err } return event, nil } // channelCallRPC lets you execute an RPC async. Helpful in some // tests. func channelCallRPC( srv *Server, method string, args interface{}, resp interface{}, responseInterceptor func() error, ) <-chan error { errCh := make(chan error, 1) go func() { codec, err := rpcClientNoClose(srv) if err != nil { errCh <- err return } defer codec.Close() err = msgpackrpc.CallWithCodec(codec, method, args, resp) if err == nil && responseInterceptor != nil { err = responseInterceptor() } errCh <- err }() return errCh } // rpcBlockingQueryTestHarness is specifically meant to test the // errNotFound and errNotChanged mechanisms in blockingQuery() func rpcBlockingQueryTestHarness( t *testing.T, readQueryFn func(minQueryIndex uint64) (*structs.QueryMeta, <-chan error), noisyWriteFn func(i int) <-chan error, ) { t.Helper() ctx, cancel := context.WithCancel(context.Background()) defer cancel() launchWriters := func() { defer cancel() for i := 0; i < 200; i++ { time.Sleep(5 * time.Millisecond) errCh := noisyWriteFn(i) select { case <-ctx.Done(): return case err := <-errCh: if err != nil { t.Errorf("[%d] unexpected error: %w", i, err) return } } } } var ( count int minQueryIndex uint64 ) for ctx.Err() == nil { // The first iteration is an orientation iteration, as we don't pass an // index value so there is no actual blocking that will happen. // // Since the data is not changing, we don't expect the second iteration // to return soon, so we wait a bit after kicking it off before // launching the write-storm. var timerCh <-chan time.Time if count == 1 { timerCh = time.After(50 * time.Millisecond) } qm, errCh := readQueryFn(minQueryIndex) RESUME: select { case err := <-errCh: if err != nil { require.NoError(t, err) } t.Log("blocking query index", qm.Index) count++ minQueryIndex = qm.Index case <-timerCh: timerCh = nil go launchWriters() goto RESUME case <-ctx.Done(): break } } require.Equal(t, 1, count, "if this fails, then the timer likely needs to be increased above") }